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Reims, France 
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Abstract 

 

Background - Few indexes are available for nuclear medicine image quality assessment, 

particularly for respiratory blur assessment. A variety of methods for the identification of blur 

parameters has been proposed in literature mostly for photographic pictures but these methods 

suffer from a high sensitivity to noise, making them unsuitable to evaluate nuclear medicine 

images. In this paper, we aim to calibrate and test a new blur index to assess image quality. 

Material and Methods – Blur index calibration was evaluated by numerical simulation for 

various lesions size and intensity of uptake. Calibrated blur index was then tested on gamma-

camera phantom acquisitions, PET phantom acquisitions and real-patient PET images and 

compared to human visual evaluation.  

Results – For an optimal filter parameter of 9, non-weighted and weighted blur index led to an 

automated classification close to the human one in phantom experiments and identified each time 

the sharpest image in all the 40 datasets of four images. Weighted blur index was significantly 

correlated to human classification (ρ= 0.69 [0.45 ;0.84], p<0.001) when used on patient PET 

acquisitions. 

Conclusion – The provided index allows to objectively characterize the respiratory blur in 

nuclear medicine acquisition, whether in planar or tomographic images and might be useful in 

respiratory gating applications. 
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List of abbreviations 

 

PET : positron emission tomography 

SUV : standardized uptake value 

SUL : standardized uptake value normalized to lean body mass 

MTV : metabolic tumor volume 

TLG : total lesion glycolisis 



18F-FDG : 18F-Fluorodeoxyglucose 

  



Introduction 

 

Nuclear medicine is a domain in full expansion, broadening the spectrum of its applications. The 

administered activity of radiopharmaceuticals is kept as low as possible to limit patient radiation 

exposure. Imaging times are increased accordingly to compensate low count rates and decreased 

signal-to-noise ratio. A complete nuclear medicine acquisition thus takes usually several minutes 

and is subject to respiratory blur. Diaphragm motion amplitude can reach 10 cm during 

respiratory cycle (1) and this phenomenon may have clinical consequences. The concentration of 

radiopharmaceutical within a given structure is in particular spread out over a larger area leading 

to a respiratory blur and an underestimation of lesion uptake. 

 

A wide range of indexes has been developed to characterize radiopharmaceuticals uptake in 

nuclear medicine (2): intensity of the uptake (SUV, SUL), volume (MTV, TLG) and more 

recently textural parameters (3). Few indexes are however available for image quality assessment 

once the image acquired, particularly for respiratory blur assessment. This question might be of 

interest with the development of respiratory gating, particularly on PET/CT systems.   

 

Motion blur, caused by the relative motion of a structure during image capturing, has two main 

components: angle and amplitude. In this paper, we focus exclusively on amplitude estimation as 

the predominant axis of respiratory motion is craniocaudal.  

 

A variety of methods for the identification of blur parameters has been proposed in literature (4), 

mostly on photographic pictures. Edge detection techniques are widely documented whether with 

first or second order derivative, Sobel operator (5), Canny detector (6) or wavelet transform 

methods (4). However these methods are very sensitive to noise (7). Nuclear medicine 

acquisitions have a lower signal-to-noise ratio than photographs which can mislead the edge 

detection. In their review article, Tiwari and al. (4) tested two methods based on frequency 

domain (radon transform method and cepstral methods) that showed a similar sensitivity to noise 

adding, making them unsuitable to nuclear medicine image evaluation. 

 



In this paper we test an automated estimation index to assess the respiratory blur in nuclear 

medicine images, whether planar or tomographic.  



Methods 

 

Blur index calculation 

 

Thresholding 

 

Let I be the original image of size m x n x p. The first step is the creation of a binary mask M of I 

whose value is 0 when the voxel value is less than 100 counts. The threshold was determined on 

ad hoc basis. This step is performed in order to avoid any influence from pixels/voxels outside 

the phantom or patient body on the blur index. 

 

Blur index calculation 

 

Blur index is based on the article of Crete and al. (8) and adapted to accept 2D and 3D nuclear 

medicine images. A blurred image B is created using a low-pass filter h of length L in the 

direction of the respiratory movement (z-axis in 3D images, y-axis in 2D image). B is cropped to 

be of the same size as I. The adequate L parameter is evaluated in the first part of this article.  

 

  𝒉 = 𝟏𝑳  [𝟏, … , 𝟏]       (𝟏 𝒓𝒆𝒑𝒆𝒂𝒕𝒆𝒅 𝑳 𝒕𝒊𝒎𝒆𝒔) 𝑩 = 𝒉 ∗ 𝑰 

 

 

  Index calculation 

 

 

The absolute difference images DI and DB studying the variations of neighboring pixels are 

initialized as all zeros matrix of m x n x p and then computed as follow: 

 

DI (i,j,k) = Abs (I(i,j,k) – I(i,j,k-1)) for i=1 to m, j=1 to n, k=1 to p-1 

DB (i,j,k) = Abs (B(i,j,k) – B(i,j,k-1)) for i=1 to m, j=1 to n, k=1 to p-1 



 

In order to analyze the variations of the neighboring pixels after the blurring effect, an image DV 

is created: if the variation is low then the original image was already blur. 

 

DV(i,j,k) = Max (0, DI(i,j,k) – DB(i,j,k)) for i=1 to m, j=1 to n, k=1 to p 

 

The comparison of the variations from the initial picture is computed as follow, using the binary 

mask M: 

sI = ∑ 𝑫𝑰(𝒊, 𝒋, 𝒌) × 𝑴(𝒊, 𝒋, 𝒌)𝒎,𝒏,𝒑𝒊,𝒋,𝒌=𝟏  

sV = ∑ 𝑫𝑽(𝒊, 𝒋, 𝒌) × 𝑴(𝒊, 𝒋, 𝒌)𝒎,𝒏,𝒑𝒊,𝒋,𝒌=𝟏  

 

The final index Blur varies from 0 (sharp) to 1 (blurred) and is given by: 

 

Blur = 
𝒔𝑰−𝒔𝑽 𝒔𝑰  

    

Blur index ponderation 

 

High intensity lesions can artificially decrease the blur index by increasing the contrast at the 

interface of the lesion and the background. This phenomenon can theoretically decrease the blur 

index when patients exhibit lots of high intensity voxels. An estimation of the number of high 

intensity voxels is given by the ratio R between the number of voxels exceeding a predetermined 

threshold (expressed as a percentage P of the maximum intensity value in the original image I) 

and the number of voxels corresponding to the patient (voxels whose value is 1 in the mask M). 

 𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝒃𝒍𝒖𝒓 = 𝑹 ×  𝑩𝒍𝒖𝒓 

 

 

 

 

 



Experiments 

 

 Filter calibration and high intensity voxel threshold (P) determination 

 

The length L of the low pass filter was determined based on a numerical 2D simulation. A 

moving disk was simulated on a 128x128 matrix with pixel size of 2x2 mm (motion length 20 

mm, 10 cycles per second). Two dynamic acquisitions consisting of 200 frames of 1 second were 

generated: one with and one without disk movement. Poisson noise was added to each frame. 

Blurred random images were obtained by summing 40 randomly selected frames in the 200 

frames available in the simulated moving acquisition. Static random images were obtained by 

summing 40 randomly selected frames in the 200 frames available in the simulated non-moving 

acquisition. 

500 datasets of 4 images were reconstructed, each composed of 1 static random image and 3 

blurred random images. The sharpest image was then identified based on the blur index 

calculated for different values of L (3, 5, 7, 9, 11, 13). Sharpest image identification was 

considered successful if it identified the static random image. 

This process was tested for several disk diameter values (5 mm, 10 mm and 20 mm) and several 

pixel intensities (2, 5 and 10 times the background whose value had been fixed to 1 arbitrary 

unit). 

The threshold P was determined based on 30 consecutive PET/CT performed for clinical purpose. 

All were acquired on a Discovery 710 system (General Electrics, Milwaukee, USA) after an 

intravenous injection of 3 MBq/kg of 18F-FDG. An external observer was asked to rate the 

respiratory blur from 1 (absent) to 5 (major blur). Correlation between perceptual blur and 

weighted blur index were computed using Pearson correlation coefficient for all threshold value 

(ranging from 0 to 100% SUVmax). 

 

 

 

 

 

 



Phantom experiments 

 

  Input Data 

 

We used a dynamic thorax phantom (Model 008A, Computerized Imaging Reference System, 

Inc.) with a spherical insert of 8 ml (2.5 cm of diameter) filled with 20 MBq of [99mTc] 

Pertechnetate (gamma camera acquisition) or 20 MBq of [18F] FDG (PET/CT acquisition). The 

phantom was positioned at the center of the field of view: the center of the insert was located 65 

mm right from the center. Motion length of the phantom was set to 20 mm at 10 cycles per 

minute.  

 

  Image Acquisitions 

 

For gamma-camera acquisitions, 200 images of 1 second were acquired in planar mode on a 

128x128 matrix using a Symbia T2 system (Siemens Medical Solutions, USA). For PET 

acquisitions, a 200 second volume was acquired in list-mode on a Discovery 710 system (General 

Electrics, Milwaukee, USA) and reconstructed to obtain 200 frames of 1 second (OSEM : 24 

subsets and 2 iterations, no attenuation correction, reconstructed slice thickness of 3.27 mm, 

Butterworth post-filter with 6.4 mm cut-off).  

Random blurred images were obtained by summing 40 randomly selected frames in the 200 

frames available in each acquisition. 30 datasets of 4 random blurred images were reconstructed 

for gamma-camera acquisition and another 30 datasets for PET acquisition. 

  

  Images rating 

 

Each dataset of 4 images was sorted in ascending order of blurriness (from 1 to 4) by an 

independent observer –considered as the gold standard– and afterwards along the automated 

weighted and non-weighted blur index. An error score was calculated between the two ratings, 

corresponding to the sum of the absolute difference of rank of each image, as shown below. By 

construction, this error score is always even and ranges from 0 to 8 with 0 (perfect agreement), 2 



(slight disagreement), 4 (mild disagreement), 6 (subtotal disagreement), 8 (complete 

disagreement). An example is provided in figure 1. 

 

  Patient experiments 

 

30 consecutive PET/CT, different from those used for threshold determination, were 

retrospectively selected. All were acquired on a Discovery 710 system (General Electrics, 

Milwaukee, USA) after an intravenous injection of 3 MBq/kg of 18F-FDG. An external observer 

was asked to rate the respiratory blur from 1 (absent) to 5 (major blur). Correlation between 

perceptual blur and blur index were computed using Pearson correlation coefficient on R 

software (9). 

 

  



Results 

 

Filter calibration 

 

We report the rate of successful identification of the sharpest image on simulated acquisitions in 

table 1. We retained an optimal L value of 9 with a mean of 88.7% of successful identification 

throughout all simulations. 

Optimal threshold P was 42% of the SUVmax (ρ = 0.64) as seen in figure 2. 

 

Phantom experiments 

 

No ranking differences were seen between weighted and non-weighted blur index. 

For gamma-camera 2D acquisitions: mean error score value was 0.5 with perfect agreement 

(error score 0) for 30/40 datasets and slight disagreement (error score 2) in the remaining 10. No 

mild, subtotal or complete disagreements were noted. The sharpest image was always concordant 

between visual and automated ranking.  

For PET 3D acquisitions: mean error score value was 0.6 with only slight disagreement (error 

score 2) in 12/40 datasets. The sharpest image was again always concordant between visual and 

automated ranking. 

 

Patient experiments 

 

Non-weighted blur index was not correlated to perceptual blur (ρ= 0.08 [-0.28 ;0.43], p=0.64). 

Weighted blur index was significantly correlated to perceptual blur (ρ= 0.69 [0.45 ;0.84], 

p<0.001), figure 3. 

 

 

 

 

  



Discussion 

 

Low signal-to-noise ratio relative to photographs is the main concern in blur estimation in nuclear 

medicine acquisition. We adapted the blur index published by Crete and al. (8) by using a 

threshold eliminating the area of the image with the lowest signal-to-noise ratio and taking into 

account the number of high intensity voxels. The thresholding excludes most of the voxels of the 

background, where no signal is expected: the background can indeed increase the blur index 

value as it is a large area of low contrast between neighboring voxels. By construction, the blur 

index is sensitive to high intensity voxels which can artificially decrease its value due to the high 

contrast between the lesion and the neighboring voxels. An estimation of the ratio of high 

intensity voxels over total patient voxels was proposed to compensate this phenomenon. High 

intensity voxels were defined as voxels exceeding 42% of the SUVmax of the image based on a 

first training dataset. Pearson correlation between perceptual blur and weighted blur index 

decreased when using a higher percentage presumably because of the low number of voxels 

selected.  With a lower percentage, low intensity voxels are also selected and lead to a decreased 

Pearson correlation as well. 

 

In phantom experiments, the revised non-weighted and weighted blur index led to an automated 

classification close to the human one with perfect agreement in the order in between 70% and 

75% of the datasets. The remaining discrepancies gathered only slight disagreements, that is to 

say a permutation of two consecutive images relative to the human ranking. The sharpest image 

was always concordant. The high performance of these indexes to select the sharpest arrangement 

of frame in phantom experiments might be promising to propose a derived respiratory gating 

algorithm.  

 

In patient experiments, non-weighted blur index did not show any correlation with perceptual 

blur: this is probably mainly due to the interpatient variability. The number of high intensity 

lesions varies from one patient to another by contrast to the phantom experiments in which only 

one high intensity lesion was tested.  Once this correction made, weighted blur index was 

significantly correlated to perceptual blur (p<0.001). 

 



Respiratory blur is a cause of image degradation in nuclear medicine (10). The provided weighted 

blur index allows to objectively evaluate its severity. This fully automated index can be a first 

step toward a machine-learning based blur estimation which is a field of mounting interest (11–

13). 

 

Conclusion 

 

The provided index allows to objectively characterize the respiratory blur in nuclear medicine 

acquisitions, whether in planar or tomographic images and might be useful in respiratory gating 

quality assessment. 

 

Figure and table legends 

Table 1: success rate of sharpest image identification for various blur index L-parameter values. 

Figure 1: example of a dataset rating with error score calculation between human and automated rating. 

This dataset is sorted in ascending order of blurriness (from 1 to 4) based on observer evaluation 

and blur index. An example of error score calculation between the two methods is provided. 

Figure 2: Pearson correlation between perceptual blur and weighted blur index along threshold value (P). 

Figure 3: relationship between weighted blur index and human based blur evaluation (perceptual blur). 
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Table 1: success rate of sharpest image identification for various blur index L-

parameter values. 

 

 L=3 L=5 L=7 L=9 L=11 L=13 

Diameter : 5 mm / Intensity : 2 30.8% 37.0% 59.4% 68.8% 48.2% 50.4% 

Diameter : 5 mm / Intensity : 5 12.2% 30.2% 92.6% 92.0% 87.6% 82.6% 

Diameter : 5 mm / Intensity : 10 10.0% 13.0% 100% 100% 99.6% 99.6% 

Diameter : 10 mm / Intensity : 2 9.0% 13.6% 48.8% 79.2% 85.4% 86.2% 

Diameter : 10 mm / Intensity : 5 1.0% 2.0% 92.2% 100% 100% 100% 

Diameter : 10 mm / Intensity : 10 0.0% 0.0% 98.2% 100% 100% 100% 

Diameter : 20 mm / Intensity : 2 53.4% 55.8% 21.6% 58.6% 47.8% 75.4% 

Diameter : 20 mm / Intensity : 5 22.0% 57.8% 65.8% 100% 100% 100% 

Diameter : 20 mm / Intensity : 10 2.2% 19.4% 42.6% 100% 100% 100% 

Total 15.6% 25.4% 69.0% 88.7% 85.4% 88.2% 
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Figure 1 : example of a dataset rating with error score calculation between human and 

automated rating. 

 

Gamma-

camera 

dataset 

#01 
 

Observer 1 4 3 2 

Blur index 1 4 2 3 

 |1–1| = 0 |4 – 4| = 0 |3 – 2| = 1 |2 – 3| = 1 

    Total error : 2 

 

This dataset is sorted in ascending order of blurriness (from 1 to 4) based on observer 

evaluation and blur index. An example of error score calculation between the two methods is 

provided. 
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Figure 2 - Pearson correlation between perceptual blur and weighted blur index 

along threshold value (P). 
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Fig 3 : relationship between weighted blur index and human based blur evaluation (perceptual 

blur). 
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