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Abstract –We investigate the effects of Hamiltonian and Langevin microscopic dynamics on the
growth laws of domains in coarsening. Using a one-dimensional class of generalized φ4 models
with power-law decaying interactions, we show that the two dynamics exhibit scaling regimes
characterized by different scaling laws for the coarsening dynamics. For Langevin dynamics, it
concurs with the exponent of defect dynamics, while Hamiltonian dynamics reveals new scaling
laws with distinct early-time and a late-time regimes. This new behaviour can be understood
as an effect of energy conservation, which induces a coupling between the dynamics of the local
temperature field and of the order parameter, eventually resulting in smooth interfaces between
the domains.

Introduction. – If an Ising model is quenched from a
high temperature disordered equilibrium state to temper-
atures below the critical one, coarsening takes place [1].
Coarsening manifests itself by the emergence of ordered
ferromagnetic domains, and the subsequent scale-free
growth of the larger domains at the expense of the smaller
ones [2]. This phenomenon has been mostly studied for
models with nearest neighbour interactions [1] in absence
or presence of disorder [3]. The theory is based on the
hypothesis that two point spatial correlations are time in-
variant, provided that the distances are renormalized with
a time-dependent length L(t) which usually, at leading
order, scales as t1/z. This scaling hypothesis has been
rigorously demonstrated for one-dimensional models [4,5]
and for the Ginzburg-Landau model in the limit of in-
finite components of the order parameter [6]. However,
simulations and experiments indicate its wider applicabil-
ity [1, 2, 7]. Most of the studies were carried out within
the canonical ensemble. Nonetheless, some authors [8–11]
have performed simulations of the two-dimensional φ4

model with nearest-neighbour couplings in the micro-
canonical ensemble, verifying the scaling hypothesis but
without finding agreement on whether the scaling expo-

nents are the same in the two ensembles.

Regarding systems with long-range couplings, coarsen-
ing has been also analysed theoretically and numerically
for two simple one-dimensional lattice models (Ising and
φ4) with long-range couplings [12,13]. In these models, the
coupling decays with the lattice distance as (ri,j)

−(1+σ)

at large distances ri,j between pairs of lattice sites (i, j).
Coarsening has been found at finite temperature if 0 <
σ ≤ 1 and at zero temperature for σ > 1. Using an
effective model for the time evolution of sharp domains
boundaries, valid in the canonical ensemble, these authors
find that L(t) ∼ t1/(1+σ).

To our knowledge the question whether the dynamical
exponent z is the same in the canonical and microcanoni-
cal ensemble for systems with long-range interactions has
not been addressed before. From the point of view of equi-
librium thermodynamics, the range of parameter values
0 < σ ≤ 1 of the models, is characterized by the equiva-
lence of microcanonical and canonical ensembles [14, 15],
but this equivalence is not guaranteed for dynamical phe-
nomena.

In this article, we want to verify the scaling hypoth-
esis for both the Langevin (canonical) and the Hamilto-
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Fig. 1: Top: temperature T vs. energy per particle e. Bot-
tom: magnetization m vs. energy per particle e. The range of
parameters simulated has been chosen to be around the critical
point for each value of σ. In all cases N = 213.

nian (microcanonical) microscopic dynamics. More impor-
tantly, we aim at checking whether the dynamical scaling
exponent z is the same in both dynamics and agrees or
not with that found in [12, 13], i.e. z = 1 + σ. To this
purpose we consider a φ4 model [16, 17] with long-range
couplings, which displays coarsening in the relevant range
of values, 0 ≤ σ ≤ 1.

We will show that, by a careful numerical analysis of
the spatial correlation function for different values of σ it
is possible to validate the scaling hypothesis in both the
canonical and the microcanonical ensembles. However, the
dynamical scaling exponent is found to be sharply differ-
ent in the two ensembles: we obtain the law zc = 1 + σ
in the canonical ensemble, in agreement with Refs [12,13],
while, in the microcanonical we get zearlyµ = 2σ (at early

times) and zlateµ = 2 (at late times). Moreover, the two
types of dynamics have different scaling functions and dif-
fer by additional dynamical features. For instance, the
scaling regimes appears on different time scales in the two
ensembles and the Hamiltonian dynamics shows transient
oscillations of L(t) just before the scaling regime sets in,
which is the signature of a collective phenomenon. Addi-
tionally the structure factor shows a power-law tail in the
Langevin case, in agreement with Porod’s law, which does
not appear in the Hamiltonian case.

The φ4 model. – We consider a one dimensional pe-
riodic lattice of N sites. To each lattice site i, we attach a
scalar variable qi, with i = 1, . . . , N . The potential energy

is defined as

U =

N∑
i=1

(
q4
i − q2

i

4

)
− 1

4Ñ

∑
i 6=j=1..N

qi qj

r1+σ
ij

, (1)

where rij = min(|i − j|, N − |i − j|) is the closest dis-
tance on the periodic lattice between sites i and j and

Ñ =
∑
j r
−(1+σ)
ij is a normalization factor which makes

the energy extensive in N even when σ ≤ 0. The scalar
variable qi can be viewed as representing a local magneti-
zation. This magnetization feels the action of the on-site
potential (q4−q2)/4, which favours the two magnetization
values q = ±1/

√
2, and the effect of the long-range ferro-

magnetic coupling. The order parameter of the model is
the total magnetization

m =
1

N

N∑
i=1

qi. (2)

A model with the same symmetries and the same interac-
tions as (1), the Ising model with long-range couplings, has
been originally studied by Ruelle [18] and Dyson [19] in the
canonical ensemble. In the range 0 ≤ σ < 1, this model
undergoes a second order phase transition [19] separating
a ferromagnetic phase (m 6= 0) at low temperatures from
a paramagnetic phase (m = 0) at high temperatures. For
σ > 1, the system is disordered at all energies [18,20]. The
case σ = 1 is peculiar, since it shows a Kosterlitz-Thouless
phase transition with a discontinuous jump in the magne-
tization [21–25]. At equilibrium, the φ4 model (1) exhibits
the same qualitative features of the Ruelle-Dyson model
in both the microcanonical and canonical ensembles.

One can study the dynamics of model (1) in the canon-
ical ensemble by coupling each site to a heat reservoir at
constant temperature Tcan. This can be done by consid-
ering the over-damped Langevin equations,

q̇i +
∂U

∂qi
= η(t) i = 1, . . . , N, (3)

where U is given by (1) and η(t) is a zero average δ-
correlated Gaussian noise:

η(t)η(t′) = 2γTcan δ(t− t′) , (4)

where the bar denotes averaging over noise.
Alternatively, by adding kinetic energy K to the poten-

tial energy U defined in (1), one obtains the Hamiltonian

H = K + U =

N∑
i=1

p2
i

2
+ U, (5)

where pi is the momentum conjugate to qi. Hamilto-
nian (5) defines the dynamics in the microcanonical en-
semble.

From the numerical point of view, the time consuming
part of the algorithm lies in the calculation of the force
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−∂U/∂qi acting on site i, because of the all-to-all coupling.
For periodic boundary conditions this can be efficiently
done by using the Fourier representation of the coupling
matrix 1/r1+σ

ij , as discussed in the Appendix of Ref. [26].
In this way, one obtains an algorithm that scales with the
number of sites as N lnN . The Langevin dynamics is in-
tegrated using a second-order algorithm [27] while, for the
Hamiltonian dynamics we have implemented a symplec-
tic fourth-order algorithm [28]. We have also tested the
results against those obtained using other algorithms.

First of all, we have checked whether these algorithms
reproduce the equilibrium features of the model in both
the canonical and the microcanonical ensemble. In Fig. 1,
we show the caloric curve and the magnetization vs the en-
ergy per particle e for σ = 0.2, σ = 0.6 and σ = 1.0. The
value of energy in the canonical ensemble is obtained from
the temperature, using the caloric curve. The superposi-
tion of caloric curves can be considered as a convincing nu-
merical evidence of ensemble equivalence for this model at
equilibrium. The transition energy/temperature decreases
as σ is increased above zero until σ = 1. For σ = 0.2 and
σ = 0.6, the system shows continuous phase transitions
respectively at the energy per particle ec ' 0.120 and
ec ' 0.061, corresponding to the temperatures Tc ' 0.253
and Tc ' 0.21 in the canonical ensemble. These values
have to be compared with the theoretically known values,
ec = 0.132, Tc = 0.264, of the mean-field case σ ≤ 0 [17].
At σ = 1, it is possible to see the jump in the magnetiza-
tion at e ' −0.45 and T ' 0.16. Above σ = 1, there is
no numerical signatures of phase transition at finite tem-
perature, in analogy with what is known for the Ruelle-
Dyson Ising model. One can conclude that the φ4 model
with long-range interactions (1) displays a very similar
behaviour to the Ruelle-Dyson model, for what concerns
equilibrium properties.

Scaling of the two point correlation function.
– We have performed coarsening numerical experi-
ments using both canonical dynamics (3) for model (1)
and microcanonical dynamics, derived from the Hamilto-
nian (5). We have considered quenches from high tem-
perature/energy to a finite temperature/energy below the
critical one and energy above the ground state, using the
curves in Fig. 1 and others computed for various values of
σ to determine the parameters of the initial distribution
which assured a quenched initial condition.

The initial distribution of the positions has been taken,
in both ensembles, as uniform in a region symmetric
around the q = 0 axis, and zero elsewhere. The region
is either connected and centred around the maximum of
the potential at q = 0, or disconnected and formed by two
equal parts centred around the two minima of the poten-
tial. Their area are chosen in order to have the energy
desired. For the Hamiltonian case, we chose a distribu-
tion of momenta uniform in a connected region symmetric
around the p = 0 axis and zero elsewhere. As an exam-
ple, Fig. 2 presents the typical evolution of the system for
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Fig. 3: Langevin (Top) and Hamiltonian (Bottom) correlation
functions g(r, t) at different times during the scaling regime.
The initial condition is a particle distribution with zero magne-
tization. Results shown are averages over 400 runs for systems
with N = 65536 and σ = 0.6.

the Hamiltonian and Langevin cases, where the appear-
ance of domains with different local magnetization can be
observed. Their average size grows in time until one of
them reaches the system’s size. The last configuration
corresponds to the equilibrium state.

As expected, in the low temperature/energy region
there is thus formation of domains as the system re-
laxes from a disordered to a homogeneous configuration,
a regime during which we can extract the scaling law for
their growth. To do so, we use the two-point correlation
function c(r, t), which is defined by:

c(r, t) = 〈qi(t)qj(t)〉ri,j=r , (6)

where 〈·〉f defines an average over the lattice subject to the
constraint f . Several snapshots of the rescaled correlation
function g(r, t) = c(r, t)/c(0, t), for various t are shown
in Fig. 3. We are investigating the scaling hypothesis,
which addresses the universality of the two-point correla-
tion function:

g(r, t) ≈ g̃(r̃(t)) , for ttransient < t < tcutoff , (7)

where the scaled distance r̃ is defined as

r̃(t) = r/L(t) . (8)
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Fig. 2: Quenched below a phase transition, Langevin (first row) and Hamiltonian (second row) evolutions undergo a coarsening
process (left and middle columns) before eventually reaching a broken phase equilibrium (right column). The dots represent
the vale of qi for each particle, with i being the position on the lattice. Here σ = 0.4 in both cases, T = 0.16 for the Langevin
case and e = −0.06 for the Hamiltonian case.

100 101 102 103

t

100

101

102

103

L T = 0.050
T = 0.075
T = 0.100
T = 0.125
T = 0.150

Fig. 4: Thick lines are the scaling factor L(t) for simulation
with Langevin dynamics, at different temperatures. Fixed pa-
rameters of simulations are σ = 0.6, N = 65536 and γ = 1.
Straight lines are the function c t1/z with fitted 1/z and c.

Let us define the scaling factor L(t) as the distance at
which the correlation function reaches some given fraction
1/n of its peak value:

L(t) > 0 : g(L(t), t) = g(0, t)/n . (9)

We chose the values of n which give the best fit in the two
ensembles, but we checked that different choices lead to
the same conclusions.

Langevin dynamics. – For the Langevin dynamics,
we chose n = 2. After a transient time, the scaling factor
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Fig. 5: Scaling factor L(t) for the Hamiltonian dynamics for
different σ. Fixed parameters N = 65536 and e = −0.06.

L grows as a power of time, and Fig. 4 shows L(t) for
different values of temperature. One observes in these
curves that there exists a transient regime t < ttrans, where
ttrans depends on temperature, followed by a regime where
the slope does not depend on temperature. The curves
after the transient time can be empirically fitted by the
function:

L(t0) + c (t− t0)1/z , t > t0, (10)

using 1/z, c and t0 as fitting parameters, and where the nu-
merical curve L(t0) has been interpolated to have smooth
form for it. Determined by this procedure, z(σ) is in good
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for Langevin dynamics, and e = −0.06 for the Hamiltonian
one.

agreement with
zc(σ) = 1 + σ , (11)

which corresponds to the law predicted for the defect dy-
namics [12,13] (see Fig. 6).

If instead of (10), we use for the fit the simple power law
c t1/z, one can find a systematic shift of the exponent z fit-
ted of roughly +0.2. This fit is valid for a smaller temporal
window, but works also at larger values of the temperature
(e.g. T ∼ 0.15) where (10) presents some convergence is-
sues. For the temperatures where the fit (10) works, vary-
ing γ or T affects the transient regime, i.e. parameters t0
and c, but no significant effect on z was found, and the
same holds at every temperature using: c t1/z. This can
be clearly seen also in Fig. 4 where the slopes of the curves
after the transient are all very close.

Using the parameters of (10) obtained from the fits, we
are able to confirm the validity of the scaling hypothesis
for the Langevin dynamics. Indeed as can be seen in Fig. 7,
where g̃(r̃) is plotted, the correlations functions collapse
very well.

Finally we analyse the domain structure: Porod’s
law [29–31] relates the structure of defects in the order
parameter, which are the sharp domain boundaries, to
the tail of the structure factor S. Since the shape of de-
fects affects the small distance behaviour of the correla-
tion function, it can be analysed by looking at the large
wave-vectors k behaviour of the structure factor, which
corresponds to its spatial Fourier transform. In a one di-
mensional case, the law predicts, for kL� 1

S(k, t) ∼ 1

Lk2
. (12)

We confirm this law by plotting the structure factor in
Fig. 8. This provides a further justification to the ap-
proach of [12, 13], which is based on the sharp domain
boundaries approximation.
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Fig. 7: Correlation functions plotted in units of scaled distance
r̃ = r/L(t), for five different times in the scaling regime, for
each of the different values of σ. The top plot corresponds to
the Langevin case, the middle plot to the Hamiltonian case
at early times, and the lower to the Hamiltonian case at late
times. L(t) has been defined in (10) for the top plot and as

L(t) = c t
1
z in the others, and the values of z are the same as

in Fig. 6 for each value of σ.

Hamiltonian dynamics. – Also in this case simula-
tions exhibit scaling properties, though the behaviour is
richer. We can notice in Fig. 5 the existence of an early
regime of power law growth of L(t) which starts sooner
than in the Langevin case, regardless of the energy of the
system, where one does not need to exclude a transient
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Fig. 8: Top: Structure factor for Langevin simulations. At
large k it follows Porod’s law (12). Bottom: Structure factor
for Hamiltonian simulations. At large k there is a deviation
from Porod’s law.

time window to perform the fit. We can use c t1/z with
only 1/z and c as fitting parameters. Here the best fit
is given choosing n = 5 and we used it to define L(t) in
the microcanonical ensemble. The values of the dynamic
exponent, plotted in Fig. 6, stay very close to the line:

zearlyµ (σ) = 2σ . (13)

At larger times simulations show that the factor L(t) starts
deviating from a straight line and the system displays
a crossover towards another scaling regime (t > 100 in
Fig. 5). The dynamic exponent, shown in Fig. 6, now
stays close to the law:

zlateµ (σ) = 2. (14)

The collapse of the correlation functions has been checked,
for both regimes, in Fig. 7. These relations constitute an
original result pertaining to Hamiltonian coarsening dy-
namics and differentiate it from the Langevin dynamics.
For the peculiar case σ = 1.0, there are several time win-
dows which provide an equally good collapse but different
exponents (±0.3), whereas for other values of σ exists a
time window that gives an optimal fit and an optimal col-
lapse of the correlation function. This can be interpreted
by the fact that for σ = 1.0, as in [32], a logarithmic cor-
rection to the power law may be needed. Using a similar

ansatz: L(t) ∼ (t log t)1/z we can identify an optimal time
window for the fit and collapse, which results in z = 2.42,
although other forms of L(t) give equally good fits, which
makes hard to give conclusive statements about this case.

In the limit σ → 0, we are not able to extract any
dynamical exponent for Hamiltonian dynamics since the
system relaxes quickly to a macroscopically magnetized
phase. In the context of gravitation, this short tran-
sient was termed “violent relaxation” [33] and does not
depend significantly on the system size. This property
was later shown to be common to many Hamiltonian sys-
tems with long-range interactions. We have indeed ob-
served that the early regime of the Hamiltonian simula-
tions displays additional oscillations (Fig. 5). They per-
sist in the thermodynamic limit, which shows that they
are a result of collective oscillations. Such oscillations are
typical of the dynamics of systems with the mean-field
potential (−1 < σ < 0) [34] and therefore we can safely
conclude that some of these effects persist into the regime
of the coarsening dynamics. Finally the analysis of the
structure factor shows another difference with respect to
the Langevin case: as can be seen in Fig. 8 the Porod’s
law is not satisfied for Hamiltonian dynamics since there
is no power-law decay at large k. This suggests that the
domain boundaries are smooth.

Discussion. – Effective models of energy conserving
systems, obtained through a coarse-graining of the micro-
scopic model, are characterized by a temperature (or en-
ergy) field coupled to the order parameter field [35–39].
These models can be considered good approximations
of our Hamiltonian case, and the temperature field can
be considered, assuming that the system is in a quasi-
equilibrium state, as equivalent to the mean kinetic energy
in a small spatial region. For the Langevin case, which
does not have a kinetic term, coarse-grained models are
instead characterized by a single field which represents
the order parameter. In these models the law zc = 1 + σ
can be understood considering sharp domain boundaries
in the order parameter field, which evolve driven by an ef-
fective interaction, as in [12,13]. To understand our results
for the microcanonical φ4 model, we have to consider first
that Porod’s law is not verified, and that the sharp do-
main boundaries approximation is not justified, and then
look qualitatively at the evolution of the magnetization
and of the temperature. When a magnetization domain
disappears, the potential energy of the system decreases
because of the disappearance of its two boundaries. Since
the total energy is conserved, the potential energy lost
is transformed, locally, into kinetic energy which will dif-
fuse by thermal conduction. This creates inhomogeneity
in the temperature field which makes the relaxation of
systems easier in the areas of larger temperature. This
means that the temperature dynamics can thus drive the
domain walls, and the fact that the temperature evolves
diffusively justifies the diffusive relaxation of the order pa-
rameter z = 2. This mechanism has been illustrated in the
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case of an energy conserving coarse-grained model with
nearest-neighbour interactions for a single domain inter-
face in [40].

So in this article, we provide evidence that, for a one-
dimensional φ4 model with algebraically decaying interac-
tions, Hamiltonian and Langevin dynamics generate coars-
ening regimes in which the scaling hypothesis (7) is valid,
but the laws for the dynamical exponents z(σ) appear to
be different. For the Langevin dynamics our results show,
when using a formula that allows to exclude the transient
regime, that the dynamic exponent depends on the expo-
nent of the interaction potential σ according to the law:
zc = 1 + σ, in full agreement with the law obtained from
the dynamics of sharp interfaces. For Hamiltonian dy-
namics, we show that this approximation is not valid since
the temperature diffusion, which does not appear in the
Langevin case, has the effect of smoothing out the order
parameter profile. In this case, we find at early times the
new empirical law: zearlyµ = 2σ, and in the asymptotic
regime, in which the relaxation of the order parameter is
dominated by the diffusive dynamics of the temperature
field, the law: zlateµ = 2. These results show that the
modeling of a coarsening dynamics is crucial, especially
regarding its possible contact with the environment.
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