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ABSTRACT:

The recent development of automated UAV imaging applications for geomatics is leading to an unprecedented rapid growth in mosaic
and DEM images. Newer, more advanced algorithms are being extensively studied to fulfill constantly increasing requirements.
Sequences of georeferenced images that cannot be shot at once are merged with ideally no geometrical distortion to allow for 3D
reconstruction and orthophotography generation. If newer robust mosaicing algorithms are being developed to withstand UAV tighter
real-time constraints, very little attention has been given to objectively assess their capacity to coherently combine different image
geometries. Changes in FOV and illumination, oblique scenes and dynamic sequences featuring movement and object occlusion
are not yet fully handled by state-of-the-art algorithms. Despite the large panel of existing applications featuring different quality
constraints, our work focuses on the geomatics context, where the main requirement is the respect of geometrical proportions among
images. Geometrically coherent mosaics and 3D reconstructions can only result from fully static, high-altitude orthogonal views.
GCPs or well known geographical landmarks are employed with RTK-GPS for scene georeferencing. The overall fidelity is computed
as the global variance of the distances between SGPs. However, very few ways seem to exist to measure the content coherence of
large geographical scenes, interiors or unreferenced scenes. Distances are mostly expressed in a local coordinate system and GCPs
are often unavailable. The main contribution of this paper consists in the definition of a formal metric for measuring local coordinate
geometrical fidelity of mosaics issued of UAV image sequences, in real operating conditions. A Mosaicing Fidelity Assessment
(MSF) index is therefore computed for every couple of consecutive images of a sequence. The metric generates an index based on
the distances of SURF feature points extracted in the images and compares them to estimate geometrical changes transferred to the
mosaic. The solution can detect perspective inaccuracies caused by residual registration errors. It can fulfill the requirements of most
of imaging and geomatics applications and can be executed as nearly real-time due to its low computational complexity.

1. INTRODUCTION scenes or large natural, hardly accessible sites. Furthermore,
mosaicing may involve entities expressed in local coordinates,

The development of automated vision and 3D acquisition where geo-mapping is not required.
systems in remote sensing and geomatics requires to compose
different visual contents at different times and different
perspectives into a single wide-view image. Besides pure
photographic usage, research is currently focusing on algorithms
capable of respecting the geometry of a scene represented by
the images being stitched. Basic feathering algorithms are
being replaced by more advanced stitching solutions capable
of respecting the natural boundary of real objects contained
in the scenes. Nevertheless these algorithms are blind and
not capable of properly characterizing the objects contained
in a scene and preserving their geometry and integrity while
mosaicing image sequences. Handling dynamic objects with
speeds sensibly higher than the frame rate and under highly
changing illumination conditions can hardly be achieved by
existing algorithms and may result in artifacts and phantom
effects in the regions of boundary overlap. As mosaicing
algorithms are not capable of preserving the image geometry, we
need to measure a posteriori the resulting structural coherence,
i.e. after the mosaic generation. Since geo-referencing must be
recomputed after mosaicing, the usage of GCPs (Ground Control
Points), or other static objects with known shape and position,
is normally exploited for geo-referencing the entire mosaic.
Mean distance and variance between GCPs gives the overall
accuracy of the geo-referencing process. Unfortunately, the GCP
points can not always be deployed in interior geo-unreferenced

All the aforementioned cases may need the development of a
further geometrical accuracy metrics capable of measuring the
extent of perspective and morphological changes across time
independently of existing GCPs. Pure image based mosaic
geometrical fidelity measurement would give its reliability
and detect images with insufficient precision. A posteriori
measurement may be also used as prior to better drive existing
algorithms to enhance geometrical boundary respect. A
mosaic is mainly built from the composition of two (or more)
semi-overlapping images, with an overlap ratio of about 70%
in aerial imagery. The contents of the first image are stitched
with the second image in their overlapping region and along
a seamless path crossing object boundaries or uniform region,
where no texture was detected. If objects belonging to this region
move or their shape changes, the algorithm should be able to
transfer only the most meaningful and uncorrupted contents to
the mosaic.

The algorithm proposed here is a first attempt to objectively
measure the extent of different textured contents stitched in the
shared region of an image pair. The concept may be easily
extended to N-image sequences. The solution compares a pair
of input narrow-view images to the generated mosaic and with
an ideal undistorted one, that may be represented by a static
scene. The geometrical distortions and structural unconformities
* Also with LGO UMR 6538 CNRS UBO UBS between two consecutive images are detected by a cost function




constructed trough Euclidean distances measured between SURF
points. The algorithm does not simply measure pixel-wise
Euclidean distances between images, as the process would be
very time consuming and may compute distances on poorly
textured or uniform regions, where structural coherence respect
is not meaningful. Conversely, distortions on highly textured
regions would meaningfully assess coherence loss harming
image usability. Our contribution aims to image acquisition
manufacturers and UAV geomatic communities, working with
badly georeferenced scenes. The algorithm may also be used to
assess the response of existing mosaicing algorithms and predict
their capacity to preserve object coherence and contribute to
enhance their overall robustness.

This paper is organized as follows. After having explained the
requirements in image mosaicing to assess structural coherence
in Sec. 1, we review the existing methods in Sec. 2 along with
the motivation leading to the definition of a new assessment
algorithm. We then describe in Sec. 3 the conceptual method,
its pipeline and how to embed it into existing mosaicing
solutions. Section 4 details the experiments done on some
sample imagesets, before concluding the paper in Sec. 5.

2. RELATED WORK

Despite the extensive research conducted to enhance mosaicing
robustness, very little attention has been given to the definition

of formal metrics to assess algorithm behaviors and results.

The large majority of the recent contributions aim in best seam
robustness enhancement on blind stitching algorithms. The only
objectively measured improvements rely on the capacity of the
best seam to better fit photometrical and structural discontinuities
that may correspond to object boundaries. No formal metric has

ever been defined to measure the structural fidelity of a mosaic.

Nevertheless, as the process is executed on fully aligned images,
geometrical registration and warping accuracy remain critical to
obtain well aligned mosaics.

(Ghosh , Kaabouch, 2016) and (Xu et al., 2016) give an
exhaustive overview of the main process along with recent
solutions. The authors point out how the accuracy of the entire
process depends on the feature point (e.g. SIFT or SURF)
generation, which is required to match images shot with different
poses and subject to different perspectives. The large majority of
the assessment metrics measure the registration error as the main
source of structural discontinuities. Best seam stitching will
mostly fail while trying to follow poorly aligned or overlapping
edges, resulting in double contours and other artifacts. SIFT
(Lowe, 2004) and SURF (Bay et al., 2008) are among the most
successful perspective invariant feature point algorithms. SURF
has been introduced as a computationally improved version of
the SIFT based on squared box-filter as approximation of the
Gaussian filter to create blob-response maps. It is invariant
to affine transforms, rotation, scaling. It is also robust to
perspective and illumination. (Li et al., 2016) analyze the
effective robustness of the SURF feature points and compare
them with other commonly used points.

Mosaicing algorithms have no prior information about the scene
contents and can only rely on colour, gradient and texture to

compute a seam that does should not cross entity boundaries.

Structural inconsistencies and visual artifacts may therefore
not be measurable through existing pixelwise image likelihood
metrics like EQM, PSNR or SSIMM that are mostly used to
measure image degradation after filtering, compression and

transmission. (Wang et al., 2004) give an overview of the main
metrics used to compare different image contents. (Khan et
al., 2012) point how the PSNR would not be reliable when
photometric and geometrical distortions apply at the same time,
as geometrical distortions occuring at stitching time may be
photometrically induced. The SSIM accounts only for perceptual
distortions and may not properly distinguish perspective errors
if they are hardly visible by human eye. (Boutellier et al.,
2008) create an image sequence from the reference image and
then compare the generated mosaic with the reference image.
(Bevilacqua , Azzari, 2006) propose a mosaicing assessment
plan aiming UAV imaging through a virtual camera framework
for real-life distortion simulation and apply only a set a pixelwise
metrics. The framework from (Ghosh et al., 2012) measures
four metrics: percentage of mismatches, difference of pixel
intensities, peak signal-to-noise ratio and mutual information
between the base (ground truth) image and mosaic. These
metrics are computed pixelwise and (Rane et al., 2003) compute
the Overall Percentage Closeness (OPC) metric that measures
the number of black pixels of the difference image.

A closer look at these frameworks shows how they all measure
bitwise differences relating to registration accuracy. Their main
drawback is that they would not properly distinguish whether
errors occur at registration or stitching time. The Mosaicing
Structural Fidelity (MSF) index is introduced in this paper as
the difference of structural signatures to overcome limitations
of the aforementioned methods. The mean of the extracted
SUREF point positions (centroids) is used to define the signature
of the image geometrical structure, aiming at global image
displacement invariance. As the algorithm relies on feature
point extraction, its immunity to noise and maximum accuracy
will be related to the SURF implicit robustness and may be
enhanced as newer, more robust extractors will be available.

3. METHOD

The MSF is computed on differences between SURF point
positions between a pair of source images extracted from a time
sequence and their resulting mosaic images. Figure 1 shows the
distance between two points in image mosaicing and how it is
measured by the current algorithm.

The algorithm uses properties of SURF point descriptors to
transform geometrical displacements in a given region into some
unique positional coordinates. Feature points are extracted in
highly textured zones and may not cover uniform regions that are
considered irrelevant for any geometrical measurement. SURF
points are represented as blobs as they are extracted through
an integer approximation of the determinant of a Hessian Blob
detector. The actual detection is done by a box filter. The
descriptor is composed of the size obtained by the number of
divisions of the square grid, response given by the actual amount
of details found in the neighborhood of the point, the orientation
of the strongest gradients and number of octaves required to
find the point. The X, Y position is also given by the descriptor.
Larger sizes will give higher precision, but the process will run
slower. (Bay et al., 2008) point out how extended descriptor
sizes exhibit better precision, but may yield to poorer recall.
Distortions are measured only around the points extracted on
highly textured regions. Descriptor entries of a sub-region will
have a low response on relatively homogeneous regions. The
algorithm does not try to match feature points between images,
as severely distorted images may feature completely different
points that could hardly be matched. The algorithm first extracts
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Figure 1. Distance between two points in image
mosaicing

the shared region from the left and right original (narrow-view)
images and the mosaic. SURF points are then extracted. Figure
2 shows the entire set of points extracted from an image of the
imageset under analysis.

Each point is defined by the following signature: (z,y) position,
the descriptor response (HoG texture) R, orientation O and size
S in pixels. The size tells the maximum distance at which
structural and photometric changes will affect the signature
of the point. The set of resulting SURF points is sorted by
strength and size, where the latter parameter is interpreted here
as the maximum reachability distance. From now on, the SURF
point size will be intended as reachability and the response will
be expressed as sensitivity. Only the K-highest ranked entries
are retained and used to compute the Euclidean distance and a
centroid. Figure 3 shows the selection and K-ranking process.
At each step, a centroid based on a combination of R and S is
generated as seen in Figure 4.

Two working modes exist:

e Higher reachability: Finds distorsions that are far from the
current SURF point, regardless of their strength;

o Higher sensitivity: Finds weaker distortion points, but at
within a shorter range

Given o; as the generic i"™ SURF point extracted from the image
4, the centroids ¢; of the 5™ image are defined by
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Figure 2. Euclidean distances between centroids
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Figure 3. SURF ranking pipeline

where K is the number of highest ranked points. The Euclidean
distance of the left and right images is computed through

d]eﬁ = C2 — Co, (3)
drighe = €3 — ¢, “
where the right image is assumed to be the distorted one. Finally,
the M SF is defined by

MSF = dight — diefi- ©)

A Sensitivity To Reachability index is manually provided as
input to select a Sensitivity/Reachability ratio that gives the best
detection, according to the image type. The minimum ray and
strength can be manually selected to gain a better reachability
of structural changes (higher ray will find distortions over larger
surfaces) despite a lower sensitivity, or higher sensitivity around
more restricted points. SURF computed on a sample image
produces a large number of unsorted points, with descriptors



Figure 4. K-ranked SURF geometrical centroid

featuring different sizes and responses as shown in Figure 5.

Figure 6 shows the 10% highest response ranked points while
Figure 7 shows the 10% highest reachability ranked points.

The highest sensitivity shows how only a restricted area of the
image features robust points, mainly extracted on buildings
and other artificially crafted objects. The beach and other
natural entities would not be properly detected as they would
not generate robust points. A good trade-off should therefore
be found when working on images featuring artificial and
natural entities. Once the centroid has been computed on the
shared region of the left and right original (narrow-view) and
mosaic images, the centroid of the left image will be subtracted
to the centroid computed on the mosaic. The same process
is computed between the right image and the mosaic. The
process is repeated with a nominal undistorted mosaic, giving

the Structural Mosaicing Fidelity of the fully undistorted images.

This latter index will be subtracted to the first unbiased MSF,
giving the effective unbiased MSF value. The entire pipeline is
shown at Figure 8.

Uniform and poorly textured regions around these points are
therefore skipped. The maximum number of SURF points used
to compute the centroid can be manually defined to improve

computational performances at the price of a reduced precision.

Even small changes in pixels at a distance included in the SURF
ray, will induce a change in the signature and position. Intrinsic
SUREF robustness to known disturbances fixes its maximum
accuracy. The differences of the Euclidean distances computed
on the left and right images are then summed up to get the
final score that will represent the actual fidelity. Figure 9
shows how SURF points can detect structural and photometrical
distortions {d1, d2, ds} of the points {p1, p2, ps}, within their
ray {r1,rz,r3}. The distortion point d; will be detected by the
SUREF points p1 ans p2, changing it relative signature. d2 will
be detected by p; and d» will not be detected. The signature
of the SURF point p; will be influenced by the size (in pixels)
and values of the distortions d; and ds. p; is the point with the
highest response, suggesting that it was extracted from sharp,
relevant points.

Figure 5. SURF points extracted from a sample image of
the imageset under analysis

4. EXPERIMENTS

The algorithm has been tested on a subset of aerial and UAV
images currently used in geomatics. As the algorithm is
supposed to measure the structural fidelity of mosaics created
through fully blind mosaicing algorithms, the operation has
been performed in black box mode, with no detail provided.
Two test scripts have been created to assess the behaviour of
the algorithm. The first script (Unit test) assesses the MSF on
a known imageset and with a fixed Reachability, Sensitivity
value pair. The values must be manually defined upon image
contents. The second script (Global test) assesses the MSF on a
known imageset looking for the best couple of Reachability and
Sensitivity values that maximizes the MSF result, producing a
convex solution. At each execution of the algorithm, a new MSF
has been computed, with increased Reachability and decreased
Sensitivity at a fixed step. The structural distortions have been
simulated trough application of Barrel filters on fixed sized
patches to reproduce a structural loss in parallelism of the image
contents.

The execution of the first test on a fixed sized distortion obtained
trough a Barrel geometrical transform on a 32x32 pixels region
and the 10% highest ranked response points on the selected
sample image gives an unbiased MSF of 0.0. The execution
of the same test on the 10% highest ranked Reachability on
the same image sample gives an unbiased MSF of 0.592. This
behaviour suggests the capacity of detecting distortions in a
region compatible to the maximum size of the SURF points.
This solution will not be optimal. The first test is not reliable, as
the result is driven by the parameters chosen by the operator.

The second test, executed on the entire set of possible
Reachability, Sensitivity values, will find an optimal MSF value
of 3.770. A more extensive test has been conducted to assess
the response of the algorithm to a set of known photometric
and geometrical distortions. An imageset composed of 4 aerial
hi-resolution and ISPRS satellite images has been chosen. A
set of 64x64 pixel patches has been chosen in a shared textured
region of the narrow-view image 2. The MSF measures the



Figure 6. 10% highest response SURF ranked points

extent of actual distorted contents transferred to the mosaic.
Luminance distortion (steps -50, -20, -10, -5, -2, 0, 2, 5, 10,
20, 50) has been applied along with Gaussian Blur (normalized
steps 0.1, 0.2, 0.3, 0.4, 0.5). The geometrical coherence has been
assessed trough application of a Barrel distortion (steps 5%,
10%, 20%, 50%). The mean and variance have been computed
for each distortion. Table 1 shows the the analytic results of the
test for each type of distortion and patch size.

The test shows how the SURF points are not invariant to changes
in luminance (Figs. 10 and 13) and how tiny changes can have
an impact on the position of the SURF points that appear to
be more affected by luminance increases. The Gaussian Blur
produces a sharp degradation for low values and stabilizing at
0.3, a level where the loss of detail cannot be recovered anymore
by the SURF pyramidal filter. The mean (Figure 11) rises and
the variance drops beyond 0.2 and stabilizes after 0.3 (Figure 14).
The barrel filter (Figure 12 and 15) steadily increases showing
capacity of the algorithm to monotonically follow moderate
distortion growth. Nevertheless the algorithm shows its limits
with Barrel distortions beyond 20%, where sudden changes in
mean and variance are experienced. This value corresponds to
a distortion whose extent is measured as a different geometry
in the scene, yielding to a sudden sharp rise in variance. The
results of the tests suggest how the algorithm has a reliable
response to geometrical distortions, up to a given extent, but how
changes in illumination may severely rise the level of uncertainty
as there would not be a way to distinguish geometrical and
photometrical contribution to the global MSF score. Gaussian
blur loss suggests how image unsharpness and overall loss of
detail, may not allow SURF to properly detect reliable points,
making MSF unsuitable.

5. CONCLUSION

The algorithm presented in this paper is a first attempt to
define a universal metric for Mosaicing Structural Fidelity
Assessment (MSF). The metric has been designed to measure
the extent of structural inconsistencies caused by geometrical
distortions in image sequences and transferred to a mosaic

Figure 7. 10% highest response reachability SURF ranked
points

1. Nominal Undistorted Mosaic 2 Mosaic with distorted image
=

| Unbiased Structural Coherence |

Figure 8. Pipeline of the MSF algorithm

obtained by combining the images of the sequence. The metric
can be coupled to an existing mosaicing pipeline to measure
the effective geometrical coherence of its internal geometry in
applications where GCP georeferencing is not possible or where
objects moving within the scene would lead to poor geometrical
coherence and cause double contours in mosaics.

The algorithm proposed in this paper estimates the MSF distance
trough SURF point based Euclidean distance measurements.
The structural coherence is analyzed only in the regions where
SUREF points can be extracted. Uniform regions are considered
irrelevant for any MSF estimation. A double approach sensitivity
to Reachability is used to detect distortions that may be far from
textured regions, or select only distortions in highly textured
regions featuring photometrical and geometrical boundaries. The
tests show how the algorithm response is driven by photometrical
changes and geometrical distortions. The algorithm relies on the
invariance of the SURF points to saturation and noises such as
the Gaussian Blur.

A test conducted through application of a Barrel distortion on
different sized patches shows how small geometrical distortions
are properly detected, until a certain extent. Nevertheless the
response is not reliable when the image is not sharp and changes
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Figure 9. SURF geometrical distortion detection

Table 1. Table of the analytic results of the test for each type of distortion

| Patchsize | Distortion | Strength | Mean MSF | Var MSF |
64x64 Luma -50 15.041 36.523
64x64 Luma -20 17.275 58.922
64x64 Luma -10 13.712 51.520
64x64 Luma -5 13.772 47.925
64x64 Luma -2 14.714 98.031
64x64 Luma 0 0.000 0.000
64x64 Luma 2 14.645 158.731
64x64 Luma 5 13.248 139.593
64x64 Luma 10 16.335 85.214
64x64 Luma 20 21.104 132.708
64x64 Luma 50 17.805 150.734
64x64 Gaus. Blur 0.1 8.036 61.303
64x64 Gaus. Blur 0.2 10.312 81.681
64x64 Gaus. Blur 0.3 13.024 24.006
64x64 Gaus. Blur 0.4 13.287 24.724
64x64 Gaus. Blur 0.5 13.286 23.057
64x64 Barrel 1% 5.922 20.309
64x64 Barrel 2% 6.636 21.339
64x64 Barrel 5% 11.294 42.633
64x64 Barrel 10% 11.699 33.739
64x64 Barrel 20% 19.655 200.214
64x64 Barrel 20% 19.454 194.716

in illumination occur. The largest distortions will penalize
highly textured regions, where the respect of the geometrical
consistency is more important. Future work will aim at providing
better immunity to photometrical changes. The capability to
distinguish pure geometrical distortions in the same scene to
changes in image contents (new objects causing occlusion), may
be a further improvement of the solution.
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Figure 13. Plot luminance variance 64x64 px
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Figure 14. Plot Gaussian Blur distortion variance 64x64
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Figure 15. Plot barrel distortion variance 64x64 px



