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ABSTRACT

Morphological attribute profiles have been one of the most
effective image features for spatial-spectral classification of
remote sensing images during the last decade. The motiva-
tion of this paper is to extend attribute profiles to satellite im-
age time series, i.e. taking into account the temporal infor-
mation. We introduce different approaches and report their
performances for land cover mapping. Experiments are con-
ducted on a Sentinel-2 dataset considering well-established
supervised classification methods that are Random Forest and
Support Vector Machines.

Index Terms— Attribute profiles, Satellite Image Time
Series, Multiscale representation, Land cover mapping

1. INTRODUCTION

Analysis of Satellite Image Time Series (SITS) has gathered
a growing interest due to the availability of high temporal
frequency Earth Observation (EO) data provided by the new
satellite missions (e.g. Sentinel). Therefore, analyzing EO
time series is one of the significant trends in the remote sens-
ing community. SITS have been used in many land use-land
cover applications, land cover mapping being specifically a
critical task [1l]. Recently, using spatial features proved to be
more efficient for classification purposes [2].

After the successful introduction of morphological pro-
files [3] almost two decades ago, a significant progress was
made ten years later with the more generic attribute profiles
[4]. These profiles are made from successive applications of
attribute filters, i.e. filters that operate on connected compo-
nents of the level sets and that rely on some given attributes
characterizing the image content (size, spectral or shape infor-
mation). One of the reasons for the popularity of this frame-
work is the efficient implementation that is achieved through
the multiscale representation of an image, using morpholog-
ical hierarchies (or trees) [S)]. Indeed, processing nodes of a
tree is much more efficient than dealing with the raw data.
Each pixel of the image is then described by its so-called at-
tribute profile, before a supervised or unsupervised classifi-
cation is finally applied. The reader is referred to [6] for a
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recent survey. Nevertheless, to the best of the authors’ knowl-
edge, the application of such a framework to SITS remains
particularly challenging. Thus, we explore in this paper var-
ious strategies to do so, and conduct an experimental com-
parison of these options. The rest of the paper is organized
as follows. Section [2] provides mathematical background for
morphological attribute profiles. In Section [3] we introduce
several strategies to build such profiles on SITS. Experimen-
tal results are reported in Section Last, Sectionﬁ]concludes
this paper with some future work hints.

2. MORPHOLOGICAL ATTRIBUTE PROFILES

Let [ : Q — V be a gray scale image with pixels defined
on the spatial domain 2 € N? and taking values in the finite
set V € Z. An AP is obtained by filtering the image I with
attribute operators using a predicate with increasing thresh-
old values AP(I) = (19" 1¢™*~* I, I"% " ™)
where ¢ and -y are thickening and thinning operators based
on L ordered A thresholds respectively. This attribute is cal-
culated from the nodes, and examples include area, standard
deviation, moment of inertia, etc [4]. AP can be efficiently
computed through tree analysis, with min and max-tree used
for thickening and thinning respectively. AP provides feature
extraction in the spatial domain from images and gives useful
results especially for classification.

AP relies on filtering through tree representations accord-
ing to attributes in nodes. Filtering simply consists in cutting
the tree according to some predefined criteria, i.e. attribute
thresholding. Filtering is straightforward in case of increasing
attributes (whose value increase from leaves to root), while
several strategies exist in case of non-increasing attributes [4]]
. We focus on two of the most common attributes: area, which
is measured as the amount of pixels in a node, and moment
of inertia that models the elongation of the node. While the
former is increasing, the latter is not, and we consider here
only the max-rule for the sake of simplicity.

3. TREES FOR SITS

The structure of a tree depends on a underlying hierarchy rule.
In [3]], two kinds of hierarchies are distinguished, namely in-
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Fig. 1: Proposed tree building approaches

clusion and partitioning trees. In this paper, we focus on the
standard definition of the AP that relies on the min-tree and
the max-tree, both being representative examples of the fam-
ily of inclusion trees. Let us note that our work can be eas-
ily adapted to the self-dual AP (SDAP) that is built from an-
other inclusion tree called the tree of shapes [7]), but also
to some other multiscale features extracted from partitioning
trees. Min-tree and max-tree require to sort the elements of
the image and group these elements in their nodes that consist
of connected components.

In order to represent a SITS with a tree structure, we claim
that different strategies can be followed. We consider here
the following ones: building a tree for each image of the se-
ries separately, building only one spatial-temporal tree for the
whole time series and describing each pixel by a time series
before constructing the corresponding tree. Figure|[I] provides
the three different tree representation ways for SITS.

3.1. Tree for each date

While AP have been initially defined for panchromatic im-
ages, their extension to multi and hyperspectral images was
rapidly considered with the so-called Extended Attribute Pro-
file (EAP). They consist in computing an AP for each image
channel (possibly after a dimension reduction step, e.g. PCA).

This approach can be trivially applied to SITS, providing
us with a baseline. To do so, we build one tree per date (see
Fig. [I] center), from which a dedicated AP is derived in each
pixel. For a given pixel, the AP obtained at all dates of the
SITS are then stacked into a single feature vector.

3.2. Spatial-temporal tree

The SITS can also be seen as a spatial-temporal cube, where
each date corresponds to one layer, the two other dimensions
being the spatial ones. From this cube it is possible to build
a spatial-temporal (ST) tree, i.e. a single tree that includes all
information from the whole time series. However, building
such a complex tree given a long time series is particularly
challenging due to scalability issues.

While 3D data has received less attention than 2D, there
have been a few works that were proposing to computer trees
on such data, e.g. [8] for 3D computed tomography (CT) im-
ages. The major difference from a still image is the change
in terms of connectivity rule due to the extension to a third
dimension. Conversely to a 2D image that comes with 4- and
8-adjacency (when neighbors share an edge, or an edge or ver-
tex respectively), 3D cube offers us 6-, 10- and 26-adjacency
(corresponding to neighbors sharing a plane, a plane or an
edge, a plane or an edge or a vertex respectively).

3.3. Spatial extent tree

In order to counter the computational complexity issue that
raises from the previous approach, we propose a third strategy
that considers a SITS as a multivariate image, similarly to a
multispectral or hyperspectral image. This was the strategy
followed in Section [3.1]but here we aim to build a single tree
for the whole SITS and not a tree per date. Conversely to
the previous approach (Section [3.2), here the tree has only a
spatial extent and not a spatial-temporal one. In other words,



every node of the tree has a spatial-only support (i.e. it is
defined by its spatial coordinates).

We thus represent a SITS as a multivariate image whose
dimensions (beyond the spatial ones) are made from the dif-
ferent dates of the series. Neighboring pixels will then be
compared based on the contents of their respective time se-
ries. As already recalled, min-tree and max-tree structures re-
quire to impose an ordering in the feature space. While such
an ordering is straightforward for grayscale values, there is
no universal solution when it comes to multivariate data [9].
We thus propose two different strategies to address this issue:
defining a vector ordering or projecting the data into a single
dimension for which the ordering is trivial.

3.3.1. Ordering

From a theoretical point of view, a total ordering is needed to
be able to perform attribute filtering on multivariate data. In-
deed, it is mandatory to be able to order each pair of pixels to
determine the highest, but also to avoid ties if the input values
are different. Otherwise, the choice of the time series that cor-
responds to the retained component would be arbitrary. The
most famous total ordering is lexicographical ordering. If we
consider the dates in a chronological order, it consists in com-
paring/ordering two components based on their value in the
first image. In case of ties, the comparison is repeated on the
second image, and so on if necessary.

The problem of the previous method is the highly unbal-
anced behavior imposed by the lexicographical ordering or
more generally speaking by any total ordering. One can then
wonder if considering a pre-ordering (i.e. an ordering without
the anti-symmetry constraint) could lead to satisfying results.
A major drawback of such a strategy is the difficulty to re-
construct the filtered image (or SITS here) since there could
be several different vectors (or time series) being considered
as equivalent and thus it is not possible to choose among these
ties if they correspond to the retained maxima or minima.
Nevertheless, we can avoid the reconstruction phase, simi-
larly to the concept of feature profiles (FP) [10].

An example of pre-ordering is the reduced ordering in
which vectors are reduced to scalar values, that are further
compared to provide the ordering. Since time series are usu-
ally compared with dissimilarity metrics such as Dynamic
Time Warping (DTW), we can rely on such metrics to define
the reduced ordering. To do so, we rank vectors according
to their difference with a reference one (here a time series).
Choosing the reference is a problem at hand and it can be re-
placed by selecting a set of reference pixels from which aver-
age distances to pixel time series are measured. Finally, these
distances are ordered, leading for each pixel time series to a
rank in the image. The rank information becomes the input
data for computing the min- or max-tree.

3.3.2. Projection

The previous pre-ordering approach can be efficiently refor-
mulated as follows. Two pixels (or times series) can be com-
pared based on their respective 1D projections given a prede-
fined transform. If each pixel is described by its projection
instead of its time series, the SITS becomes a still image that
offers several advantages: it is a compact representation, it
greatly eases the ordering of the pixels. The projection func-
tion could be user-defined depending on the application (e.g.
mean, median, standard deviation, range, etc). For the sake of
illustration, we consider here the mean of the pixel time series
(each pixel is then assigned its average intensity computed
between the different dates). Let us note that we could have
chosen a function leading to real values, since the tree-based
framework is also able to deal with floating point values.

4. EXPERIMENTS

We illustrate the different strategies presented in Section 3| by
some quantitative evaluation of land cover mapping. To do
so, we consider the France Land Cover Map provided by [11]
as a ground truth. More precisely, we give in Figure 2] (right
color image) the cropped map that covers our sample SITS.
The latter is made of 6 images acquired by Sentinel 2 over
the west of France during 2017 within one month interval ap-
proximately (shown chronologically on the left of Figure [2)).
The image size is 300 x 300 pixels and the spatial resolution
is 10m. As already stated, we focus here on gray scale image
so only one band was kept from the images. The region under
study includes 5 land cover classes: summer crops (yellow),
winter crops (red), urban area (pink), forest (dark green) and
grasslands (light green). The min and max-trees are built us-
ing iamxt [[12], a Python open source toolbox.

For classification purpose, we randomly selected 100 pix-
els from each class for training. The remaining pixels were
considered for testing. The thresholds related to the moment
of inertia have been defined according to the literature as A =
(0.2,0.3,0.4). 3 area thresholds were randomly selected for
every approach. As far as classification methods are con-
cerned, we set the number of trees in RF to 100 and opt for
the ’liner kernel’ in SVM. The 10-connectivity was used to
build the spatial-temporal tree.

It is important to note that the length of the feature vec-
tors depends on the size of the input data. While the two first
strategies (tree for each date and spatial-temporal tree) led to
48 features per pixel, the third one (spatial extent tree) pro-
vides only 13 features for each location.

We report in Table [I] the individual accuracies. The
marginal approach (Section [3.1] and spatial-temporal model
(Section give better result, but at a higher cost in terms of
feature length. Random Forest performs generally better than
SVM. The preliminary results showed that AP increases the
classification accuracy except when using the lexicographical



Fig. 2: From left to right: SITS frames and colored ground truth

ordering approach, illustrating the fact that the theoretical
correctness does not always come with a practical usefulness.

Method RF-Area RF-Moment SVM-Area SVM-Moment
Without Tree 67 67 68 68
Marginal-AP 70 68 68 54
Spatial-Temporal AP 72 63 63 65
Lexicographic AP 59 63 54 59
DTW AP 68 68 59 61
Mean AP 67 68 62 61

Table 1: Comparison of overall classification accuracy

5. CONCLUSION

In this paper, we have proposed different approaches to adapt
attribute profiles to satellite image time series. In order to
deal with spatial information, we calculated area and moment
of inertia attributes of the tree nodes. Experimental results
show that proposed method give promising results for land
cover mapping of SITS. Future work will deal with to take
into account spectral information which increases the dimen-
sion of information from three (2D spatial and temporal) to
four. To produce feature profiles is another state-of-the-art
strategy in MM. It could lead to better results for applications
such as land cover classification. Besides, selection of opti-
mal thresholds are needed for further works.
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