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The current paper presents an experimental study of the energy budget of a two-
dimensional internal wave attractor in a trapezoidal domain filled with uniformly strati-
fied fluid. The injected energy flux and the dissipation rate are simultaneously measured
from a two-dimensional, two components, experimental velocity field. The pressure
perturbation field needed to quantify the injected energy is determined from the linear
inviscid theory. The dissipation rate in the bulk of the domain is directly computed from
the measurements, while the energy sink occurring in the boundary layers are estimated
using the theoretical expression of the velocity field in the boundary layers, derived
recently by Beckebanze et al. (J. Fluid Mech. 841, 614 (2018)). In the linear regime, we
show that the energy budget is closed, in the steady-state and also in the transient regime,
by taking into account the bulk dissipation and, more important, the dissipation in the
boundary layers without any adjustable parameters. The dependence of the different
sources on the thickness of the experimental set-up is also discussed. In the nonlinear
regime, the analysis is extended by estimating the dissipation due to the secondary waves
generated by triadic resonant instabilities showing the importance of the energy transfer
from large scales to small scales. The method tested here on internal wave attractors can
be generalized straightforwardly to any quasi two-dimensional stratified flow.

1. Introduction
In fluid mechanics, energy budgets provide useful insights on the mechanisms at play

in the energy cascade, the transfer from the large scale of energy injection to the small
scales where dissipation is taking place. In geophysical and astrophysical systems, this
is of paramount importance to understand the role played by internal gravity waves,
generated through different mechanisms at large scale, in the induced mixing of the fluid
occurring at small scales (Munk 1966; Munk & Wunsch 1998; Ivey, Winters & Koseff
2008; André, Mathis & Barker 2019; Sutherland et al. 2019).

Recently, there has been a lot of interest in the determination of the injected energy
flux into the internal wave field which requires the simultaneous measurement of both
velocity and pressure fields. Direct calculations can be rather straightforwardly performed
in numerical simulations, since both fields are computed (Lamb 2004; Mathur & Peacock
2009; Rapaka, Gayen & Sarkar 2013). This is usually much more complicated in
laboratory experiments and even more in field measurements where one can have at best
the information on a one dimensional line (Van Haren and Gostiaux 2012). Different
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methods have been however proposed depending on the experimental techniques used to
visualize the internal waves. Lee et al. (2014) require only the velocity field measured
using the particle image velocimetry technique (PIV). Density perturbations obtained
with the synthetic Schlieren technique can lead to the estimation of the energy flux for
linear (Clark & Sutherland 2010; Allshouse et al. 2016) or nonlinear stratifications (Lee
et al. 2018). Finally, Nash, Alford & Kunze (2005) present the method to compute the
energy flux from ocean observations.

The counterpart of the energy sources is the energy sinks. In the ocean, it has been
observed that the loss of energy can occur very far from the energy sources. Even
if some energy is lost during propagation, some dissipation occurs near topographies
indicating that what is happening near boundaries clearly matters in the global energy
budget (Nikurashin & Ferrari 2010). Indeed, small streamwise undulations of a bottom
topography may have an effect on the structure of the viscous boundary layer (Passaggia,
Meunier & Le Dizès 2014) and can induce a decay of internal tides in the ocean (Buhler
& Holmes-Cerfon 2011). In laboratory experiments, the propagation of an internal wave
beam is affected by viscous damping as initially studied by Thomas & Stevenson (1973)
or through instabilities of internal wave beams (Dauxois et al. 2018). It has been
also recently shown that viscous boundary layers can induce strong mean flow due to
streaming (Horne et al. 2019; Renaud & Venaille 2019).

In a recent paper, Beckebanze et al. (2018) investigate the role of the boundary layers
on the resulting spectrum of an internal wave field attractor. The latter for stratified
fluids or inertial wave attractors for rotating fluids are a very interesting scenario for
energy transfer since energy is linearly transferred through smaller scales due to the
focusing on a sloping topography (Dauxois & Young 1999). Depending on the geometry
of the domain, multiple reflections can lead to a concentration of wave energy on a closed
loop, the so-called internal wave attractor (Maas & Lam 1995; Maas et al. 1997). In
the presence of dissipation, the width of the attractor beam is set by the competition
between geometric focusing and viscous broadening (Rieutord, Georgeot & Valdettaro
2001; Ogilvie 2005; Grisouard, Staquet & Pairaud 2008; Hazewinkel et al. 2008).
Beckebanze et al. (2018) model the different dissipation processes and, in particular,
take into account the part due to viscous boundary layers. They finally describe with a
very good agreement the spectrum of linear internal wave attractors obtained in previous
laboratory experiments (Hazewinkel et al. 2008; Brouzet et al. 2016b). Furthermore,
high concentration of energy make attractors prone to different instabilities (Maas 2005).
Several experiments have recently shown the scenario of instability that can occur in
internal wave attractors (Scolan, Ermanyuk & Dauxois 2013; Brouzet et al. 2016a,
2017) which involves in particular the triadic resonance instability (Dauxois et al. 2018).
The effect of these nonlinearities on the dissipation rate for the attractor has been studied
numerically by Jouve & Ogilvie (2014).

In the present paper, we consider experimentally the complete energy budget for an
internal wave attractor in a trapezoidal geometry. Measuring the velocity field only in the
bulk (i.e. outside the boundary layers), we carefully show how to quantify the injected
power and the energy sink. Both the internal shear layer and the boundary layers are
taken into account. We analyse the complete energy budget in two linear scenarios but
also in a nonlinear scenario involving a cascade of triadic resonance instabilities.

The paper is organized as follows. Once the experimental set-up used in the laboratory
has been described in § 2, we introduce in § 3 the corresponding energy budget model.
The injection energy flux and the different terms involved in the dissipation rate are
then presented. In § 4, we first carefully measure and analyse the energy balance in
a linear case. In a second stage, when considering nonlinear regimes, we demonstrate
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that secondary waves emerging in the energy cascade have a non negligible part of
the total dissipation. The importance of the dissipation in the boundary layers is then
discussed using a linear internal wave attractor in a different experimental set-up. We
finally conclude in § 5 and draw some perspectives.

2. Experimental set-up
As shown in figure 1, a rectangular tank of size L×W ×H =2000×170×1000 mm3 is

filled with a fluid linearly stratified with salt and for which density varies from 1.06 kg/L
at the bottom to 1.00 kg/L at the surface. The origin O and the coordinates x, y
(horizontal) and z (vertical) are defined in the figure 1. The buoyancy frequency, defined
as N =

√
−(g/ρr)dρ0(z)/dz in which ρ0(z) is the density stratification at rest and ρr

is the averaged density of the stratified region, is chosen at 0.68± 0.02 rad/s. A sloping
wall, tilted by an angle α with respect to the vertical, delimits a trapezoidal fluid domain
of length L = 1720 mm (measured along the bottom) and depth H = 920 mm. The
system is forced by an internal wave generator (left wall) of the same height H made of
a flexible membrane pivoting around an axis at mid-height. The top and bottom ends
remain vertical and are oscillating at the frequency ω0 with an amplitude a0. These
two parameters can be tuned appropriately by a simple electro-mechanic device. The
frequency is chosen constant throughout all experiments described here while different
amplitudes are used but kept constant during each of them. The position of the flexible
membrane can thus be given with a very good agreement by a0 sin(ω0t) cos(πz/H),
where z is the vertical coordinate taken from the bottom of the tank. Due to the
shape of the generator, the vertical component of the induced wavevector is given by
m = 2π/λz = 2π/(2H) while the horizontal one, ` = 2πω0/(Nλz

√
1− (ω0/N)2), is

obtained using the dispersion relation ω0 = N`/
√
`2 +m2 = N sin θ, with θ the angle

between the wavevector and the vertical. Note that this angle is also equal to the angle
between the rays and the horizontal as displayed in figure 1, where rays are energy
propagation path. The typical wavelength of the injected wave-field 2H

√
1− (ω0/N)2 is

of the order of 1500 mm.
The experimental setup has been designed such that the wave-field is quasi-

bidimensional. This means that the transverse velocity field v can be considered
null and that the horizontal and vertical components of the velocity field, denoted u
and w, do not depend on the transverse direction y, except in the boundary layers. This
property has been experimentally and numerically verified for the linear and weakly
nonlinear regime in Brouzet et al. (2016b).

The velocity field (u, w) measured in the vertical mid-plane (y = 0) is then monitored
as a function of spatial coordinates and time, using the standard PIV technique. The flow
is indeed seeded with 10-µm silver-coated hollow glass spheres of density 1.4 kg/m3, and
illuminated by a 532-nm 2W-continuous laser shaped into a vertical sheet. The cross-
correlation algorithm (Fincham & Delerce 2000) is performed by analyzing windows of
typical size 31× 31 pixels with 20% overlap. The final mesh size is approximately 1 cm.

Figure 2 presents a typical experimental measurement of the amplitude of the velocity
field measured in the steady state and within the linear regime. One clearly sees that
the velocity field is focused around the infinitely thin inviscid theoretical attractor,
depicted by the dashed line, with counterclockwise energy propagation. Note that the PIV
images show a different pattern from the ones obtained using synthetic Schlieren (Scolan,
Ermanyuk & Dauxois 2013; Brouzet et al. 2016b). Indeed, this last technique, being
sensible to the gradient of the density, emphasizes the small scales. As one is interested in
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Figure 1. Schematic view in perspective of the experimental setup. A sloping wall, inclined at
an angle α with respect to the vertical, is put inside an immobile tank delimiting a trapezoidal
fluid domain of length L = 1720 mm (measured along the bottom), depth H = 920 mm and
thicknessW = 170 mm. A flexible membrane is oscillating around an axis located at mid-height,
producing an horizontal velocity field a0 sin(ω0t) cos(πz/H). Black dotted lines show an internal
wave billiard geometric prediction of an attractor of frequency ω0. The angle θ of the first branch
(top right) is given by the dispersion relation ω0 = N sin θ. The origin O is taken at the bottom
left part of the fluid domain, at mid-width.
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Figure 2. Spatial evolution within the tank of the amplitude of the velocity field 〈
√
u2 + w2〉T0 ,

averaged over 10 forcing periods T0 = 2π/ω0 around t = 50 T0. The theoretically expected
attractor for this geometry is depicted with the dashed line. The parameters of the experiment
are a0 = 2 mm, ω0/N = 0.52, N = 0.68±0.02 rad/s and α = 29.5◦. Note that the shadow of the
slope modifies the illumination of the laser sheet and therefore hinders the measurement of the
velocity field in the region very close to the slope: this is why a mask (in white in the figure)
with an angle different from the slope angle has been chosen to avoid ambiguous measurements
in this region.

the energy budget, the PIV technique is more appropriate as we will consider the viscous
dissipation, which depends only on the velocity field.

The finite width λ of the attractor (approximately 100 mm) is the result of the
equilibrium between focusing after reflection on the slope and the viscous spreading.
The amplitude, which is at least five times larger than the wave-maker velocity a0ω0,
attains its maximum just after the focalization on the inclined slope: this is the start of
the first branch of the attractor. The amplitude gradually decreases along the attractor
to end in the fourth branch, of small amplitude and with a rather large width. After
reflection on the slope, the fourth branch is focalized again and one recovers the first
branch, thin and with a large amplitude. The dissipation along the attractor is precisely
balanced by the focalization and one gets a stable limit cycle, the internal wave attractor.
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Now that the experimental set-up has been presented in detail, we will carefully discuss
the different contributions involved in the energy budget of internal wave attractors
experiments.

3. Model
3.1. Energy budget

Let us consider an incompressible, nonrotating, stratified fluid in Cartesian coordinates
(ex, ey, ez), where ez is the direction opposite to gravity. In the framework of the
Boussinesq approximation, the equations of motion can be written as

∂tu + u · ∇u = − 1

ρr
∇P + b ez + ν∇2u (3.1)

∂tb+ u · ∇b = −wN2, (3.2)
∇ · u = 0 (3.3)

in which u = (u, v, w) is the fluid velocity field, ρr the average density over the stratified
region, P the pressure variation with respect to the hydrostatic equilibrium pressure,
b = g(ρ0 − ρ)/ρr the perturbed buoyancy field, N the buoyancy frequency and ν the
kinematic viscosity.

In (3.2), we have neglected the molecular diffusivity, which would imply a term D∇2b
with D the diffusion coefficient of the stratifying element. As we discussed, laboratory
experiments use salt as stratification agent, so D ' 10−9 m2/s which corresponds to the
Schmidt number ν/D ∼ 103. Therefore this term can be neglected with respect to the
viscous term appearing in (3.1).

Let us recall how it is possible to establish the energy budget of this system as a balance
between the injected power and the dissipation rate (see for example Kundu (1990)).
Multiplying (3.1) with u and integrating over V, the whole volume of the tank (bounded
by the surface S) and using (3.2), one gets

(3.4)
∂t

∫
V

dV

(
u2

2
+

1

N2

b2

2

)
= − 1

ρr

∫
V

dV u · ∇P −
∫
V

dV u · ∇
(
u2

2
+

1

N2

b2

2

)
+ ν

∫
V

dV u · ∇2u .

where
∫
V and ∂t have been commuted. Indeed, the length of the tank varies only by

∆L/L ∼ 0.1%, with a typical time of variation tL = T0. We will see in figure 7 in § 4
that the integrand increases from zero to its final value on a typical time te ∼ 10 T0, such
that ∆L/(LtL) � 1/te. The variations of the frontiers of V are thus sufficiently small
and slow to be neglected.

The left-hand-side is the variation of the total energy Etot that corresponds to the sum
of the kinetic and potential energies within the fluid. Note that the latter is defined with
respect to the reference stratification which is supposed fixed, no mixing being taken into
account.

Let us show that the right-hand-side corresponds to the sum of the energy injection rate
and the viscous dissipation rate. We will first focus on the monochromatic case, before
considering the polychromatic one in § 4.2. First of all, we turn the volume integral into a
surface integral, keeping in mind that in an incompressible flow the velocity field satisfies
the continuity equation ∇ · u = 0. Denoting dS the element of surface which normal is
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oriented out of the fluid, the first term can therefore be rewritten as

−
∫
V

dV u · ∇P =

∫
V

dV P∇ · u −
∮
S
Pu · dS (3.5)

= −
∫
Sg
Pu · dS, (3.6)

using the property that the component of the velocity normal to the surface S vanishes
everywhere except on Sg, the surface of the wave generator where the flexible membrane
injects energy in the tank.

In the same way, the second term of the right-hand-side of (3.4) is equal to the energy
flux at the boundaries of the domain. Using similar arguments, only the surface of the
generator has to be considered. Both quantities u2u and b2u thus vanish when averaged
over the forcing period T0 = 2π/ω0, as they are odd power of a trigonometric function.
The second term of the right-hand-side of (3.4) is thus equal to zero.

Turning again the volume integral into a surface integral, the last term on the right-
hand-side of (3.4) yields

(3.7)ν

∫
V

dV u · ∇2u = −ν
∫
V

dV |∇u|2 + ν

∮
S
ui∂juidSj .

The last term vanishes when considering fixed solid boundaries (right slope and bottom)
using the no-slip and no-penetration conditions. It vanishes also at the surface, due to the
free-slip condition and because there is no normal variation of the normal velocity, even
in the presence of small surface waves. For the remaining boundary - the generator -,
the velocity field corresponds essentially to a mode-1 induced by the generator itself.
Both quantities u∂xu and w∂xw have thus a vanishing average on the forcing period
T0 = 2π/ω0 while v = 0.

Equation (3.3) is thus rewritten as the energy budget within the tank

∂tetot = pinj − pdiss, (3.8)

which relates, per unit mass, the time variation of the total energy etot ≡ Etot/V with
the injected power

pinj ≡ −
1

ρrV

∫
Sg
Pu.dS (3.9)

and the dissipation rate

pdiss ≡
ν

V

∫
V

dV |∇u|2 . (3.10)

For convenience, it is useful to introduce the local density of dissipation rate ε ≡ ν |∇u|2.
A temporal average over an integer number of forcing periods T0 will be considered. The
method to determine the time-averaged values of the total energy, the injected power
and the dissipated rate requires only the velocity field data and will be presented in the
following section.

3.2. Estimation of the different terms from experimental measurements
3.2.1. Total energy

Unlike rotating inertial waves where no potential energy can be defined, equipartition
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of energy between kinetic and potential subparts can be defined for internal waves. The
time variation of the total energy can thus be safely obtained from PIV that gives accurate
measurements of the velocity components : 〈etot〉T0

=
∫
V dV 〈u2〉T0

/V.
The velocity field has been shown to be bidimensional (i.e. only two components

invariant in the y-direction) except in the boundary layers, of typical width d =
√
ν/ω0 ∼

1 mm (Brouzet et al. 2016b). So their total volume, 2dA+dLW (where L is the perimeter
of the vertical trapezoidal section of the domain, A its area and W the width of the
experimental tank) represents only 1% of the total volume of the tank. The measured
value of the total energy will thus be computed as 〈etot〉T0

=
∫
A dxdz 〈u2〉T0

/A, where
u is measured in the mid vertical plane only.

Because of some experimental issues near boundaries, the measured area is a bit smaller
than the total area of the trapezoidal domain. However since this difference is small we
assume that the sampled area is representative enough so that our measure of the average
energy density is correct.

3.2.2. Injected power
As the generator is everywhere almost vertical, one can safely approximate (3.9) by

pinj '
1

ρrA

∫
z

Pu dz. (3.11)

The determination of the injected power requires therefore the simultaneous measurement
of the horizontal velocity field and the pressure near the wavemaker on the left boundary
of the tank (x = 0). This kind of generator forces a purely propagating mode-1 with
an amplitude u0 slightly lower than a0ω0 depending on the efficiency of the wave maker
(see Mercier et al. (2010)),

uM1(x, z, t) = u0 cos (mz) cos (ω0t− `x) . (3.12)

Using the incompressibility equation and assuming that the flow is two-dimensional, one
can straightforwardly get the vertical component,

wM1(x, z, t) = −u0
`

m
sin (mz) sin (ω0t− `x) , (3.13)

induced in the fluid by the generator. The associated pressure field can be deduced by
projection of the linear inviscid version of (3.1) on the x-axis, followed by a straightfor-
ward integration

PM1(x, z, t) = ρru0
ω0

`
cos (mz) cos (ω0t− `x) , (3.14)

in which the constant of integration is set to zero since P accounts only for the pres-
sure variation with respect to the hydrostatic equilibrium pressure. The time-averaged
theoretically injected power can then be computed as

〈pM1
inj 〉T0

= u20N
H2

4π

√
1−

(ω0

N

)2 1

A
. (3.15)

This theoretical development is valid for a pure propagating mode-1. However, such
approximation may be questioned in the presence of the slope, since the size of the
closed domain has been chosen to get strong reflected beams, which is required to the
formation of the attractor. Some feedback on the forced wave-field from its reflection on
the slope is then expected.
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Figure 3. (a) Pressure field P , computed via an integration of the experimental velocity fields
u and w. The unimportant constant of integration is arbitrarily chosen to have a zero average
pressure field. The pattern is computed about 50 T0 after the generator was started. (b) Evolution
in time of the injected power computed at x0 = 5 cm. The oscillating black curve corresponds
to the instantaneous measurement, while the red dashed curve is the associated local mean. The
generator is switched on at t = 0 while turned off at t = 60 T0. The thick blue line corresponds
to the theoretical injected power (3.15) expected for a pure mode 1, i.e. neglecting the reflection
on the slope. Experimental parameters are those given in the caption of figure 2.

To go beyond, it is possible to use the PIV measurements to compute both the
pressure and horizontal velocity appearing in (3.11). Indeed, if the PIV technique gives
directly the horizontal velocity field, the pressure field can be obtained from u and w
as follows. Since the width of the attractor λ, which is the typical length of variation
of the velocity field in the transverse direction of the branch, is much larger than d,
we use the linear and inviscid approximation of (3.1) and (3.2) to get the experimental
pressure gradient, which is then integrated using the Matlab” c© code intgrad2, available
on www.mathworks.com/matlabcentral/fileexchange/. The unknown constant of in-
tegration necessary for this last step is not important since mass conservation implies∫
Sg u dydz = 0, leading to a vanishing contribution to the injected power. Thus we
arbitrarily choose 〈P 〉A = 0.

An example of the computed pressure field is presented in figure 3(a). The pressure
field is different from the pure mode-1 pattern (3.14): this will have some consequences
on the estimation of the injected power. Because of the integration, the pressure field
emphasizes the large scale motion contrary to the density gradient or velocity fields that
show the attractor (see for example figure 2).

Figure 3(b) shows the time evolution of the injected power pinj (solid black line) for
a typical experiment in the linear regime. For visualisation purposes, this flux of energy
is measured at x0 ' 5 cm, as will be discussed in § 4.1. pinj is oscillating with a mean
value (dashed line) that first increases until reaching its stationary value. As soon as the
generator is turned off, it decreases towards zero. One notes that the measured value is
above 〈pM1

inj 〉T0
(thick blue line), i.e. the theoretical injected power (3.15) expected for a

pure mode 1 neglecting the finite size of the domain due to the reflection on the slope.

3.2.3. Disentangling the different contributions for the dissipative terms

As already mentioned, the two-dimensional PIV measurements give access to the
velocity field in the middle plane y = 0 and can be extended to the volume except
in the boundary layers. In the remainder of the paper, this is named the bulk part. Since
the thickness of the boundary layers is very small, the velocity gradient may be strong
in these regions and the associated dissipative term cannot be neglected. It is therefore
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convenient to distinguish several different contributions as follows

pdiss =
1

V

∫
V

dV ν |∇u|2 (3.16)

=
1

V

∫
Vbulk

dV ν |∇u|2︸ ︷︷ ︸
εbulk︸ ︷︷ ︸

pbulk

+
1

V

∫
VBL,⊥

dV ν |∇u|2︸ ︷︷ ︸
ε⊥︸ ︷︷ ︸

p⊥

+
1

V

∫
VBL,‖

dV ν |∇u|2︸ ︷︷ ︸
ε‖︸ ︷︷ ︸

p‖

. (3.17)

This definition disentangles the bulk dissipation (denoted with the index bulk and that
one can expect to measure accurately), from the contributions of the boundary layers
close to the walls. Among the last ones, we distinguish the dissipation in the boundary
layers along the longitudinal walls (parallel to the measurement plane and therefore
perpendicular to y, denoted with the index ‖), from the dissipation in the boundary
layers perpendicular to the attractor plane (denoted with the index ⊥). Let us discuss
these three different terms successively.

In the bulk, the transverse velocity v is equal to zero and the velocity components u
and w do not depend on y. The contribution of the bulk can thus be computed rather
straightforwardly from the measurements of the velocity field shown in figure 2 using the
formula

εbulk = ν |∇u|2 = ν(∂xu)2 + ν(∂zu)2 + ν(∂xw)2 + ν(∂zw)2. (3.18)

Figure 4(a) presents the spatial dependence of this quantity in the mid-plane averaged
over 10 T0. As expected, its amplitude is particularly important along the first branch
of the attractor, that is located just after the reflection on the slope where the focusing
takes place, and then decreases along the attractor. The mean of this quantity on the
whole domain leads to pbulk, the energy dissipation rate due to the bulk.

It is much more difficult to directly estimate the dissipation in the boundary layers.
Indeed, since their thickness are very small compared to the size of the tank (around
1%), it is very hard to measure the velocity in the boundary layers as accurate as in the
bulk. A method to evaluate the velocity using the velocity measured in the mid-plane
(y = 0) will then be presented for the two types of boundary layers, parallel to the
lateral walls (§ 3.2.4) and perpendicular to the attractor plane (§ 3.2.5). In both cases,
theoretical developments recently reported by Beckebanze et al. (2018) will be used and
adapted. For the sake of brevity and clarity, only the main ingredients of their results
will be recalled. Notice that linear equations will be used in the two following sections as
the Reynolds number is small in viscous boundary layers. Brouzet et al. (2016b) showed
that the experimental velocity field in the parallel boundary layers is compatible with
the theoretical description.

3.2.4. The dissipation in the longitudinal boundary layers ε‖
Close to both longitudinal vertical walls, the largest contribution to the viscous

term ν∇2u comes from the gradients in the y-direction. Indeed, experimental measure-
ments show that variations in the xz-plane are typically on the centimeter length scale,
that is significantly larger than the millimeter length scale that appears in the viscous
boundary layer. The evolution of the velocity (3.1) and buoyancy fields (3.2) can thus be
simplified as
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Figure 4. (a) Dissipation rate field within the bulk of the fluid, 〈εbulk(x, z)〉T0 , measured in the
mid-plane. (b) Dissipation rate field in the longitudinal boundary layers, 〈ε‖〉T0 , averaged along
the transverse direction. In both panels, the field has been averaged over 10 forcing periods T0

around t = 50 T0 an the theoretically expected attractor for this geometry is depicted with the
dashed line. Experimental parameters are those given in the caption of figure 2.

∂tu = −∂xP
ρr

+ ν∂yyu, (3.19)

∂tw = −∂zP
ρr

+ b+ ν∂yyw, (3.20)

∂tb = −wN2. (3.21)

The transverse velocity v does not vanish any more but its contribution to the dissipation
rate remains very small (Beckebanze et al. 2018). Let us consider a monochromatic
internal wave a = Re

[
a e−iω0t

]
at the frequency ω0 in which a stands for u, w, b or P .

The case of polychromatic signals will be discussed in § 4.2. Introducing the angle θ
defined through the dispersion relation ω2

0 = N2 sin2 θ, (3.21) can be rewritten as b =
−iω0w/sin

2 θ. Equations (3.19) and (3.20) can then be simplified as

−iω0u = −∂xP/ρr + ν∂yyu, (3.22)

iω0 cot2 θ w = −∂zP/ρr + ν∂yyw, (3.23)

that have to be solved with the no-slip boundary conditions u(y = ±W/2) = w(y =
±W/2) = 0, while u(y = 0) and w(y = 0) can be measured at the center of the tank
with the PIV measurements described above. One finally gets

u(y) =

(
1−

cosh
[
i1/2y/d

]
cosh

[
i1/2W/(2d)

])u(y = 0), (3.24)

w(y) =

(
1−

cosh
[
i−1/2 cot θ y/d

]
cosh

[
i−1/2 cot θW/(2d)

])w(y = 0), (3.25)

in which we use d =
√
ν/ω0, the thickness of the boundary layers.

The dissipation within the longitudinal boundary layers is thus obtained by performing
successively the following operations: a time Fourier transform of the wave field in the
mid-plane u(x, y = 0, z, t), a band-pass filtering in the Fourier space around the forcing
frequency ω0, multiplication by the theoretically derived expressions (3.24) and (3.25)
with respect to the y-coordinate to get ∂yu(x, y, z). The real part of the inverse Fourier
transform is then taken to generate the signal ∂yu(x, y, z). The value of ε‖ = ν[(∂yu)

2
+
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(∂yw)
2
] at any point of the domain is then computed and the integration over the whole

domain leads to the value of the energy dissipation rate p‖ =
∫
ε‖dV/V due to the parallel

boundary layers. The y-averaged value 〈ε‖〉y,T0
= (1/W )

∫ +W/2

−W/2 dy 〈ε‖〉T0
is displayed in

figure 4(b) for all points of the domain. Here again, the dissipation is larger along the
first branch of the attractor and then decreases along the skeleton of the attractor. By
comparing figures 4(a) and (b) , one realizes that this boundary layer dissipation is
much larger than the bulk dissipation. This difference is by a factor of 10 when averaged
over the entire domain. Indeed the y-averaged dissipation of the bulk is of the order of
ν (U/λ)2, while the y-averaged of the longitudinal boundary layer dissipation is of the
order ν (2d/W ) (U/d)2. One can then estimate the ratio of the two types of dissipation
〈εbulk〉y,T0/〈ε‖〉y,T0 ∼Wd/λ2 ∼ 10% , a value in good agreement with the measured ratio.

3.2.5. The dissipation in the transversal boundary layers ε⊥
The second dissipation term in the boundary layers, ε⊥, corresponds to the boundary

layers perpendicular to the attractor plane, and, more precisely, where a reflection of the
internal wave beam occurs. For the present experimental setup, three walls have to be
considered while, due to the free slip boundary condition, the reflexion at the top surface
is not a source of dissipation. Note that no linear coupling between internal and surface
waves can occur due to the low frequency which leads to a surface wavelength much
larger than the size of the set-up. We have therefore p⊥ = p

[1]
⊥ + p

[3]
⊥ + p

[4]
⊥ where j = 1

stands for the boundary layer along the slope, j = 3 close to the generator and j = 4
near the bottom of the tank. We will develop the method to estimate the dissipation
term associated with a reflection on a wall inclined at an arbitrarily angle φ, that will
stand for α, π or -π/2 respectively for j = 1, 3, 4.

Considering the reflection on a boundary in the inviscid case, the velocity field corre-
sponds to the sum of the incident beam u[I] and the inviscid reflected beam u[R]. It has
to fullfill the no-penetration condition and is therefore parallel to the boundary along the
wall (free-slip condition). As depicted in figure 5, we define in the real case the viscous
contribution uν = uνex + wνez ensuring that the velocity field vanishes along the wall
(no-slip condition), yielding the complete velocity field u = u[I] + u[R] + uν . Thus uν ,
that has to compensate the inviscid free-slip velocity field, is mainly on the ex′ direction
and may therefore be written as uν = u′νex′ in the tilted coordinate system (x′, z′) shown
in figure 5, with limz′→−∞ u′ν = 0. As shown in Beckebanze et al. (2018), this is valid
at leading order in d/λ – equal to 1% in our experiment.

In a boundary layer, the dominant part of the viscous term is given by the direction
perpendicular to the wall (z′), and one has ∇2u ≈ ∇2uν ≈ ν∂z′z′uν , as d � λ.
The associated dissipation is thus 〈p[j]⊥ 〉T0

=
〈∫

j
dx′dz′ [∂z′u

′
ν(x′)]

2
〉
T0

/A. The viscous

velocity, pressure and buoyancy field (u′ν , pν , bν) are solutions of the system

∂tu
′
ν = −∂x′pν − bν cosφ+ ν∂z′z′u

′
ν (3.26)

0 = −∂z′pν + bν sinφ (3.27)

∂tbν = N2u′ν cosφ, (3.28)

where we used wν = −u′ν cosφ (since uν is parallel to ex′). Equation (3.27) leads to
pν ∼ d bν , thus the term ∂x′pν in (3.26) can be neglected at zeroth order in d/λ.

As in the previous subsection, taking the ansatz a = Re
[
a e−iω0t

]
, (3.28) leads to

bν = iω0u
′
ν cosφ/sin2 θ. Using (3.26), we finally get
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Figure 5. Schematic of a reflection: the incident beam with velocity u[I] get bounced on a
boundary inclined by an anlge φ with respect to the vertical, leading to the reflected beam with
velocity u[R]. The no slip condition induces a viscous velocity field uν that counter balances
at the boundary the inviscid velocity field u[I] + u[R]. Its exponential decrease as a function
of the distance from the boundary is schematically represented. Note the introduction of the
wall-oriented coordinate system in which x′ is the distance along the wall and z′ is the distance
normal to the wall.

i u′ν = (d/µ)2∂z′z′u
′
ν , (3.29)

by introducing the geometrical factor µ = (cos2 φ/sin2 θ−1)1/2 and d the thickness of the
boundary layer which is again equal to

√
ν/ω0. As this equation has to be solved with

the boundary conditions limz′→−∞ u′ν = 0 and u′ν(x′, z′ = 0) = −u0(x′), where u′0(x′) is
the inviscid along-wall velocity field, the solution reads

u′ν(x′, z′) =

−u
′
0(x′) exp

(
1+i√

2
µjz
′/d
)
, for φ = α, 0 (j = 1, 3),

−u′0(x′) exp
(

1−i√
2
z′/d

)
, for φ = π/2 (j = 4).

(3.30)

After some calculations, one gets

〈p[j]⊥ 〉T0
=
ν
√

2|µj |
4Ad

∫
dx′|u

′

0(x′)|2. (3.31)

The amplitude of the inviscid along-wall velocity field u′0(x′) is required to proceed and
compute the integral (3.31). As u′ν vanishes outside from the boundary layer, the PIV
measurements give a good estimate of the inviscid velocity field. Furthermore, rather
than measuring u′0(x′) directly on the PIV field by zooming on the region as close as
possible to the wall, we use the relation u = u[I] + u[R], where u[I] and u[R] do not
depend strongly on z′ along the rays which allows us to measure them where we want in
the region next to the wall. To get u[I] and u[R], we use the Hilbert transform (Mercier,
Garnier & Dauxois 2008) that allows one to distinguish the different branches of the
attractor by restricting to internal waves propagating in a given direction. Because of
experimental errors, u[I] + u[R] is not perfectly parallel to the wall but this is solved by
computing its projection

u′0 =
(
u[I] + u[R]

)
· ex′ =

(
u[I] + u[R]

)
sinφ−

(
w[I] + w[R]

)
cosφ. (3.32)

For visualisation purpose, u[I] and u[R] are experimentally evaluated at a small but finite
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Figure 6. Incident (left panels) and reflected (right panels) velocity amplitudes (top panels)
along the direction of the bottom boundary, obtained at t = 50 T0 thanks to Hilbert filtering.
The bottom panels correspond to the horizontal cut at the altitude z = 100 mm shown in the
top panels by the red horizontal lines. Experimental parameters are those given in the caption
of figure 2.

distance from the boundary, z′ = 100 mm. Because of this, one has to shift both functions
so that their maxima coincide as it is the case on the wall z′ = 0. Figure 6 shows an
example of the incident and reflected beams, in the case of the bottom reflection. From
this profile, one can compute 〈p⊥〉T0 = 〈p[1]⊥ 〉T0 +〈p[3]⊥ 〉T0 +〈p[4]⊥ 〉T0 using (3.31). As we will
see in next section, this sum is of the same order of magnitude of the dissipation in the
bulk and is ten times smaller that the dissipation taking place in the parallel boundary
layers. This result is expected since the volume of the parallel boundary layers is much
larger due to the small width of the tank. Varying W clearly changes the importance
of the parallel boundary layers compared to the perpendicular ones, as will be shown
in § 4.3.

We will now apply these methods to measure the different terms in the energy budget
for the attractors in several regimes.

4. Results
4.1. Linear regime

To validate the quantitative estimation of the different terms of the energy balance,
a complete analysis is performed for an attractor in the linear regime. This is done
with a small forcing amplitude (a0 = 2 mm) using the following experimental scenario.
The stratified fluid being initially at rest, the wave maker is turned on at t = 0. After
few forcing periods T0, the injected energy rate becomes stationary as anticipated in
figure 3(b). Finally, after 60 T0, the generator is turned off to observe the decay of the
attractor. The power spectrum of the velocity field is displayed in figure 7(a). We see
that most of the energy is located near the forcing frequency ω0/N = 0.52: the signal
is then filtered around the forcing frequency to remove the external noise which could
increase the errors in the estimation of the dissipative terms.

Figure 7(b) presents the time evolution of the different terms involved in the energy
balance: the injected energy pinj and the three contributions of dissipation pbulk, p⊥
and p‖. As mentioned in § 3.2.2, pinj is computed at x0 ' 5 cm and therefore the
dissipation occurring near the generator should not be taken into account. For this reason,
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Figure 7. Linear regime. For both figures, experimental parameters are those given in the
caption of figure 2 with a forcing amplitude a0 = 2 mm. (a) Power spectrum as a function
of the frequency normalized by the buoyancy frequency N (averaged over the area A and in
logarithmic scale). Only waves with frequencies below this threshold value are propagating, but
one clearly sees several harmonics. (b) Evolution in time of the derivative of the total energy, the
injected power and the different dissipative terms. The velocity field has been filtered around
the forcing frequency ω0 before computing these quantities. Oscillations at ω0 have then been
removed using a moving average based on their extrema. The generator has been switched on
at t = 0 while turned off at t = 60 T0, as emphasized by the vertical dotted line.

we omit p[3]⊥ and correct pbulk and p‖ accordingly. We see that the variations of the total
energy are very well given by the difference of the injected power with the three dissipative
terms. After approximately 30 periods, a steady state has been reached. Without any
adjustable parameters, the difference between the estimated dissipation and injected
power is then less than 10%, showing therefore a good agreement within experimental
errors. As emphasized by figure 7(b), this good agreement holds also in non-stationary
situations, when one turns on or off the generator. Indeed, both curves have similar
variations just after the switching times t =0 and 60 T0, due to the changes in injected
power. Notice that the fluctuations appearing on both curves just before t = 60 T0 are
due to the applied frequency filter, thus limiting sharp changes in the signals.

Similar experiments have been realized with larger amplitudes and therefore larger
injected power. For each experiment, the signal is filtered around the forcing frequency ω0

and the dissipation, measured in the steady-state, is plotted as a function of the injected
power in figure 8 (dotted line). The agreement is excellent at low amplitude but the
deviation between the dissipation at ω0 and the injected power increases when considering
larger amplitudes. This is expected since nonlinear effects can no longer be neglected:
one has to consider other frequencies as discussed in the next-subsection.

4.2. Weakly nonlinear regime
By increasing the amplitude of the forcing, with values from 2 to 10 mm, the nonlinear

regime is reached. As underlined by Brouzet et al. (2016a), the setup could model at large
amplitude a cascade of triadic interactions transferring energy to different frequencies
and smaller scales. For all amplitudes, a stationary state, defined as the absence of time-
variation of the total energy, is observed meaning that the injected power is balanced by
the dissipation.

We compute the different terms of (3.8) as we did in the linear case. The injected
power is computed exactly in the same way, with a prior filtering of the velocity field
at the forcing frequency. Indeed, since the generator oscillates exactly at ω0, one has
pinj(ω 6= ω0) = 0 as verified experimentally. Some non linear corrections to the estimation
of the pressure gradient have been computed and appeared to be very small (less than
1%). They are therefore neglected in the following. To evaluate the parallel dissipation
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Figure 8. Full dissipation as a function of the measured injected power in the stationary regime.
The blue dotted line corresponds to the velocity field filtered around the excitation frequency ω0.
The black line takes into account all frequencies below the buoyancy frequency N . The x-axis
error bars are computed through the fluctuations of 〈pinj〉T0 in time, while y-axis error bars come
from the uncertainty of the PIV measurement of velocity field. The dashed line corresponds to
the expected relation 〈pinj〉T0 = 〈pdiss〉T0 .

p‖, a similar method than the one described in § 3.2.4 is used. To do so, we assume that
the linear approximation used to obtain the velocity field in the boundary layer is still
valid. Equations (3.24) and (3.25) are therefore multiplied by the time Fourier transform
of the velocity field, low-pass filtered with a cut-off frequency equal to the buoyancy
frequency N . The real part of the inverse time Fourier transform of the obtained signal
is finally used to get the value of ∂yu(x, z, t) and p‖ in the boundary layers for all waves
with frequency smaller than N present in the domain.

As we showed that p⊥ ' 0.1 p‖, we neglect the perpendicular dissipation due to the
secondary waves, and we will consider p⊥ ' p⊥(ω0). On the contrary, as secondary waves
usually present smaller length scales, one cannot a priori neglect their contribution to
the bulk dissipation, which is measured here by computing (3.18) with only a band-pass
filter to remove noise above the buoyancy frequency.

The black line of figure 8 shows, in the stationary regime, the dissipation measured in
this way as a function of the injected power. The agreement with the expected relation
〈pinj〉 = 〈pdiss〉T0

represented by a dashed line has been significantly improved with
respect to the one obtained when considering only the dissipation at ω0. For very large
amplitudes, the dissipation associated with the forcing ω0 represents only half of the
injected power. Moreover, we have quantitatively shown that the secondary waves forced
by successive triadic interactions represent around 16% of the injected power in the
strongest nonlinear regime.

To go into more details, we will describe the time evolution of the different terms of the
energy balance in the nonlinear regime. A typical power spectrum, for an intermediate
forcing amplitude a0 = 5 mm and an injected power of 1.9× 10−2 mm2/s3, is shown in
figure 9(a). While the wave-field is strongly dominated by the forcing frequency ω0, one
clearly sees several other peaks. With this tool, one can investigate the exchange of energy
between the different components of the velocity field. Figure 9(b) shows the evolution
of the energies of the five most important components identified in figure 9(a). After the
generator has been turned on at t = 0, the energy of the primary wave ω0 increases.
Then, approximatively 25 periods later (that corresponds to the typical time scale for
the appearance of the TRI), some energy loss of the primary wave is observed while
the energy of the secondary waves increases indicating an energy transfer. Some of them
present some decrease of energy, which seems to show a complex interaction between the
secondary-waves. As can be seen in figure 8, the dissipation due to the primary wave
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Figure 9. Weakly nonlinear regime. (a) Power spectrum as a function of the frequency
normalized by the buoyancy frequency N (averaged over the area A and in logarithmic scale).
Experimental parameters are those given in the caption of figure 2 except a0 = 5 mm. The five
main frequencies have been labelled ωi with i = 0 to 4. (b) Evolution of the energy of the five
main components of the velocity field. Note the difference in the energetic scale between e0 the
energy of the forcing frequency ω0 on the left y-axis and, on the right, the other ones ei with
i > 0 for each ωi. The generator is switched on at t = 0 while turned off at t = 60 T0.

slightly underestimates the injected power. For this weakly nonlinear case, the energy of
the secondary waves is very small, and so is their dissipation. Even if it is of the same
order of magnitudes than error bars, it seems that their presence explain the difference
between the injected power and the dissipation due to the forcing frequency.

To confirm this hypothesis, we look into more details to the case with the largest
amplitude a = 10 mm, which corresponds to a stronger nonlinear regime with a rich
multi-peak spectrum. Figure 10 displays the time evolution of the different terms involved
in the energy balance in which we have separated the dissipative part at the forcing
frequency and the part due to the secondary waves. The agreement is very good at the
beginning of the experiment just after switching on the generator. At about 20 T0, a
stationary state is reached where the time derivative of the total energy ∂tetot vanishes
with some oscillations. At 15 T0, the dissipation due to the forcing frequency decreases
and is substituted by dissipation due to secondary waves. The latter finally reaches 16%
of the injected power. It is important to note that the bulk dissipation for secondary
waves constitutes30% of total secondary-waves dissipation and is therefore much more
important than for the primary wave, in which pbulk(ω0) ≈ 10%pdiss(ω0). This result
is expected since the typical length scales for the secondary waves are smaller. Even
though the estimation of the dissipation due to the forcing frequency and the secondary
waves gives an interesting estimation of the injected energy within the system, figures 8
and 10 show that the part of the dissipation not taken into account represents a
quarter of the total dissipation. It is more important when nonlinearities are stronger.
Different hypothesis may be given to explain this missing part in the dissipation. (i) In
our model, we did not take into account frequencies larger than N for all dissipation
nor polychromaticity in the boundary layers when we estimated the perpendicular
dissipation. The reflection at the free surface may also be the origin of some dissipation,
since the boundary conditions is in reality between no slip and free slip due to surface
contamination (Campagne et al. 2018). (ii) The average over the forcing period T0 of
some terms in (3.4) is not vanishing anymore in such a polychromatic case. (iii) The
bulk dissipation may be underestimated. Indeed, the smallest scale we have access to
is given by the resolution of the PIV measurements. Due to nonlinearities, some energy
may be transferred to scales smaller than 10 mm and is not measured. (iv) Motions or
dependence in the y-direction are not taken into account. Secondary waves are assumed
here to keep the two-dimensional geometry, which is not certain. (v) We see in figure 7
that some energy goes into a mean flow generated in the boundary layers (Horne et al.
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Figure 10. Nonlinear regime. Evolution in time of the derivative of the total energy ∂tetot (thick
black line), the injected power pinj (green solid line), the dissipation associated with the forcing
frequency pdiss(ω0) (thin blue dashed line), the dissipation associated with other frequencies
smaller than N , pdiss(ω < N,ω 6= ω0) (blue dotted line) and finally the difference pinj − pdiss
(thick black dashed line). Experimental parameters are those given in the caption of figure 2
except a0 = 10 mm.
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Figure 11. Evolution of the derivative of total energy, injected power and the different
dissipative terms in time, for a linear experiment with forcing amplitude a0 = 5 mm in the
3D tank. Note the 10−3 factor on the y-axis. The field had been filtered around the forcing
frequency before computing these quantities.

2019). While the associated dissipation in the bulk is taken into account, its counterpart
in the boundary layers is not. (vi) Finally, part of the energy may be taken to increase
the potential energy of the fluid, which is related to a homogeneisation of the density
through mixing.

4.3. Three dimensional tank
As already underlined, the geometry of the domain has an effect on the importance of

the different dissipative terms. Indeed, neglecting the feedback of the dissipation on the
attractor, the bulk part as well as the perpendicular part depend linearly on the thickness
of the tank, while the parallel part is independent of W . To investigate a regime where
dissipation is less dominated by the dissipation due to lateral walls, i.e. with a relatively
lower p‖, we ran an experiment in a linear regime in a different tank of size L×W ×H =
570 × 800 × 320 mm3 with a comparable slope of α = 29◦; the wave maker is 150 mm
wide. As shown in Pillet et al. (2018) in which the details of the experimental set-up is
given, the hypothesis of the two-dimensionality of the flow still holds in this tank within
the linear and stationary regime. Note that the perpendicular dissipation p[3]⊥ on the left
has now to be taken into account since the wave maker does not occupy the total width
of the tank. As shown in figure 11, we found that in this case the three dissipation rates
are more comparable in magnitude, since W is now 5 times larger while L and H are
both about 3 times smaller. The agreement between the measured quantities and the
theory is again very good both in the non stationary and the stationary regimes.
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5. Conclusions
The goal of the work presented in this paper was to investigate the energy budget of

a two-dimensional internal wave attractor using experiments. In the linear regime, we
have shown that it is possible to simultaneously measure the energy flux injected into
the system and the dissipation rate using 2D-2C PIV measurements. The pressure field,
usually not accessible in laboratory or field measurements, is computed from the velocity
field and gives access to the injected power pinj. The dissipation is disentangled into three
different terms following the work of Beckebanze et al. (2018): the bulk part is directly
calculated from the velocity field, while the parallel and perpendicular parts due to the
dissipation in the boundary layers, in the lateral walls and at the reflection of the internal
wave beam, are quantified using a linear modeling of the boundary layer. We have shown
that this procedure captures without any adjustable parameters the complete energy
balance in the stationary state as well as in the transient regime.

Moreover, two different experimental setups have been used to quantify the importance
of the parallel dissipation compared to the bulk dissipation. The ratio depends on the
distance between the lateral walls and on the thickness of the boundary layers compared
with the typical wavelength of the internal waves within the attractor. Using similar
scaling arguments, the ratio between the bulk and the perpendicular dissipations depends
on the thickness of the boundary layers and the typical size of the regions where a
reflection occurs, which is close to the perimeter of the domain compared with the typical
wavelength of the internal waves within the attractor.

Finally, we have shown that our analysis developed for the linear case is still valid in
the nonlinear regime. Even if we cannot completely capture the total dissipation in the
tank, we have quantified that the secondary waves generated through triadic resonant
interactions have clearly a non negligible part in the dissipation rate. As the difference
between dissipation and variation of energy of a given component of the wave field gives
access to its energy input, the analysis presented here could be part of the investigation of
nonlinear energy transfers between different waves. It is also important to emphasize that
the method tested here on internal wave attractors can be generalized straightforwardly
to any quasi two-dimensional stratified flow.
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