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We study analytical solutions of the Fractional Boussinesq Equation (FBE), which is an effective
model for the Fermi-Pasta-Ulam (FPU) one-dimensional lattice with long-range couplings. The
couplings decay as a power-law with exponent s, with 1 < s < 3, so that the energy density is finite,
but s is small enough to observe genuine long-range effects. The analytic solutions are obtained
by introducing an ansatz for the dependence of the field on space and time. This allows to reduce
the FBE to an ordinary differential equation, which can be explicitly solved. The solutions are
initially localized and they delocalize progressively as time evolves. Depending on the value of s
the solution is either a pulse (meaning a bump) or an anti-pulse (i.e., a hole) on a constant field for
1 < s < 2 and 2 < s < 3, respectively.

Keywords: Fermi-Pasta-Ulam (FPU) model, Long-Range Interactions (LRI), Fractional
Boussinesq Equation (FBE), Non-Galilean invariance, Pulse solutions.
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I. INTRODUCTION

The celebrated Fermi-Pasta-Ulam (FPU) model [1, 2] consists of a one-dimensional lattice of N identical particles
interacting through a nearest neighbour nonlinear potential. The displacement of the particles with respect to their
equilibrium positions is described by the function of time ui(t), with i the label of the lattice site. The problem under
investigation was a central one in the foundations of statistical mechanics: relaxation to microcanonical equilibrium.
The lack of relaxation turned the problem into a “paradox”, which led to a long series of investigations that were
summarized in 50-th anniversary volumes [3, 4]. The FPU paper also proved to be seminal in nonlinear dynamics,
leading to the pioneering work on solitons in the Korterveg-de Vries (KdV) equation by Kruskal and Zabusky [5] and
to the study of integrability of nonlinear lattices [6, 7].

Long-range interactions are ubiquitous in nature, the most common examples being gravitational and Coulomb
interactions. Recently, long-range interacting systems have been extensively studied for their, often intriguing, statis-
tical behaviour [8–11]. In fact, these systems exhibit inequivalence of ensembles, breakdown of ergodicity, long-lived
quasi-stationary states and suppression of chaos, to name just a few anomalous phenomena. Due to the paradigmatic
importance of the FPU model, it is interesting to explore the effect of long-range interactions in this context. Given
the presence in this Special Issue of several papers on non-equilibrium statistical mechanics, we think that the FPU
model provides an appropriate arena to explore the behaviour of systems that persist out-of-equilibrium for long time
and depending on the features of the interactions.

In this paper we focus on the specific role played by long-range interactions by analyzing the dynamical properties
of the one-dimensional FPU model appropriately modified to include long-range couplings among particles [12, 13].
Particles interact through couplings that decay with a power-law of the distance among them. The exponent of the
power-law is denoted as s. This model has been also recently studied in connection with the problem of anomalous
heat conduction in one-dimensional lattices [14–16].

We have shown in a previous paper [17] that, in the continuum limit, the model can be effectively described by a
Fractional Boussinesq Equation (FBE) in terms of the space-time field u(x, t) for small variations of the amplitude.
In fact, the presence of long-range couplings determines the appearance of nonlocal terms in space in the continuum
equation, where the non-locality is mathematically represented by fractional derivatives. Fractional differential calcu-
lus, i.e. non-integer derivatives and integrals [18–20], is playing a very important role in various fields of science and
technology, such as elasticity, water waves, quantum mechanics, signal analysis, control theory, finance, ...

We here deal with the problem of determining the solutions of the FBE introduced in our previous paper [17]. In
order to achieve this target, we introduce an ansatz to express the solution in terms of a single variable η = |x|ρ − vt,
where ρ is related to the power-law decay exponent s. This generalizes the usual change of frame of the Galilean
transformation which gives the ansatz of the usual form η = x− vt.

We are able to derive an ordinary differential equation in η which can be explicitly solved, providing solutions of the
FBE which depend on the parameters of the model, in particular on the exponent s. Two classes of solutions emerge
depending on the value of s: i) pulse solutions displaying a “bump” over a constant field in the range 1 < s < 2; ii)
anti-pulse solutions showing a “hole” in a constant field in the range 2 < s < 3.

The paper is organized as follows. In Section II we introduce the α-FPU model with long-range interactions and
its continuum limit. In Section III we provide details on the study of the fractional derivatives involved in the FBE.
The ansatz used to determine the solutions is presented in Section IV. We determine the exact solutions of the FBE
in Section V. Concluding remarks are given in Section VI.

II. THE FPU MODEL WITH LONG-RANGE INTERACTIONS AND ITS CONTINUUM LIMIT

The FPU model we consider is a one-dimensional lattice of N anharmonic oscillators, each with mass m, displace-
ment ui and momentum pi (i denoting the lattice site) and coupled by long-range interactions. The Hamiltonian for
the long-range FPU model reads

H (ui, pi) =
∑ p2

i

2m
+
χ

2

∑
j<i

(ui − uj)2

|a (i− j)|s
+
γ

3

∑
j<i

(ui − uj)3

|a (i− j)|s
. (1)

We can observe that the two-body coupling is assumed to be translationally invariant since it acts between pairs of
sites at distance a|i− j|. More importantly for our purposes, the coupling decays for large distances as a power-law
with an exponent s. In order for the energy to be extensive, we consider s larger than the dimension d where the
system is embedded, in this case d = 1. The lattice sites i and j take all possible negative and positive integer values:
i, j = 0,±1,±2, · · · . We consider 1 < s < 3 since at s = 3 the system is supposed to have a typical short-range
long-time behaviour [17]. The fact that it exists a value of s, denoted by s∗, such that for s > s∗ one retrieves the
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critical properties of the short-range case (s→∞) is well studied in Ising and O(n) models [21, 22]. Notice that the
range d < s < s∗ is often referred to as the weak long-range region [23]. In Eq. (1) we assume also that both the
harmonic and anharmonic couplings decay with the same exponent. One could study as well the case in which the
two power-law decay exponents are different [17]. Finally, we observe that, since the anharmonic term is characterized
by the power 3, the resulting FPU model is called α-FPU [24], so that Eq. (1) corresponds to the Hamiltonian of the
long-range α-FPU model.

The interaction potential energy has two parts: the second term of the right in Eq. (1) is the long-range harmonic
interaction, whereas, the third term corresponds to the long-range anharmonic interaction. The parameters χ and γ
measure the strength of the linearity and nonlinearity, respectively, and they can be viewed as the linear and nonlinear
spring coefficients, respectively. In the following we consider the case of positive parameters χ, γ > 0. The strength of
the long-range interaction decays as a power-law |a(i− j)|−s where a is the lattice spacing. The parameter s sets then
the range of the interaction. For s → ∞, the second and the third terms reduce to nearest neighbour, short-range,
harmonic and anharmonic interactions, respectively, and we return to standard short-range FPU model.

In order to study the dynamical properties we move to the effective model describing the continuum limit of the
FPU Hamiltonian (1), where ui(t)→ u(x, t). This effective model was derived in [17] and the corresponding equation
for the field u(x, t) is a fractional differential equation, the FBE, which generalizes to the weak long-range region the
Bousinessq equation found for the short-range FPU model [25]. We refer to [17] for a discussion of the details needed
to perform the continuum limit and its range of validity, which essentially requires to consider a slowly varying in space
field u. We also point out that the long-range FPU model has the merit to allow for a microscopic derivation of the
fractional differential equation, which is not – as done in other cases – assumed on the basis of physical considerations.

The FBE for the long-range α-FPU model reads [17]

∂2u (x, t)

∂t2
− gs−1

∂s−1u (x, t)

∂ |x|s−1 − hs−1u (x, t)
[
Ds−1
x− −Ds−1

x+

]
u (x, t) = 0, (2)

where the constants gs−1 and hs−1 are given by

gs−1 =
χπ

Γ (s) sin
(
s−1

2 π
) , hs−1 = − γπ

Γ (s) sin (sπ)
(3)

(Γ stands for the Euler-gamma function, m and a are constants of order unity). In the following we are going to take
s 6= 2.

Eq. (2) is the equation for which analytical solutions are needed to be found, which is the task we deal with in
the next Sections. The analytical solution then provide a guide to the numerical solution of the FPU lattice model,
studied in the regime in which the continuum limit is a reasonable approximation. Of course, such a comparison is
a benchmark for the assessment of the validity of the effective model. Moreover, as we point out in the following,
the solutions of the effective model may reveal new class of solutions, possibly not previously known, and motivate
further numerical studies of the lattice equations.

III. THE FRACTIONAL CHAIN RULE

In order to construct exact solutions, we need to give some details on the action of the fractional derivatives
appearing in Eq. (2).

We first observe that the chain rule can be written as

∂α w

∂xα
= σα

∂αζ

∂xα
∂ w

∂ζ
, (4)

in general valid for analytic functions of the form w (x) =
∑∞
m=0 am x

m, where am are constants. σα is sometimes
called fractal index [26] and it has to to be further determined. It is usually determined in terms of Euler-gamma
functions. The reason for studying the relation (4) is that it can be used to transform the FBE into an ordinary
differential equation.

To show the validity of (4), we may use the function w(ζ) = ζβ with ζ(x) = xγ where β, γ > 0, and the definition
of the fractional derivative of non-integer order which reads

∂α

∂xα+
xβ ≡ ∂α

∂xα
xβ =

Γ (1 + β)

Γ (1 + β − α)
xβ−α x > 0, and α > 0. (5)
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One gets

Dα
x w(ζ(x)) = Dα

xx
βγ =

Γ (1 + βγ)

Γ (1 + βγ − α)
xβγ−α, (6)

Dα
x ζ(x) ≡ ∂αζ

∂xα
=
∂αxγ

∂xα
=

Γ (1 + γ)

Γ (1 + γ − α)
xγ−α, (7)

and

∂ w

∂ζ
=
(
β ζβ−1

)
|ζ=xγ = β x(β−1)γ . (8)

Substitution of Eqs. (6), (7) and (8) into Eq. (4) gives(
Γ (1 + βγ)

Γ (1 + βγ − α)
− σα

β Γ (1 + γ)

Γ (1 + γ − α)

)
xβγ−α = 0, x > 0. (9)

As a result, we have the condition

Γ (1 + βγ)

Γ (1 + βγ − α)
− σα

β Γ (1 + γ)

Γ (1 + γ − α)
= 0, α, β, γ > 0. (10)

Assuming

σα =
Γ (1 + βγ)Γ (1 + γ − α)

β Γ (1 + βγ − α)Γ (1 + γ)
, (11)

one immediately sees that Eq. (4) holds. We then conclude that the modified chain rule given by Eq. (4) holds for
the correct choice of the fractal index σα. We emphasize that the fractal index has to be determined separately in
each problem.

Since

∂α

∂ |x|α
≡ − 1

2 cos
(
απ
2

) [Dα
x− + Dα

x+ ] , i.e., Dα
x− ≡ − 2 cos

(απ
2

) ∂α

∂ |x|α
− Dα

x+ , (12)

Eq. (2) can be rewritten as follows:

∂2u (x, t)

∂t2
− gs−1

∂s−1u (x, t)

∂ |x|s−1 − qs−1u (x, t)
∂s−1u (x, t)

∂ |x|s−1 + hs−1u (x, t)
∂s−1u (x, t)

∂xs−1
= 0, (13)

where

qs−1 =
γπ

Γ (s) cos
(
s
2π
) . (14)

IV. ANSATZ FOR THE DYNAMICS

A possible way to construct solutions of Eq. (13), the one we explore in this paper, is to assume that the field u(x, t)
depends not on x and t separately, but via a combination of them defining a new variable η. That is typical when
looking for solutions having solitonic form, and in that case one puts η = x− vt, as routinely done in studying soliton
solutions of nonlinear differential equations [27]. However, despite one can certainly investigate such dependence,
putting η = x− vt does not reduce the FBE to an ordinary differential equation. By inspection one sees that this a
direct consequence of the fractional derivative, and that in turn it is caused by the presence of the long-range terms.
Moreover, one has a derivative with respect to the modulus of the variable x, also in the linear case (γ = 0). Therefore,
one is lead to consider the following ansatz:

G (η) ≡ u (x, t) , where η = |x|ρ − v t, (15)

with v a parameter having the dimension [v] = Ls−1 T−1 and ρ to be fixed. The ansatz (15) is often referred to
as the fractional complex transform in the context of fractional differential equations [29, 30]. Notice that with the
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ansatz (15) the cone-like structure in the (x−t) space defined by η = 0 is no longer a straight line, and this corresponds
to accelerating or decelerating fields u according the value of ρ. One readily observes that to reduce the FBE to an
ordinary differential equation one needs to put

ρ ≡ s− 1. (16)

We pause here to comment that the ansatz (15) is less innocent that it may at first sight appears. First, it breaks
the Galilean invariance, which is broken evidently by the initial condition. Second, it involves the space variable x in
the form |x|, so that this implies that care has to be put on choosing the matching conditions in x = 0. Moreover,
to compare with numerical simulations on the lattice one has to choose even initial conditions for the u. Third, and
more important, by considering the ansatz (15) one is also assuming that if the u(x, t = 0) at the initial time is not
vanishing, also its velocity u̇(x, t = 0) is not vanishing. In other words, the ansatz (15) corresponds to a class of
solutions with certain conditions to be satisfied at the initial time t = 0.

To further proceed, we observe that it exists a duality between left and right fractional derivatives [28]:

Dα
x+f (x) = Dα

x−f∗ (−x) with f∗ (x) = f (−x).

Then it follows

∂α

∂xα−
(−x)β ≡ ∂α

∂(−x)α
(−x)β =

Γ (1 + β)

Γ (1 + β − α)
(−x)β−α x < 0, (17)

and

∂α

∂ |x|α
|x|β = − Γ (β + 1)

Γ (β + 1− α) cos (α2 π)
|x|β−α , α 6= 2 k + 1, k ∈ R. (18)

In the case α→ 2, corresponding to s→ 3, we retrieve the well known integer classical derivative. Using Eqs. (4),
(5), (11), (15) and (18) into Eq. (13) we obtain the following ODE:

v2 d
2G(η)

dη2
+ g̃s

dG(η)

dη
+ h̃sG(η)

dG(η)

dη
= 0, (19)

where

g̃s ≡ −
2χπ

Γ2 (s) sin (sπ)

and

h̃s ≡
γ π

Γ2 (s) sin (sπ)
.

Integrating Eq. (19) with respect to η yields

v2 dG(η)

dη
+ g̃sG(η) +

h̃s
2
G2(η) + δ0 = 0, (20)

where δ0 is a constant to be later determined using appropriate boundary conditions. From Eq. (20) we can write∫
dG

δ0 + g̃sG + h̃s
2 G2

= − 1

v2

∫
d η. (21)

It is

∫
dX

a +bX+cX2 =



− 2√
−∆

arc tanh
(
b+2 cX√
−∆

)
for ∆ < 0,

− 2
b+ cX for ∆ = 0,

2√
∆
arc tan

(
b+2 cX√

∆

)
for ∆ > 0,

(22)

with ∆ ≡ 4 a c − b2 [31].
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V. SOLUTIONS OF THE FRACTIONAL BOUSINESSQ EQUATION

Using the results of the previous Section, via the identification a = δ0, b = g̃s and c = h̃s/2, one finds that the
considered solution of Eq. (19) reads

G (η) =



2 χ
γ +

√
−∆

h̃s
tanh

[√
−∆

2 v2 (η − η0)
]

∆ < 0,

− 4χ
γ + 4 v2

h̃s (η− η0)
∆ = 0,

2 χ
γ −

√
∆
h̃s

tan
[√

∆
2 v2 (η − η0)

]
∆ > 0,

(23)

where

∆ = 2δ0h̃s − g̃2
s =

2π γ

Γ2 (s) sin (sπ)

[
δ0 −

2 (χ2/γ)π

Γ2 (s) sin (sπ)

]
. (24)

Without any loss of generality we can make the choice η0 = 0.
We have now to fix the boundary conditions. We look for the solutions such that the following boundary conditions

are satisfied:  G (η = 0) = A,

G (η → +∞) = C,
(25)

where A and C are two constants to be later specified. Combining Eqs. (23) and (25), it turns out that the solution
reads

G (η) = 2
χ

γ
+

√
−∆

h̃s
tanh

(√
−∆

2 v2
η

)
. (26)

Eq.(26) can be written also as

u (x, t) = 2
χ

γ
+

√
−∆

h̃s
tanh

[√
−∆

2 v2

(
|x|s−1 − v t

)]
, (27)

where we have to specify the parameter δ0 in terms of A and C. One sees that

A ≡ 2
χ

γ
,

with the constant A to be taken positive, in agreement with our choice of considering χ and γ positive parameters.
Moreover it has to be

C 6= A.

The point essential for the subsequent discussion is that

C = A+

√
−∆

h̃s
.

Since for 1 < s < 2 one has h̃s < 0 and for 2 < s < 3 simply implies that it is h̃s > 0, it follows that C < A for
1 < s < 2 and C > A for 2 < s < 3

Given C, ∆ is given by

∆ = −h̃2
s (C −A)

2
< 0,

so that the first choice in the top of Eqs. (23) is justified. From this expression for ∆ one gets the following value for
δ0:

δ0 = − h̃
2
s (C −A)

2 − g̃2
s

2h̃s
. (28)
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The behaviour of the function G and therefore of u(x, t) is summarized in Fig. 1. Panels Fig. 1(a)-(b) refers to a
value of s between 2 and 3. The G(η) is increasing for η passing from negative values to positive ones. In this case
A and C has to be both positive, with C > A. The initial condition u(x, t = 0) has a “hole”, to which we may refer
as an anti-pulse (notice that G has a typical kink-like form). As soon as that t increases the field u(x, t) tends to
reach the value G(η → −∞), i.e., A− |C −A|, showing the delocalization of the initial condition. It is interesting to
observe that the values of x and t, denoted by x̄ and t̄ such that u(x̄, t̄) = A are defined by the relation η̄ = 0, i.e.
|x̄|s−1 = vt̄. Since dx̄/dt̄ = [v1/(s−1)/(s− 1)]t̄(1/(s−1)−1), for 2 < s < 3 one sees that the velocity decreases and go to
zero for large time, so that the propagation of the hole decelerates. At variance panels Fig. 1(c)-(d) refers to a value
of s between 1 and 2. The G(η) is now decreasing for η passing from negative values to positive ones. In this case
A > 0 and C < A. The initial condition u(x, t = 0) has a “bump”, to which we may refer as a pulse (or an anti-kink
for the G). When t increases the field u(x, t) tends to reach the value G(η → +∞), i.e., A + |C − A|, showing also
now the delocalization of the initial condition. Since dx̄/dt̄ ∝ t̄(1/(s−1)−1), for 1 < s < 2 one sees that the velocity
increases so that the propagation of the bump accelerates [reaching infinite velocity for s = 1, which represents the
mean-field limit].

-5 0 5η
1

2

3

G

-5 0 5x
1

2

3

u
(x

,t
)

(a) (b)

(d)(c)

-5 0 5η
1

2

3

G

-5 0 5x
1

2

3

u
(x

,t
)

FIG. 1. Panels (a)-(b): s = 2.75, with G(η) vs η in (a) and u(x, t) for different times t = 0, 2, 4, 6, 8, 10. The values of
A and |C − A| are 2 and 1, respectively. Panels (c)-(d): s = 1.75, with G(η) vs η in (c) and u(x, t) for different times
t = 0, 0.6, 1.2, 1.8, 2.4, 3 (again with A = 2 and |C −A| = 1). χ and γ are constants of order unity.

To conclude, we have to show that the results above does not qualitatively depend on the choice of the boundary
condition (25). Suppose indeed that one fixes the function G in two points η1, η2, with the boundary conditions (25)
corresponding to η2 = 0 and η1 →∞. Using (26) one has

G (η1) − G (η2) =

√
−∆

h̃s

[
tanh

(√
−∆

2 v2
η1

)
− tanh

(√
−∆

2 v2
η2

)]
. (29)

Since tanh (a− b) = tanh (a)− tanh (b)
1− tanh (a) tanh (b) , one can rewrite Eq. (29) as follows:

G (η1) − G (η2) =

√
−∆

h̃s
tanh

(√
−∆

2 v2
(η1 − η2)

)[
1 − tanh

(√
−∆

2 v2
η1

)
tanh

(√
−∆

2 v2
η2

)]
. (30)

Assuming η1 > η2 > 0 one has 0 < tanh
(√
−∆

2 v2 η1

)
tanh

(√
−∆

2 v2 η2

)
≤ 1, i.e.,

1 − tanh

(√
−∆

2 v2
η1

)
tanh

(√
−∆

2 v2
η2

)
≥ 0. (31)

Eq. (31) simply implies that the sign of G (η1) − G (η2) depends of the sign of
√
−∆

h̃s
tanh

(√
−∆

2 v2 (η1 − η2)
)

. With

η1 > η2 > 0 as we are assuming, it is

tanh

(√
−∆

2 v2
(η1 − η2)

)
> 0. (32)
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One then sees that the sign of G (η1) − G (η2) depends only on the sign of h̃s: since it is h̃s < 0 for 1 < s < 2 and

h̃s > 0 for 2 < s < 3 we conclude that indeed G (η1) − G (η2) < 0, for 1 < s < 2, ⇒ pulse solutions,

G (η1) − G (η2) > 0, for 2 < s < 3, ⇒ anti− pulse solutions.
(33)

The corresponding behaviour of the solutions of the FBE is represented in Fig. 2, where we confine ourself to the
case C > 0 with A > 0 (for C < 0, since A > 0 one has anti-pulse solutions for 1 < s < 2). The results are summarized
by concluding for any value of s in the range 1 < s < 2 one obtains pulse solutions, while in the range 2 < s < 3, one
obtains anti-pulse solutions.

C

A

pulse solutions for 1<s<2

anti-pulse solutions for 2<s<3

FIG. 2. Representation of the phase diagram in the (A,C) plane with: i) for 1 < s < 2 anti-kink solutions for the G, the
corresponding counterpart for the field u being pulse solutions; ii) for 2 < s < 3 kink solutions for the G, corresponding to
anti-pulse solutions for the field u.

VI. CONCLUSIONS

We have introduced a method which, relying on an appropriate ansatz, allows us to obtain exact solutions of the
fractional differential equation derived in the continuum limit from the FPU lattice with long-range interactions. We
are able to provide solutions of the effective Fractional Bousinessq Equation (FBE) which depend on the parameters
of the model, in particular on the exponent s. Two classes of solutions emerge depending on the value of s: i) pulse
solutions displaying a “bump” over a constant field in the range 1 < s < 2; ii) anti-pulse solutions showing a “hole”
in a constant field in the range 2 < s < 3. As time progresses, the analytical solution reveals that both the “bump”
and the “hole” damp down and, asymptotically at infinite time, the field becomes constant in space x, showing the
delocalization of the initially localized condition. We have focused our analysis on the α-FPU model, but the method
we present could be extended to the β-FPU model as well.

On one hand this is a specific property of a certain class of solutions, but on the other this could be an indication of
the fact that the solutions of the FBE tend in general to delocalize in presence of long-range interactions. This is at
variance with the short-range case where it is well known that a wide class of initial conditions leads to the creation
of trains of solitons [5, 32].

Our results crucially depends on the ansatz presented in Section IV. Numerical solutions of the lattice FPU
model with long-range interactions would be needed in order to confirm the analytical predictions. In particular, we
can already expect that localized solutions become progressively more unstable as soon as s decreases. Preliminary
numerical investigation indeed do confirm that choosing a solution that is initially localized without initial velocity,
one obtains stable solutions as soon as s > 3 [33]. However, the ansatz (15) requires that a suitable initial velocity is
considered and to do a proper comparison with analytical results one should appropriately choose the initial velocities
u̇i at time t = 0. Work in progress on this point is currently on-going in the region 1 < s < 3, where large enough
sizes of the lattice have to be considered.
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