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Abstract

The correlation matrix is the key element in optimal portfolio allocation and
risk management. In particular, the eigenvectors of the correlation matrix
corresponding to large eigenvalues can be used to identify the market mode,
sectors and style factors. We investigate how these eigenvalues depend on
the time scale of securities returns in the U.S. market. For this purpose, one-
minute returns of the largest 533 U.S. stocks are aggregated at different time
scales and used to estimate the correlation matrix and its spectral properties.
We propose a simple lead-lag factor model to capture and reproduce the
observed time-scale dependence of eigenvalues. We reveal the emergence of
several dominant eigenvalues as the time scale increases. This important
finding evidences that the underlying economic and financial mechanisms
determining the correlation structure of securities depend as well on time
scales.
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1. Introduction

How do the eigenvalues of securities correlation matrices emerge at dif-
ferent time scales? This fundamental question is important because cross-
correlations change over different investment horizons while a reliable empir-
ical determination of the correlation matrix remains difficult due to its time
and frequency dependence. This was first evidenced by Epps, who demon-
strated the decay of correlations among U.S. stocks when shifting from daily
to intra-daily time scales (or frequencies) [1]. In other words, the price cor-
relation decreases with the duration of the time interval over which price
changes are measured. The economic argument behind the Epps effect is that
the information is not instantaneously transmitted at shorter time intervals,
where the average adjustment lag in response of prices lies approximately
between 10 and 60 minutes. This appears to reduce the scope of the Efficient
Market Hypothesis [2] at short time scales given that tick data prices seem to
adjust to new information only after a lag time, thus do not reflect all avail-
able information. Since its inception, the Epps effect has been confirmed by
several studies, although its impact has been progressively declined in the
NYSE, indicating that the market becomes increasingly more efficient [3].

The dependence of securities cross-correlations on time scales can be cap-
tured via the eigenvalues of the correlation matrix. In particular, the largest
eigenvalue reflects changes in the average correlation between stocks, whereas
the corresponding eigenvector is associated to the “market mode”. Kwapien
et al. showed a significant elevation of the largest eigenvalue with increasing
time scale using data from 1 minute to 2 days from NYSE, NASDAQ and
Deutsche Börse (1997-1999) [4]. Using high-frequency stock returns from
NYSE, AMEX and NASDAQ (1994-1997), Plerou et al. supported the idea
that the largest eigenvalue and its eigenvector reflect the collective response
of the entire market to stimuli such as certain news breaks (e.g., central
bank interest rates hikes) [5]. This is particularly true during periods of high
volatility when the collective behavior is enhanced. Coronnello et al. con-
firmed that the largest eigenvalue, computed from 5-minute data, describes
the common behavior of the stocks composing the LSE stock index (2002)
[6].

As firms having similar business activities are correlated, some other
eigenvectors can economically be interpreted as business sectors [7]. So,
Gopikrishnan et al. computed the eigenvectors of cross-correlation matrices
of 1000 U.S. stocks at a 30-minute scale (1994-1995) and a 1-day scale (1962-
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1996) [7]. They found that the correlations in a business sector, captured via
an eigenvector, were stable in time and could be used for the construction of
optimal portfolios with a stable Sharpe ratio. In the same vein, as similar
trading strategies induce cross-correlations in stocks, some eigenvectors can
be financially interpreted as style factors. The corresponding eigenvalues are
thus expected to exhibit non-trivial dependence on time scales. However, an
accurate statistical analysis of multiple eigenvalues at different time scales
is challenging due to measurement noises. In fact, as the correlation matrix
is estimated from time series of stocks’ returns, its elements are unavoid-
ably random and thus prone to fluctuations. These fluctuations become
larger as the length of time series is reduced, i.e., when the time scale is
increased. While the largest eigenvalue typically exceeds the level of fluctu-
ations by two orders of magnitude, the other eigenvalues rapidly reach this
level and become non-informative. Several researchers employed the ran-
dom matrix theory to distinguish economically significant eigenvalues from
noise [8, 9, 10, 11, 12]. In particular, Laloux et al. showed that only 6% of
the eigenvalues carried some information of the S&P 500 (1991-1996), while
the remaining 94% eigenvalues were hidden by noise [8]. Guhr and Kalber
proposed an alternative statistical approach to reduce noise that they called
“power mapping” [13]. Andersson et al. extended this work by comparing
the power mapping approach to a standard filtering method discarding noisy
eigenvalues for Markowitz portfolio optimization using daily Swedish stock
market returns (1999-2003) [14].

In this paper, we consider the correlation matrix of financial securities
and investigate the emergence of its eigenvalues at small time scales. As
the financial literature on this critical issue remains sparse, this research fills
the gap by investigating the eigenvalues at intraday time scales using 1-min
returns. We propose a simple model, coined the “lead-lag factor model”, as
an adaptation of the well-known “one-factor marker model” [15] to smaller
time scales and to multiple sectors and style factors. In this model, stock
returns are correlated to the returns of selected factors at earlier time steps.
A detailed description of the eigenvalues as functions of the time scale is
then derived. An empirical validation is performed on long time series of
1-min returns of a large universe of U.S. stocks. To get several significant
eigenvalues at time scales from 1 minute to 2 hours, the correlation matrix
was estimated over the whole available period (2013-2017) so that variations
of cross-correlations over time were ignored (note that the dynamics of the
eigenvalues and eigenvectors over time has been investigated elsewhere [16,
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17, 18]). In spite of its simple character, the lead-lag factor model is shown to
be able to reproduce the dependence of large eigenvalues on the time scale.

The paper is organized as follows. In Sec. 2, we estimate the correla-
tion matrix of U.S. stocks’ returns at different time scales and present the
empirical dependence of large eigenvalues on the time scale. To rational-
ize the observed behavior, we develop in Sec. 3 the lead-lag factor model
and compare it to empirical results. Section 4 summarizes and concludes.
Some derivations and more technical analysis of the lead-lag factor model
are presented in Appendices.

2. Empirical results

2.1. Data description

We study the correlation structure of a universe that includes 533 U.S.
stocks whose capitalization exceeded 1 billion dollars in 2013. For the con-
sidered period from 1st of January 2013 to 28th of June 2017, our database
contains 338 176 1-min returns for each stock. We have also verified that the
arithmetic aggregation of returns, ri(1) + . . . + ri(τ), is almost identical to
considering the product (1 + ri(1)) . . . (1 + ri(τ)) − 1, given that the 1-min
returns ri(t) are very small.

From the time series of 1-min returns, we estimate the correlation matrix
over the whole available period, and then compute its eigenvalues. Then
we aggregate the returns into 2-min, 4-min, ..., 128-min returns, producing
time series with 169 088, 84 544, ..., 2 642 points, respectively. At each
time scale τ , we repeat the computation to investigate the dependence of the
eigenvalues on τ .

2.2. Empirical results

Figure 1a shows the four largest eigenvalues of the covariance matrix of
533 U.S. stocks’ returns, computed by aggregating 1-min returns with the
time scale τ , ranging from 1 minutes to 128 minutes (2 hours). The first
two eigenvalues exhibit almost linear growth with τ , the others show minor
deviations from linearity at small τ but scale linearly with τ at large τ .
This behavior reflects the diffusion-like growth of the variance of aggregated
returns; in particular, if the returns were independent, the eigenvalues of the
corresponding covariance matrix, Cij = τσ2

i δij, would be just λi = τσ2
i , and

thus proportional to τ . Although correlations affect this linear growth, their
effect is subdominant, at least for large eigenvalues, as witnessed by Fig. 1a.
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Figure 1: Four largest eigenvalues of the covariance matrix (a) and of the correlation
matrix (b) for returns of 533 U.S. stocks, computed by aggregating 1-min returns with
the time scale τ , varying from 1 minute to 128 minutes (2 hours).

To highlight the effect of correlations, we focus on the eigenvalues of the
correlation matrix. This choice is also justified from the financial point of
view to level off the variability of stocks volatilities.

Figure 1b shows the four largest eigenvalues of the correlation matrix
of the same 533 U.S. stocks’ returns. If the returns were independent, the
correlation matrix would be the identity, and thus all its eigenvalues would
be equal to 1. The growth of these eigenvalues with the time scale τ indi-
cates strong cross-correlations between stocks. The largest eigenvalue can
be naturally attributed to the market mode, whereas the next eigenvalues
correspond to different sectors and style factors.

After a sharp growth at short time scales (few minutes), the eigenval-
ues slowly approach to their long-time limits. The existence of these upper
bounds is expected because the sum of eigenvalues of a correlation matrix is
equal to its size (i.e., to the number of stocks, N). This saturation effect con-
trasts with the unlimited growth of eigenvalues of the covariance matrix (Fig.
1a). Finding the functional form of this approach and identifying its charac-
teristic time scales present the main aim of our work. Recently, Benzaquen
et al. proposed a multivariate linear propagator model for dissecting cross-
impact on stock markets and revealing their dynamics [19]. Due to its very
general form accounting for both cross-correlations and auto-correlations of
stocks, the proposed model contains too many parameters, while the resulting
formulas are not explicit. Our ambition is rather the opposite and consists in
suggesting an explicit model, as simple as possible, that would capture the
empirical results shown in Fig. 1b and thus provide a minimalistic framework
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for their financial interpretation.

3. The lead-lag factor model

3.1. Basic lead-lag one-factor model

We consider a trading universe with N assets. In a conventional one-
factor model, the return of the i-th asset at time t, ri(t), is modeled as a
combination of a specific, asset-dependent random fluctuation, εi(t), and an
overall market contribution, R(t),

ri(t) = εi(t) + βR(t), (1)

with a market sensitivity β (that we generalize below to other factors). The
asset-specific random fluctuations εi(t) are typically modeled as independent
centered Gaussian variables with volatilities σi.

We propose a modification of this conventional model by incorporating
the lead-lag effect, in which the i-th asset return at time t is influenced by a
common factor R(t − k) at earlier times t − k, with progressively decaying
weights:

ri(t) = εi(t) + β
∞∑

k=0

αkR(t− k), (2)

where 0 ≤ α < 1 characterizes the relaxation time of the memory decay.
Note that the upper limit of the sum in Eq. (2) is formally extended to
infinity, bearing in mind that contributions for very large k are exponentially
small. We will analyze the model in the stationary regime as t → ∞ in order
to eliminate transient effects.

The common term R(t) can be interpreted as an idealized factor without
auto-correlations in an efficient market that most stocks follow with a lead lag
delay. We model therefore R(t) by independent centered Gaussian variables
with volatility Σ. The term R(t) can represent the market mode but also
sectors or style factors, or any popular trading portfolio. Moreover, R(t) can
also be interpreted as being linked to the market order transactions for a
particular strategy (market, sector or styles). In this light, our model can
be seen as an extension of the Kyle model [20] that explains the impact of
transactions on price for a single stock and without delay. Here, we consider
multiple stocks and include an exponential decay of the impact. While more
sophisticated models with a power law decay of the impact were proposed
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[19, 21], we will show that our minimalistic model is enough to reproduce
a slow growth of the eigenvalues of the correlation matrix. For the sake of
clarify, we first analyze this basic lead-lag one-factor model and then discuss
its several straightforward extensions.

The one-factor relation (2) is the basic model for returns at the smallest
time scale. We then consider the returns aggregated on the time scale τ :

rτi (t) =
τ−1∑

ℓ=0

ri(t− ℓ), (3)

with t being a multiple of τ . Under the former Gaussian assumptions, the
covariance function of the aggregated returns reads (see Appendix A):

Cτ
ij = 〈rτi (t)rτj (t)〉 = τσ2δij +

β2Σ2
(
τ(1− α2)− 2α(1− ατ )

)

(1− α2)(1− α)2
, (4)

where 〈· · · 〉 denotes the expectation, and δij = 1 for i = j, and 0 otherwise.
Note that we set here σi = σ for all assets for simplicity (this simplification
will be relaxed below). As we consider the stationary regime, the covariance
function does not depend on time t.

Denoting

κα(τ) =
τ(1 − α2)− 2α(1− ατ )

1− α2
, (5)

one gets the correlation matrix

Cτ
ij =

Cτ
ij

√
Cτ

ii C
τ
jj

=

{

1 i = j,

ρ2(τ) i 6= j,
(6)

with
ρ(τ) =

(
1 + η(τ)/γ

)−1/2
, (7)

where

γ =
Σ2β2

σ2
(8)

and

η(τ) =
τ

κα(τ)/(1− α)2
=

(1− α)2

1− 2α
1−α2 (1− ατ )/τ

. (9)

The function η(τ), that will play the central role in our analysis, monotonously
decreases from η(1) = 1− α2 to η(∞) = (1− α)2.
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Since the matrix Cτ − (1−ρ2(τ))I has rank 1 (I being the identity N×N
matrix), there are N − 1 eigenvalues λi = 1 − ρ2(τ). In turn, the single
largest eigenvalue of the correlation matrix Cτ can be obtained as follows:
N = Tr(Cτ ) = λ1 + (N − 1)λi, from which λ1 = 1 + (N − 1)ρ2(τ). We get
thus the complete description of the eigenvalues as functions of the time scale
τ :

λ1 = 1 + (N − 1)ρ2(τ), (10)

λi = 1− ρ2(τ) (i = 2, 3, . . . , N). (11)

In the limit of very large τ , one finds

ρ2(∞) =
(
1 + (1− α)2/γ

)−1
. (12)

This simplest lead-lag one-factor model predicts a monotonous growth of
the largest eigenvalue (corresponding to the market mode) with the time
scale τ , up to a saturation plateau. In turn, the other eigenvalues exhibit a
monotonous decrease to a plateau. In spite of the exponential decay of the
lead-lag memory effect in Eq. (2), the approach to the plateau is governed
by a slow, 1/τ power law, in a qualitative agreement with the empirical
observation (see Sec. 3.5 for quantitative comparison). In particular, this
approach has no well-defined time scale.

While the basic model can potentially capture the behavior of the largest
eigenvalue, it clearly fails to distinguish other eigenvalues. One needs there-
fore to relax some simplifying assumptions to render the model more realistic.

3.2. General lead-lag one-factor model

We start by introducing arbitrary volatilities σi and sensitivities βi of the
i-th asset to the common factor R(t):

ri(t) = εi(t) + βi

∞∑

k=0

αkR(t− k). (13)

In this case, the computation is precisely the same, the only difference is that

Cτ
ij = τσ2

i δij + Σ2βiβjκα(τ). (14)

As a consequence, the structure of the correlation matrix is fully determined
by βi, whereas the dependence on the time scale τ is still represented by
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κα(τ). The correlation matrix reads

Cτ
ij =

{

1 (i = j),

ρi(τ)ρj(τ) (i 6= j),
(15)

with

ρi(τ) =
(
1 + η(τ)/γi

)−1/2
, γi =

Σ2β2
i

σ2
i

. (16)

The eigenvalues of this correlation matrix can be computed as follows.
If all γi are distinct1, the components of an eigenvector are

vi =
ρiQ

λ− 1 + ρ2i
(i = 1, . . . , N), with Q =

N∑

i=1

ρivi , (17)

from which one gets the equation on the eigenvalues λ

N∑

i=1

ρ2i
λ− 1 + ρ2i

= 1. (18)

This equation has N distinct solutions that can be characterized in terms of
ρ2i (see Appendix B). When N is large, the largest eigenvalue is expected to
be large, and the asymptotic expansion of Eq. (18) yields

λ1 ≈
N∑

i=1

ρ2i =

N∑

i=1

(
1 + η(τ)/γi

)−1
. (19)

In turn, the other eigenvalues are below 1 (see Appendix B). As a conse-
quence, such a lead-lag one-factor model cannot reproduce several eigenvalues
larger than 1. For this purpose, one needs to consider multiple factors.

3.3. General lead-lag multi-factor model

Now we consider a general lead-lag multi-factor model

ri(t) = εi(t) +

∞∑

k=0

αk

F∑

f=1

βi,f Rf (t− k), (20)

1 When some γi are identical, the analysis of eigenvalues becomes more involved (see
Appendix B), but the largest eigenvalue still satisfies Eq. (18) and can thus be approxi-
mated by Eq. (19). In particular, if all γi = γ, one gets λ1 ≈ Nρ2(τ), which is close to
the exact solution (10).
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where εi(t) are independent centered Gaussian variables (representing ran-
dom fluctuations specific to the stock i) with variance σ2

i , F is the number
of factors, Rf (t) are independent centered Gaussian returns of the factor f
with variance Σ2

f , βi,f is the sensitivity of the stock i to the factor f , and α
sets the relaxation time. Repeating the computation from Appendix A, one
gets

Cτ
ij = δij + (1− δij)

F∑

f=1

ρi,fρj,f , (21)

where

ρi,f (τ) =
Σfβi,f

βi
ρi(τ) (22)

and

ρi(τ) =
(
1 + η(τ)/γi

)−1/2
, γi =

β2
i

σ2
i

, β2
i =

F∑

f=1

Σ2
f β

2
i,f . (23)

Considering ρi,f as the elements of an N × F matrix ρ, one can rewrite Eq.
(21) in a matrix form

Cτ = (I − P ) + ρρ†, (24)

where P is the diagonal matrix formed by ρ2i , and † denotes the matrix
transpose.

The matrix ρ of size N×F plays the central role in the following analysis.
As the elements of the matrix ρ are real, ρρ†, as well as ρ†ρ, are positive semi-
definite matrices which have nonnegative eigenvalues. The rank of the matrix
ρ is equal to that of matrices ρρ† and ρ†ρ and thus cannot exceed min{F,N}.
Given that F ≪ N , the correlation matrix Cτ appears as the perturbation
of a diagonal matrix by a low-rank matrix.

The eigenvalues of the correlation matrix are the zeros of the determinant

0 = det
(
λI − Cτ

)
= det

(
λI − I + P − ρρ†

)
. (25)

Since ρρ† is a low-rank perturbation, one can expect, as in the one-factor case
of Appendix B, that most eigenvalues coincide with that of the unperturbed
diagonal matrix I−P , i.e., they are given by 1−ρ2i for some indices i. These
eigenvalues are essentially hidden by noise and non-exploitable in practice.
We are interested in large eigenvalues that (significantly) exceed 1.
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If λ exceeds 1, it cannot be equal to 1−ρ2i for all i, the matrix λI− I+P
is nonsingular, its inverse exists, so that one can rewrite Eq. (25) as

0 = det
(
λI − I + P

)
det

(
I − ρ†(λI − I + P )−1ρ

)
, (26)

from which one gets a new equation on eigenvalues:

0 = det
(
I − ρ†(λI − I + P )−1ρ

︸ ︷︷ ︸

φ(λ)

)
. (27)

(here we used a general property: if A ∈ Cm×m is nonsingular matrix and
U, V ∈ Cm×r, then det(A + UV ∗) = det(A)det(I + V ∗A−1U), see [22]). De-
noting the F ×F matrix in the determinant as φ(λ), one can write explicitly
its elements as

φf,g(λ) =
N∑

i=1

ρi,f ρi,g
λ− 1 + ρ2i

. (28)

The solutions of Eq. (27) determine some eigenvalues λ of the correlation
matrix in Eq. (21). As one typically deals with the situation N ≫ F , the
reduction of the original determinant equation (25) for a matrix of size N×N
to Eq. (27) for a matrix of size F ×F is a significant numerical simplification
of the problem. Most importantly, this formal solution allows one to get
analytical insights onto the eigenvalues, as we did in the one-factor case in
Appendix B. Note that in the one-factor case (F = 1), the determinant
equation (27) is simply reduced to

0 = det(I − φ(λ)) = 1− φ1,1(λ) = 1−
N∑

i=1

ρ2i
λ− 1 + ρ2i

, (29)

i.e., we retrieve Eq. (18).
If one searches for large eigenvalues, λ ≫ 1, one can neglect the matrix

P − I in comparison to λI in Eq. (27), that yields

det
(
λI − ρ†ρ

)
= 0. (30)

In other words, the large eigenvalues of the correlation matrix can be approx-
imated by the eigenvalues of the matrix ρ†ρ of size F × F . This symmetric
positive semi-definite matrix has F nonnegative eigenvalues that correspond
to F factors.
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3.4. Practical approximation

As we will discuss in detail in Sec. 3.5, empirical data exhibit the short-
range memory effect (α is small) and the relatively small impact of the factors
onto the variance of individual stocks as compared to the stock-specific fluc-
tuations (γi are small). In this situation, which is particular to the time
series of securities returns at the considered time scales, one has η(τ)/γi ≫ 1
so that ρi(τ) in Eq. (23) can be approximated as

ρ2i (τ) ≃
γi

η(τ)
. (31)

This approximation greatly simplifies the elements of the matrix ρ†ρ:

(ρ†ρ)f,g =
N∑

i=1

Σfβi,fρi(τ)

βi
︸ ︷︷ ︸

=ρi,f

Σgβi,gρi(τ)

βi
︸ ︷︷ ︸

=ρi,g

≈ N

η(τ)
Γf,g , (32)

where the matrix elements Γf,g do not depend on the time scale:

Γf,g =
ΣfΣg

N

N∑

i=1

βi,fβi,g

σ2
i

. (33)

As a consequence, all the elements of the matrix ρ†ρ and thus its eigenvalues
exhibit the same dependence on the time scale τ , expressed via the explicit
function η(τ) given by Eq. (9). Denoting the eigenvalues of the matrix Γ as
γf (f = 1, . . . , F ), one gets the following approximation for large eigenvalues
of the correlation matrix:

λf ≈ Nγf
η(τ)

(f = 1, . . . , F ) . (34)

From the explicit form (16) of η(τ), one deduces a slow, 1/τ , power law
approach of the eigenvalue to the saturation level as the time scale τ increases.
Within this approximate computation, all large eigenvalues exhibit the same
dependence on the time scale.

In practice, one aims at constructing the factors Rf to capture indepen-
dent features of cross-correlations in the market. The sensitivies βi,f and βi,g

of the stock i to factors Rf and Rg are thus expected to be “orthogonal”, and
this property can be formally expressed by requiring that the nondiagonal
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f 1 2 3 4
γ 0.17 0.03 0.02 0.01
α 0.16 0.25 0.18 0.26

tα (min) 0.55 0.72 0.58 0.74

Table 1: Two adjustable parameters of the fitting formula (34) applied to four largest
eigenvalues of the correlation matrix of N = 533 U.S. stocks’ returns. The corresponding
relaxation time tα in minutes is obtained as 1 min/ ln(1/α).

elements of the matrix Γ are negligible. In this case, the eigenvalues γf are
given by the diagonal elements

γf = Γf,f =
1

N

N∑

i=1

Σ2
fβ

2
i,f

σ2
i

. (35)

This is a kind of empirical mean of the squared sensitivities β2
i,f , normalized

by the squared volatilities σ2
i .

3.5. Application to empirical data

We aim at applying the lead-lag factor model to fit the eigenvalues of the
empirical correlation matrix of U.S. stocks’ returns. The fitting formula (34)
has two adjustable parameters: the relaxation time α in the function η(τ) and
the amplitude Nγf . Using the least square fitting algorithm implemented as
the routine lsqcurvefit in Matlab, we apply the formula (34) separately to
each empirical eigenvalue.

Figure 2 shows the fitting of the four largest eigenvalues. The good qual-
ity of the fit by the lead-lag factor model indicates that, in spite of numerous
simplifying assumptions on which the model was built, it captures the overall
behavior qualitatively well. In particular, the eigenvalues converge to lim-
iting values, at least for the considered short-time scales (up to 2 hours).
Moreover, this saturation level is approached slowly, with the characteristic
1/τ power law dependence. The adjustable parameters are summarized in
Table 1. Rewriting the attenuation factor αk in the lead-lag factor model (2)
as exp(−t/tα) with t = kτ0 and tα = τ0/ ln(1/α), where τ0 = 1 min is the
finest time scale of the time series used, one gets the relaxation time tα in
minutes. One can see that the relaxation times α (or tα) for four eigenvalues
are close to each other. In other words, all the dominant eigenmodes evolve
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Figure 2: Fitting by Eq. (34) of the four largest eigenvalues of the correlation matrix of
N = 533 U.S. stocks’ returns, computed by aggregating 1-min returns with the time scale
τ . The adjustable parameters α and γ are summarized in Table 1.

at comparable time scales. This is an important conclusion which refutes
a common belief that the market mode (corresponding to the largest eigen-
value) evolves at a time scale that is significantly different from other modes
(sectors and style factors). The values of tα are of the order of one minute,
in agreement with predictions by Benzaquen et al. [19]. Remarkably, while
the lead-lag memory effects vanish so rapidly, they impact the behavior of
the eigenvalues at much longer time scales. In particular, if the lead-lag was
ignored (by setting α = 0), the largest eigenvalue would be ≃ Nγ1 and inde-
pendent of the time scale τ . For instance, using the estimated value γ1 = 0.17
and setting α = 0, one would get the largest eigenvalue to be 90, which is
significantly smaller than the expected limit 128 for α = 0.16 or the observed
value 130 at τ = 128 min.

4. Conclusion

We investigated the dependence of the eigenvalues of the correlation ma-
trix on the time scale τ . Aggregating 1-min returns of the largest 533 U.S.
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stocks (2013-2017) to estimate the correlation matrix at different time scales,
we showed that its large eigenvalues grow with τ and apparently saturate to
limiting values. This growth reflects the important phenomenon that inter-
stock correlations accumulate over time scales.

To rationalize this phenomenon and to interpret empirical observations,
we developed the lead-lag factor model. In the one-factor case, each stock
is considered to be partly correlated to a given lead-lag factor. Under sev-
eral simplifying assumptions, we derived a simple formula for large relevant
eigenvalues. This formula containing just two easily interpretable adjustable
parameters, was then validated on empirical data.

The relaxation time of the stock market was estimated to be around 1
minute. A possible interpretion of this observation can be that a transaction
can generate a cascade of transactions that decays in 1 minute so that the im-
pact of transaction on price decays in 1 minute. As correlations emerge from
the cross-impact of transactions on prices, we model this effect by extending
the Kyle model to the impact of transaction on preferential portfolios with
a lead lag effect.

The small value of the observed relaxation time suggests that correlation
measurements based on 5 minutes returns should provide a good proxy of cor-
relation of daily returns for risk management, in line with the conclusion by
Liu et al. on volatility estimation [23]. However, other phenomena are likely
to occur at much larger time scales (from day to month), e.g., autocorrela-
tions of returns of financial factors (book, size, momentum) due to herding
effect, or lack of liquidity. An accurate estimation of correlations at larger
time scales remains a challenging problem because of a limited number of the
available returns and thus higher impact of noise in the estimated correlation
matrix. To overcome this limitation, one can either consider time horizons
over several decades (in which case neglecting variations of corrections over
time becomes debatable), or reduce the number of considered securities and
thus the dimension of the correlation matrix (in which case financial meaning
of estimated correlations may be debatable). A possible solution consists in
constructing relevant financial factors and investigating how their correla-
tions change with the time scale, as suggested by our factor-based model.
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Appendix A. Computation of the covariance matrix

The covariance matrix of aggregated centered Gaussian returns rτi (t) de-
fined by Eq. (3) is

Cτ
ij = 〈rτi (t)rτj (t)〉 (A.1)

= τσ2δij + β2
τ−1∑

ℓ1,ℓ2=0

∞∑

k1,k2=0

αk1αk2〈R(t− ℓ1 − k1)R(t− ℓ2 − k2)〉.

The first term in this expression comes from the uncorrelated stock-dependent
fluctuations. The independence of returns R(k) implies

Cτ
ij = τσ2δij + β2σ2

m

τ−1∑

ℓ1,ℓ2=0

∞∑

k1,k2=0

αk1αk2δℓ1+k1,ℓ2+k2 . (A.2)

To calculate these four sums, it is convenient to consider separately various
terms depending on ℓ1 and ℓ2:

• there are τ terms with ℓ1 = ℓ2 that implies k1 = k2, whose contribution
is

τ

∞∑

k=0

α2k =
τ

1− α2
; (A.3)

• there are τ − 1 terms with ℓ1 = ℓ2 + 1 that implies k1 = k2 − 1, whose
contribution is

(τ − 1)
∞∑

k=0

α2k+1 =
(τ − 1)α

1− α2
. (A.4)

Moreover, the same contribution comes from ℓ1 = ℓ2 − 1 and k1 = k2 + 1.
• similarly, there are τ−j terms with ℓ1 = ℓ2+ j that implies k1 = k2−j,

whose contribution is

(τ − j)

∞∑

k=0

α2k+j =
(τ − j)αj

1− α2
, (A.5)

and this contribution is doubled by the symmetry argument.
• finally, there is one term with ℓ1 = ℓ2+(τ−1) and thus k1 = k2−(τ−1)

whose contribution is ατ−1/(1− α2).
Combining all these terms, one gets after simplifications Eq. (4).
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Appendix B. Analysis of the lead-lag one-factor model

We study in more detail the model (15) of the correlation matrix C, with
ρi(τ) given by Eq. (16). This matrix is a perturbation of the identity matrix
by a rank one matrix, for which many spectral properties are known (see,
e.g., [24]). This matrix combines both effects: the correlation coefficient ρ
and the impact of the exponential moving average (with the coefficient α).
We search for an eigenvector of this matrix as v = (v1, v2, . . . , vn)

†. Writing
explicitly Cv = λv, we get

vi(1− ρ2i ) + ρiQ = λvi (i = 1, . . . , N), (B.1)

where

Q =

N∑

i=1

viρi. (B.2)

First, we note that if ρi = 0 for some i, then the above equation is
reduced to vi = λvi that has two solutions: either λ = 1 and vi can be
arbitrary; or vi = 0. One can check that if ρi1 = . . . = ρik = 0 for k stocks,
then the correlation matrix has the eigenvalue λ = 1 with the multiplicity k.
The corresponding eigenvectors can be chosen as an orthogonal basis in the
subspace Rk. In turn, the remaining n − k eigenvalues are nontrivial, and
can be determined as discussed below. In what follows, we focus on these
nontrivial eigenvalues, i.e., we assume that all ρi 6= 0.

The equation (B.1) has two solutions:
(i) either λ = 1− ρ2i and Q = 0; or
(ii) λ 6= 1− ρ2i and

vi =
ρiQ

λ− 1 + ρ2i
. (B.3)

In the latter case, one can substitute this expression into Eq. (B.2) to get an
equation on the eigenvalue λ:

N∑

i=1

ρ2i
λ− 1 + ρ2i

= 1. (B.4)

This equation can be seen as a polynomial of degree N which has N (a priori

complex-valued) zeros. Finally, Q can be fixed by setting the normalization
condition on v:

1 =

N∑

i=1

v2i = Q2
N∑

i=1

ρ2i
(λ− 1 + ρ2i )

2
. (B.5)
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This is a generic situation.
Let us return to the first option, namely, we suppose that λ = 1− ρ2k for

some index k that implies that Q = 0. If all ρi are distinct, i.e., ρ1 6= ρ2 6=
. . . 6= ρN , so that vi = 0 for all i 6= k, but, due to Q = 0, it would also imply
that vk = 0. As a consequence, v = 0 but this is not an eigenvector. We
conclude that, if all ρi are distinct, then λ cannot be given by 1 − ρ2i , and
this option is excluded.

Now, we consider the case when two or more values ρi are identical.
For instance, let us assume that ρ1 = ρ2 6= ρ3 6= . . . 6= ρN . In this case,
λ = 1 − ρ21 is indeed an eigenvalue. In fact, one gets Q = 0 and thus vi = 0
for i > 2. However, one has Q = ρ1v1 + ρ2v2 = ρ1(v1 + v2) = 0, implying
that v1 = −v2. The normalization condition implies thus v1 = −v2 = 1/

√
2.

We conclude that λ = 1 − ρ21 is then a single eigenvalue. More generally, if
ρ1 = ρ2 = . . . = ρk 6= ρk+1 6= . . . 6= ρN , then the eigenvalue λ = 1 − ρ21 has
the multiplicity k − 1.

In general, it is convenient to denote zi = 1− ρ2i and to order them in an
increasing order:

z1 ≤ z2 ≤ z3 ≤ . . . ≤ zN (B.6)

or, equivalently, by grouping the eventual identical values:

z1 = z2 = . . . = zi1 < zi1+1 = zi1+2 = . . . = zi1+i2

< . . . < zi1+...+im = zi1+...+im+1 = . . . = zN .
(B.7)

In other words, there are i1 identical values z1 = . . . = zi1 ; i2 identical
values zi1+1 = . . . = zi1+i2, etc. (note that when all zi are distinct, one has
i1 = i2 = . . . = 1). In this configuration, the correlation matrix has: the
eigenvalue z1 with the multiplicity i1 − 1 (if i1 > 1); the eigenvalue z2 with
the multiplicity i2 − 1 (if i2 > 1); etc. If for some k, zik = 1, then this
eigenvalues has the multiplicity ik. Finally, the remaining eigenvalues are
determined as solutions of Eq. (B.4) that can be written as f(z) = 1, with

f(z) =

N∑

i=1

ρ2i
z − 1 + ρ2i

=

N∑

i=1

1− zi
z − zi

. (B.8)

The terms with zi = 1 (resulting in the eigenvalue λ = 1) are excluded from
this sum. Moreover, if some zi are identical, the corresponding terms are just
grouped together. As a consequence, the equation f(z) = 1 is reduced to
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a polynomial of degree at most N (the degree N corresponding to the case
when all zi are distinct).

It is worth noting that the function f(z) is decreasing everywhere:

f ′(z) = −
N∑

i=1

ρ2i
(z − zi)2

< 0. (B.9)

As a consequence, one gets immediately that each interval (zi, zi+1) (with
zi < zi+1 and zN+1 = ∞) has exactly one solution of the equation f(z) = 0,
i.e., one eigenvalue. In particular, one gets the following bounds for the
smallest eigenvalue

z1 ≤ min
1≤i≤N

{λi} ≤ z2. (B.10)

We conclude that all eigenvalues are positive if and only if z1 ≥ 0, i.e.,
ρ2i ≤ 1 for all i. In other words, the inequalities ρ2i ≤ 1 for all i present the
necessary and sufficient condition for the positive definiteness of the matrix.
These conditions are evidently satisfied in our setting.

Since f(1) ≥ 1, one also gets the following bound for the largest eigenvalue

λ1 = max
1≤i≤N

{λi} ≥ 1 (B.11)

(note that the eigenvalues are ordered in descending order, λ1 ≥ λ2 ≥ . . .,
in contrast to zk). However, this bound is rather weak. In turn, since λ2 ≤
zN = 1− ρ2N < 1, all other eigenvalues are below 1:

λi < 1 (i = 2, 3, . . . , N). (B.12)
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