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Abstract—We present a new approach for matching tree
instances across multiple street-view panorama images for the
ultimate goal of city-scale street-tree mapping with high posi-
tioning accuracy. What makes this task challenging is the strong
change in view-point, different lighting conditions, high similarity
of neighboring trees, and variability in scale. We propose to
turn (tree) instance matching into a learning task, where image-
appearance and geometric relationships between views fruitfully
interact. Our approach constructs a siamese convolutional neural
network that learns to match two views of the same tree given
many candidate tree image cut-outs and geographic information
of the two panorama images. In addition to image features,
we propose utilizing location information about the camera and
the tree. Our method is compared to existing patch matching
methods to prove its edge over state-of-the-art. This takes us one
step closer to the ultimate goal of city-wide tree mapping based
solely on panorama imagery to benefit city administration.

I. INTRODUCTION

Monitoring street-side objects in public spaces in cities is
a labor-intensive and costly process. One strategy that can
complement greedy city surveillance and maintenance efforts
by field crews as done in practice today is crowdsourcing
information through geo-located images. In previous work [1]–
[3], we have come up with an automated pipeline that cata-
logues trees from street-view panorama images by detecting,
localizing and classifying them into species. A bottleneck of
the existing method is its low geo-positioning accuracy of
detected trees, which is caused by (i) often relying on only one
detection for estimating the geo-location and (ii) combining
detections of different trees into a single position if reasoning
across multiple views. In order to reduce false matches and
to improve geo-positioning of trees, we propose to explicitly
exploit image evidence as well as soft geometric constraints to
match images of the same tree across multiple panoramas. We
formulate this problem as an instance matching task, where the
typical warping function between multiple views of the same
tree (Fig. 1) in street-view panoramas is learned together with
the geometric configuration. More precisely, instead of merely
relying on image appearance for instance matching, we insert
heading, geo-location and further geometric parameters of the
different views to the learning process. The CNN learns to
correlate typical geometric configurations with corresponding
warping functions to disentangle multiple matching candidates
in case of ambiguous image evidence. This spatial information
can help boosting instance matching scores, which resolves

Figure 1: C*: Camera with geo-position. T: The tree has
its actual geographic coordinates, and location within the
panorama. h◦: heading angle inside panorama. d: Distance
between cameras.

Figure 2: Tree instance matching problem (color indicates
matches): each tree is photographed from multiple different
views, changing its size, perspective, and background. Note
that many trees look alike.

difficult situations where many similar trees exist in close
proximity as presented in Figure 2.

In this work, we propose to learn image matching with
soft geometric constraints to improve geo-positioning of street
trees from panorama images. Our method builds upon the
siamese architecture proposed originally by [4]. The main con-
cept of siamese CNNs is constructing two identical network
branches that share (at least partially) their weights. Features
are computed for both input images and then compared to
estimate the degree of similarity. This can be achieved by



either evaluating a distance metric in feature space or by
evaluating the final classification loss. We build a siamese
CNN to match images of the same tree across multiple street-
view panoramas. Google street-view provides access to a huge
amount of street-level images that can be used to construct
very large data sets for deep learning approaches. Here, we use
it to build a multiview data set of street-trees, which is used
as a testbed to learn instance matching with soft geometric
constraints based on a siamese CNN model.

There is a great number of research efforts that try to match
objects across multiple views. Some traditional methods [5]
use SIFT [6] to extract features, and match them. The most
similar problem to our task seems the person re-id problem,
which tries to identify a person in multiple views. Several
methods [7] similarly employ siamese CNNs to solve the
problem. However, our problem is different in that objects
are static, but appear from very different viewing angles and
distances in contrast to the face identification [8] problem.

Our main contribution is a modified siamese CNN that
jointly learns geometric constellations of panorama acquisi-
tions with the appearance information in the images. This will
further on help us in our main pipeline to better geo-position
trees, and to classify species, stress level, etc.

II. INSTANCE MATCHING WITH SOFT GEOMETRIC
CONSTRAINTS

An overview of the proposed model architecture is shown
in Fig. 3. The main idea is that corresponding images of the
same tree should follow the basic principles of stereo- (or
multiview) photogrammetry if the relative orientation between
two or more camera viewpoints can be established. Directly
imposing hard constraints based on the rules of, for example,
forward intersection is hard. An unfavorable base-to-height
ratio, i.e. trees on the street-side get very close to the cam-
era but the distance between two panorama acquisitions is
significantly larger, makes dense matching impossible. The
perspective of the object changes too much to successfully
match corresponding image pixels. Moreover, the heading and
geolocation (that are recorded in the metadata of street-view
panoramas) are often inaccurate due to telemetry interference
or other causes. We thus propose to implicitly learn the
distribution of geometric parameters that describe multi-view
photogrammetry together with the image appearance of the
objects. Our assumption is that this approach will enable cross-
talking between image evidence and geometry. For example, if
a same tree appears with the same size in two images (but very
different perspective), the triangle that connects both camera
positions and the tree must be roughly isosceles. That is, the
tree is located in the middle between both camera standpoints.
Conversely, a tree that is viewed from the same perspective
(very similar image appearance) but appears rather small will
point at a pointy triangle with one very long leg (longer than
the baseline) and another shorter leg. More literally speaking,
the tree will most likely be situated outside the baseline
between the two cameras.

Figure 3: Diagram showing the overall network architecture.

We use geometric features composed of
{[C∗

lat, C
∗
lng, d, h

◦]}, where C represents the panorama
image geolocation, d denotes the distance between the
cameras in meters, and h◦ is the heading angle of the tree
inside the panorama image. We add these geometric cues to
image evidence similar to [9] who also merge multi-modal
data inside a single CNN architecture to minimize a joint
loss function. Our modified siamese CNN processes image
crops, and geometric features jointly. Two image patches are
resized to 224x244 pixels and fed to the two network streams
separately. In addition, a vector with the four geometric
features is fed to the network as shown in Fig. 3.

After trying various CNN architectures as presented in
Sec. III, we found MatchNet [10] to perform best in our
scenario (Fig. 3). The network is composed of four streams
that extract image and geometry features with the layers shown
in “Feature Subnetworks”. We further modified the original
MatchNet architecture by adding batch normalization [11]
and dropout layers. As shown in Fig. 3, each block contains
batch normalization, a Rectified Linear Unit (ReLU) [12],
pooling, and a convolutional layer. Features from the four
separate streams are concatenated and passed to the decision-
making part of the network, which computes the similarity.
This network part is composed of four FC (fully connected)



networks. The final FC layer uses a sigmoid activation function
to limit the output space in the range [0,1]. We use a binary
cross entropy loss to directly classify whether an image pair
shows the same tree or not.

Our Siamese CNN shares weights of the appearance en-
coders, as suggested by [13] when dealing with the same
modality. Thus, both of our appearance encoder subnetworks
are identical and with shared network parameters. An impor-
tant insight is that sharing network parameters of the geometry
encoder subnetworks is not successful and we thus keep two
separate streams. The major reason is that our model learns a
warping function between two images while implicitly keeping
track of the relative orientation of both images. Mingling both
camera orientations is counterproductive and looses the main
information gain through the introduction of geometry.

III. EXPERIMENTS

Our implementation is based on Keras [14]. Weights of the
network are initialized using the “Glorot uniform initializer”
[15], the initial learning rate is set to 0.0001 with ADAM [16]
as the optimizer, and the dropout rate is set to 0.3.

A. Dataset

We test our approach on a new dataset of Pasadena, Cal-
ifornia, USA, which extends the existing urban trees dataset
of our previous work [2], [3]. It is generated from an existing
KML-file that contains rich information (geographic position,
species, trunk diameter) of 80,000 trees in the city of Pasadena.
For every tree we downloaded the closest 4 panoramic images
of size 1664x832 pixels from Google Street View. A subset
of 4400 trees with four views each is chosen, leading to
17,600 images in total plus meta-data. Note that the Pasadena
inventory contains only street-trees, which makes up roughly
20% of all city trees. We draw bounding boxes around all
street-trees per panorama image, which results in 47,000
bounding boxes in total. A crucial part of the labeling task
is to label corresponding images of the same tree in the 4
closest views as shown in Fig. 1. Our final dataset is composed
of panoramic images containing labeled trees (and matches
between four tree images per tree), the panorama meta-data
(geographic location and heading of the camera), and the geo-
position per tree. Note that the geo-position per tree is used
during training to establish ground truth parameters of our
geometric features. It is not used during testing, but geometric
parameters are directly derived from the individual panoramas.

B. Evaluation strategy

We split the dataset into 3 subsets with 70% for training,
15% for validation, and 15% for testing paying attention
to no overlap between train and test data panoramas. Each
tree comes with four image patches from different views.
Each image patch comes with a feature vector that contains
geometric cues as described in Sec. II. For training the positive
match category, we insert matching image patch pairs from the
same tree with the geometry feature vectors to our model.
Negative pairs of the rejection category are generated by
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Siamese FaceNet Modified 0.808
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ry Ours FaceNet Modified 0.842

Ours ResNet-50 0.863

Ours MatchNet 0.871

Table I: Matching results of our method with different base
network architectures (Ours) compared to baseline methods
that use only appearance information and no geometric cues.

randomly picking two image patches from two different trees.
Initial tests showed that most mismatches occur at neighboring
trees because geometry is least discriminative in such cases,
the warping function is very similar, and the often same
species leads to very similar appearance as well as a common
background. We therefore add many negative example pairs
from neighboring trees to make the classifier more robust.

C. Results

We compare our approach against several baselines like a
standard Siamese CNN and other image patch matching works
[17] to benchmark its performance:

• SimpleStacked: We stack both images and load each pair
as a six-layer image as suggested in [17]. MatchNet and
ResNet50 are used as architectures for classification into
matches and non-matches.

• Siamese: A standard siamese CNN composed of two
identical subnetworks (MatchNet, FaceNet, ResNet-50)
with a decision network part that decides whether the
image pair matches or not.

• Ours: We augment the architectures of Siamese with
geometry as described in Sec. II.

Results shown in Tab. I indicate that Ours consistently
outperforms all baseline methods regardless of the base net-
work architecture. Any architecture with added geometric cues
does improve performance. This finding suggests that adding
geometric features helps reducing matching errors in general.
Learning soft geometric constraints of typical scene config-
urations helps differentiating correct from wrong matches in
intricate situations. Overall, Ours with the MatchNet architec-
ture performs best.

Examples for correct classifications as not matching and
matching for hard cases are shown in Figs. 4 and 5, respec-
tively. Ours with the MatchNet architecture is able to correctly
classify pairs of similar looking trees in the same proximity as
not matching (Fig. 4), which was the main goal of this work. It
also helps establishing matches correctly in difficult situations
of very different viewing angles and occlusion (Fig. 5).



Figure 4: Top & bottom: Images of neighboring trees of very
similar appearance and background that are correctly classified
as not matching with our method (Ours with MatchNet).

Figure 5: Top & bottom: Correct matching of images of the
same tree in difficult situations (Ours with MatchNet). The
target tree appears in two panoramas captured from very
different angles, partial occlusion (only top) and different
scene illuminations.

IV. CONCLUSION

We have presented a modified siamese CNN architecture
that jointly learns distributions of appearance-based warp-
ing functions and geometric scene cues for (tree) instance
matching in the wild. Instead of sequentially imposing hard
thresholds based on multiview photogrammetric rules, joint
learning of appearance and geometry enables cross-talking
of evidence inside a single network. While our network
design is a slightly adapted version of standard siamese

CNNs and exploits existing architectures like MatchNet, it
already shows promising performance. Better tree instance
matching across multiple different views helps establishing
object correspondence, to ultimately improve geo-localization
of trees in the bigger framework. Our hope is that this idea
of “learning photogrammetry” and combining it with object
appearance will unleash a whole new line of research. For ex-
ample, learned, soft photogrammetric constraints can also help
improving object detection across multiple views. Learning
photogrammetric constraints as soft priors jointly with image
evidence will help in many situations where camera and object
poses are ill-defined, noisy, or partially absent.
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[3] S. Lefèvre, D. Tuia, J. D. Wegner, T. Produit, and A. S. Nassaar,
“Toward seamless multiview scene analysis from satellite to street level,”
Proceedings of the IEEE, vol. 105, no. 10, pp. 1884–1899, 2017.

[4] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a ”siamese” time delay neural network,” in Advances
in Neural Information Processing Systems, 1994, pp. 737–744.

[5] J. Joglekar, S. S. Gedam, and B. K. Mohan, “Image matching using
sift features and relaxation labeling technique—a constraint initializing
method for dense stereo matching,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 52, no. 9, pp. 5643–5652, 2014.

[6] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Computer vision, 1999. The proceedings of the seventh IEEE interna-
tional conference on, vol. 2. Ieee, 1999, pp. 1150–1157.

[7] W. Li, R. Zhao, T. Xiao, and X. Wang, “Deepreid: Deep filter pairing
neural network for person re-identification,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2014, pp. 152–159.

[8] M. Aly, “Face recognition using sift features,” CNS/Bi/EE report, vol.
186, 2006.

[9] E. Park, X. Han, T. L. Berg, and A. C. Berg, “Combining multiple
sources of knowledge in deep cnns for action recognition,” in IEEE
Winter Conference on Applications of Computer Vision, 2016, pp. 1–8.

[10] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, “Matchnet:
Unifying feature and metric learning for patch-based matching,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
3279–3286.

[11] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[12] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in International Conference on Machine Learn-
ing, 2010, pp. 807–814.

[13] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing
the gap to human-level performance in face verification,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp.
1701–1708.

[14] F. Chollet et al., “Keras,” https://keras.io, 2015.
[15] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in International Conference on Artificial
Intelligence and Statistics, 2010, pp. 249–256.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[17] S. Zagoruyko and N. Komodakis, “Learning to compare image patches
via convolutional neural networks,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 4353–4361.


