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Emergence of correlations between securities at short time scales

The correlation matrix is the key element in optimal portfolio allocation and risk management. In particular, the eigenvectors of the correlation matrix corresponding to large eigenvalues can be used to identify the market mode, sectors and style factors. We investigate how these eigenvalues depend on the time scale of securities returns in the U.S. market. For this purpose, oneminute returns of the largest 533 U.S. stocks are aggregated at different time scales and used to estimate the correlation matrix and its spectral properties. We propose a simple lead-lag factor model to capture and reproduce the observed time-scale dependence of eigenvalues. We reveal the emergence of several dominant eigenvalues as the time scale increases. This important finding evidences that the underlying economic and financial mechanisms determining the correlation structure of securities depend as well on time scales.

Introduction

How do the eigenvalues of securities correlation matrices emerge at different time scales? This fundamental question is important because crosscorrelations change over different investment horizons while a reliable empirical determination of the correlation matrix remains difficult due to its time and frequency dependence. This was first evidenced by Epps, who demonstrated the decay of correlations among U.S. stocks when shifting from daily to intra-daily time scales (or frequencies) [START_REF] Epps | Comovements in Stock Prices in the Very Short Run[END_REF]. In other words, the price correlation decreases with the duration of the time interval over which price changes are measured. The economic argument behind the Epps effect is that the information is not instantaneously transmitted at shorter time intervals, where the average adjustment lag in response of prices lies approximately between 10 and 60 minutes. This appears to reduce the scope of the Efficient Market Hypothesis [START_REF] Fama | Efficient capital markets: A review of theory and empirical work[END_REF] at short time scales given that tick data prices seem to adjust to new information only after a lag time, thus do not reflect all available information. Since its inception, the Epps effect has been confirmed by several studies, although its impact has been progressively declined in the NYSE, indicating that the market becomes increasingly more efficient [START_REF] Tóth | Increasing market efficiency: Evolution of crosscorrelations of stock returns[END_REF].

The dependence of securities cross-correlations on time scales can be captured via the eigenvalues of the correlation matrix. In particular, the largest eigenvalue reflects changes in the average correlation between stocks, whereas the corresponding eigenvector is associated to the "market mode". Kwapien et al. showed a significant elevation of the largest eigenvalue with increasing time scale using data from 1 minute to 2 days from NYSE, NASDAQ and Deutsche Börse (1997)(1998)(1999) [START_REF] Kwapien | Time scales involved in emergent market coherence[END_REF]. Using high-frequency stock returns from NYSE, AMEX and NASDAQ (1994)(1995)(1996)(1997), Plerou et al. supported the idea that the largest eigenvalue and its eigenvector reflect the collective response of the entire market to stimuli such as certain news breaks (e.g., central bank interest rates hikes) [START_REF] Plerou | Random matrix approach to cross correlations in financial data[END_REF]. This is particularly true during periods of high volatility when the collective behavior is enhanced. Coronnello et al. confirmed that the largest eigenvalue, computed from 5-minute data, describes the common behavior of the stocks composing the LSE stock index (2002) [START_REF] Coronnello | Sector Identification in a Set of Stock Return Time Series Traded at the London Stock Exchange[END_REF].

As firms having similar business activities are correlated, some other eigenvectors can economically be interpreted as business sectors [START_REF] Gopikrishnan | Quantifying and interpreting collective behavior in financial markets[END_REF]. So, Gopikrishnan et al. computed the eigenvectors of cross-correlation matrices of 1000 U.S. stocks at a 30-minute scale (1994)(1995) and a 1-day scale [START_REF] Gopikrishnan | Quantifying and interpreting collective behavior in financial markets[END_REF]. They found that the correlations in a business sector, captured via an eigenvector, were stable in time and could be used for the construction of optimal portfolios with a stable Sharpe ratio. In the same vein, as similar trading strategies induce cross-correlations in stocks, some eigenvectors can be financially interpreted as style factors. The corresponding eigenvalues are thus expected to exhibit non-trivial dependence on time scales. However, an accurate statistical analysis of multiple eigenvalues at different time scales is challenging due to measurement noises. In fact, as the correlation matrix is estimated from time series of stocks' returns, its elements are unavoidably random and thus prone to fluctuations. These fluctuations become larger as the length of time series is reduced, i.e., when the time scale is increased. While the largest eigenvalue typically exceeds the level of fluctuations by two orders of magnitude, the other eigenvalues rapidly reach this level and become non-informative. Several researchers employed the random matrix theory to distinguish economically significant eigenvalues from noise [START_REF] Laloux | Noise Dressing of Financial Correlation Matrices[END_REF][START_REF] Pafka | Exponential Weighting and Random-Matrix-Theory-Based Filtering of Financial Covariance Matrices for Portfolio Optimization[END_REF][START_REF] Burda | Signal and noise in correlation matrix[END_REF][START_REF] Potters | Financial applications of random matrix theory: Old laces and new pieces[END_REF][START_REF] Conlon | Random matrix theory and fund of funds portfolio optimisation[END_REF]. In particular, Laloux et al. showed that only 6% of the eigenvalues carried some information of the S&P 500 (1991)(1992)(1993)(1994)(1995)(1996), while the remaining 94% eigenvalues were hidden by noise [START_REF] Laloux | Noise Dressing of Financial Correlation Matrices[END_REF]. Guhr and Kalber proposed an alternative statistical approach to reduce noise that they called "power mapping" [START_REF] Guhr | A new method to estimate the noise in financial correlation matrices[END_REF]. Andersson et al. extended this work by comparing the power mapping approach to a standard filtering method discarding noisy eigenvalues for Markowitz portfolio optimization using daily Swedish stock market returns (1999)(2000)(2001)(2002)(2003) [START_REF] Andersson | Power Mapping and Noise Reduction for Financial Correlations[END_REF].

In this paper, we consider the correlation matrix of financial securities and investigate the emergence of its eigenvalues at small time scales. As the financial literature on this critical issue remains sparse, this research fills the gap by investigating the eigenvalues at intraday time scales using 1-min returns. We propose a simple model, coined the "lead-lag factor model", as an adaptation of the well-known "one-factor marker model" [START_REF] Ross | The Arbitrage Theory of Capital Asset Pricing[END_REF] to smaller time scales and to multiple sectors and style factors. In this model, stock returns are correlated to the returns of selected factors at earlier time steps. A detailed description of the eigenvalues as functions of the time scale is then derived. An empirical validation is performed on long time series of 1-min returns of a large universe of U.S. stocks. To get several significant eigenvalues at time scales from 1 minute to 2 hours, the correlation matrix was estimated over the whole available period (2013-2017) so that variations of cross-correlations over time were ignored (note that the dynamics of the eigenvalues and eigenvectors over time has been investigated elsewhere [START_REF] Conlon | Cross-correlation dynamics in financial time series[END_REF][START_REF] Allez | Eigenvector dynamics: General theory and some applications[END_REF][START_REF] Buccheri | Evolution of correlation structure of industrial indices of U.S. equity markets[END_REF]). In spite of its simple character, the lead-lag factor model is shown to be able to reproduce the dependence of large eigenvalues on the time scale.

The paper is organized as follows. In Sec. 2, we estimate the correlation matrix of U.S. stocks' returns at different time scales and present the empirical dependence of large eigenvalues on the time scale. To rationalize the observed behavior, we develop in Sec. 3 the lead-lag factor model and compare it to empirical results. Section 4 summarizes and concludes. Some derivations and more technical analysis of the lead-lag factor model are presented in Appendices.

Empirical results

Data description

We study the correlation structure of a universe that includes 533 U.S. stocks whose capitalization exceeded 1 billion dollars in 2013. For the considered period from 1st of January 2013 to 28th of June 2017, our database contains 338 176 1-min returns for each stock. We have also verified that the arithmetic aggregation of returns, r i (1) + . . . + r i (τ ), is almost identical to considering the product (1 + r i (1)) . . . (1 + r i (τ )) -1, given that the 1-min returns r i (t) are very small.

From the time series of 1-min returns, we estimate the correlation matrix over the whole available period, and then compute its eigenvalues. Then we aggregate the returns into 2-min, 4-min, ..., 128-min returns, producing time series with 169 088, 84 544, ..., 2 642 points, respectively. At each time scale τ , we repeat the computation to investigate the dependence of the eigenvalues on τ .

Empirical results

Figure 1a shows the four largest eigenvalues of the covariance matrix of 533 U.S. stocks' returns, computed by aggregating 1-min returns with the time scale τ , ranging from 1 minutes to 128 minutes (2 hours). The first two eigenvalues exhibit almost linear growth with τ , the others show minor deviations from linearity at small τ but scale linearly with τ at large τ . This behavior reflects the diffusion-like growth of the variance of aggregated returns; in particular, if the returns were independent, the eigenvalues of the corresponding covariance matrix, C ij = τ σ 2 i δ ij , would be just λ i = τ σ 2 i , and thus proportional to τ . Although correlations affect this linear growth, their effect is subdominant, at least for large eigenvalues, as witnessed by Fig. 1a. To highlight the effect of correlations, we focus on the eigenvalues of the correlation matrix. This choice is also justified from the financial point of view to level off the variability of stocks volatilities.

Figure 1b shows the four largest eigenvalues of the correlation matrix of the same 533 U.S. stocks' returns. If the returns were independent, the correlation matrix would be the identity, and thus all its eigenvalues would be equal to 1. The growth of these eigenvalues with the time scale τ indicates strong cross-correlations between stocks. The largest eigenvalue can be naturally attributed to the market mode, whereas the next eigenvalues correspond to different sectors and style factors.

After a sharp growth at short time scales (few minutes), the eigenvalues slowly approach to their long-time limits. The existence of these upper bounds is expected because the sum of eigenvalues of a correlation matrix is equal to its size (i.e., to the number of stocks, N). This saturation effect contrasts with the unlimited growth of eigenvalues of the covariance matrix (Fig. 1a). Finding the functional form of this approach and identifying its characteristic time scales present the main aim of our work. Recently, Benzaquen et al. proposed a multivariate linear propagator model for dissecting crossimpact on stock markets and revealing their dynamics [START_REF] Benzaquen | Dissecting cross-impact on stock markets: an empirical analysis[END_REF]. Due to its very general form accounting for both cross-correlations and auto-correlations of stocks, the proposed model contains too many parameters, while the resulting formulas are not explicit. Our ambition is rather the opposite and consists in suggesting an explicit model, as simple as possible, that would capture the empirical results shown in Fig. 1b and thus provide a minimalistic framework for their financial interpretation.

The lead-lag factor model

Basic lead-lag one-factor model

We consider a trading universe with N assets. In a conventional onefactor model, the return of the i-th asset at time t, r i (t), is modeled as a combination of a specific, asset-dependent random fluctuation, ε i (t), and an overall market contribution, R(t),

r i (t) = ε i (t) + βR(t), (1) 
with a market sensitivity β (that we generalize below to other factors). The asset-specific random fluctuations ε i (t) are typically modeled as independent centered Gaussian variables with volatilities σ i .

We propose a modification of this conventional model by incorporating the lead-lag effect, in which the i-th asset return at time t is influenced by a common factor R(t -k) at earlier times t -k, with progressively decaying weights:

r i (t) = ε i (t) + β ∞ k=0 α k R(t -k), (2) 
where 0 ≤ α < 1 characterizes the relaxation time of the memory decay. Note that the upper limit of the sum in Eq. ( 2) is formally extended to infinity, bearing in mind that contributions for very large k are exponentially small. We will analyze the model in the stationary regime as t → ∞ in order to eliminate transient effects.

The common term R(t) can be interpreted as an idealized factor without auto-correlations in an efficient market that most stocks follow with a lead lag delay. We model therefore R(t) by independent centered Gaussian variables with volatility Σ. The term R(t) can represent the market mode but also sectors or style factors, or any popular trading portfolio. Moreover, R(t) can also be interpreted as being linked to the market order transactions for a particular strategy (market, sector or styles). In this light, our model can be seen as an extension of the Kyle model [START_REF] Kyle | Continuous Auctions and Insider Trading[END_REF] that explains the impact of transactions on price for a single stock and without delay. Here, we consider multiple stocks and include an exponential decay of the impact. While more sophisticated models with a power law decay of the impact were proposed [START_REF] Benzaquen | Dissecting cross-impact on stock markets: an empirical analysis[END_REF][START_REF] Bouchaud | How markets slowly digest changes in supply and demand[END_REF], we will show that our minimalistic model is enough to reproduce a slow growth of the eigenvalues of the correlation matrix. For the sake of clarify, we first analyze this basic lead-lag one-factor model and then discuss its several straightforward extensions.

The one-factor relation ( 2) is the basic model for returns at the smallest time scale. We then consider the returns aggregated on the time scale τ :

r τ i (t) = τ -1 ℓ=0 r i (t -ℓ), (3) 
with t being a multiple of τ . Under the former Gaussian assumptions, the covariance function of the aggregated returns reads (see Appendix A):

C τ ij = r τ i (t)r τ j (t) = τ σ 2 δ ij + β 2 Σ 2 τ (1 -α 2 ) -2α(1 -α τ ) (1 -α 2 )(1 -α) 2 , ( 4 
)
where • • • denotes the expectation, and δ ij = 1 for i = j, and 0 otherwise. Note that we set here σ i = σ for all assets for simplicity (this simplification will be relaxed below). As we consider the stationary regime, the covariance function does not depend on time t. Denoting

κ α (τ ) = τ (1 -α 2 ) -2α(1 -α τ ) 1 -α 2 , (5) 
one gets the correlation matrix

C τ ij = C τ ij C τ ii C τ jj = 1 i = j, ρ 2 (τ ) i = j, (6) 
with

ρ(τ ) = 1 + η(τ )/γ -1/2 , (7) 
where

γ = Σ 2 β 2 σ 2 (8) 
and

η(τ ) = τ κ α (τ )/(1 -α) 2 = (1 -α) 2 1 -2α 1-α 2 (1 -α τ )/τ . ( 9 
)
The function η(τ ), that will play the central role in our analysis, monotonously decreases from

η(1) = 1 -α 2 to η(∞) = (1 -α) 2 .
Since the matrix C τ -(1 -ρ 2 (τ ))I has rank 1 (I being the identity N × N matrix), there are N -1 eigenvalues λ i = 1 -ρ 2 (τ ). In turn, the single largest eigenvalue of the correlation matrix C τ can be obtained as follows: N = Tr(C τ ) = λ 1 + (N -1)λ i , from which λ 1 = 1 + (N -1)ρ 2 (τ ). We get thus the complete description of the eigenvalues as functions of the time scale τ :

λ 1 = 1 + (N -1)ρ 2 (τ ), ( 10 
) λ i = 1 -ρ 2 (τ ) (i = 2, 3, . . . , N). (11) 
In the limit of very large τ , one finds

ρ 2 (∞) = 1 + (1 -α) 2 /γ -1 . ( 12 
)
This simplest lead-lag one-factor model predicts a monotonous growth of the largest eigenvalue (corresponding to the market mode) with the time scale τ , up to a saturation plateau. In turn, the other eigenvalues exhibit a monotonous decrease to a plateau. In spite of the exponential decay of the lead-lag memory effect in Eq. ( 2), the approach to the plateau is governed by a slow, 1/τ power law, in a qualitative agreement with the empirical observation (see Sec. 3.5 for quantitative comparison). In particular, this approach has no well-defined time scale. While the basic model can potentially capture the behavior of the largest eigenvalue, it clearly fails to distinguish other eigenvalues. One needs therefore to relax some simplifying assumptions to render the model more realistic.

General lead-lag one-factor model

We start by introducing arbitrary volatilities σ i and sensitivities β i of the i-th asset to the common factor R(t):

r i (t) = ε i (t) + β i ∞ k=0 α k R(t -k). (13) 
In this case, the computation is precisely the same, the only difference is that

C τ ij = τ σ 2 i δ ij + Σ 2 β i β j κ α (τ ). ( 14 
)
As a consequence, the structure of the correlation matrix is fully determined by β i , whereas the dependence on the time scale τ is still represented by κ α (τ ). The correlation matrix reads

C τ ij = 1 (i = j), ρ i (τ )ρ j (τ ) (i = j), (15) 
with

ρ i (τ ) = 1 + η(τ )/γ i -1/2 , γ i = Σ 2 β 2 i σ 2 i . ( 16 
)
The eigenvalues of this correlation matrix can be computed as follows.

If all γ i are distinct 1 , the components of an eigenvector are

v i = ρ i Q λ -1 + ρ 2 i (i = 1, . . . , N), with Q = N i=1 ρ i v i , (17) 
from which one gets the equation on the eigenvalues λ

N i=1 ρ 2 i λ -1 + ρ 2 i = 1. (18) 
This equation has N distinct solutions that can be characterized in terms of ρ 2 i (see Appendix B). When N is large, the largest eigenvalue is expected to be large, and the asymptotic expansion of Eq. ( 18) yields

λ 1 ≈ N i=1 ρ 2 i = N i=1 1 + η(τ )/γ i -1 . (19) 
In turn, the other eigenvalues are below 1 (see Appendix B). As a consequence, such a lead-lag one-factor model cannot reproduce several eigenvalues larger than 1. For this purpose, one needs to consider multiple factors.

General lead-lag multi-factor model

Now we consider a general lead-lag multi-factor model

r i (t) = ε i (t) + ∞ k=0 α k F f =1 β i,f R f (t -k), (20) 
1 When some γ i are identical, the analysis of eigenvalues becomes more involved (see Appendix B), but the largest eigenvalue still satisfies Eq. ( 18) and can thus be approximated by Eq. [START_REF] Benzaquen | Dissecting cross-impact on stock markets: an empirical analysis[END_REF]. In particular, if all γ i = γ, one gets λ 1 ≈ N ρ 2 (τ ), which is close to the exact solution [START_REF] Burda | Signal and noise in correlation matrix[END_REF].

where ε i (t) are independent centered Gaussian variables (representing random fluctuations specific to the stock i) with variance σ 2 i , F is the number of factors, R f (t) are independent centered Gaussian returns of the factor f with variance Σ 2 f , β i,f is the sensitivity of the stock i to the factor f , and α sets the relaxation time. Repeating the computation from Appendix A, one gets

C τ ij = δ ij + (1 -δ ij ) F f =1 ρ i,f ρ j,f , (21) 
where

ρ i,f (τ ) = Σ f β i,f β i ρ i (τ ) (22) 
and

ρ i (τ ) = 1 + η(τ )/γ i -1/2 , γ i = β 2 i σ 2 i , β 2 i = F f =1 Σ 2 f β 2 i,f . (23) 
Considering ρ i,f as the elements of an N × F matrix ρ, one can rewrite Eq. ( 21) in a matrix form

C τ = (I -P ) + ρρ † , ( 24 
)
where P is the diagonal matrix formed by ρ 2 i , and † denotes the matrix transpose.

The matrix ρ of size N ×F plays the central role in the following analysis. As the elements of the matrix ρ are real, ρρ † , as well as ρ † ρ, are positive semidefinite matrices which have nonnegative eigenvalues. The rank of the matrix ρ is equal to that of matrices ρρ † and ρ † ρ and thus cannot exceed min{F, N}. Given that F ≪ N, the correlation matrix C τ appears as the perturbation of a diagonal matrix by a low-rank matrix.

The eigenvalues of the correlation matrix are the zeros of the determinant

0 = det λI -C τ = det λI -I + P -ρρ † . ( 25 
)
Since ρρ † is a low-rank perturbation, one can expect, as in the one-factor case of Appendix B, that most eigenvalues coincide with that of the unperturbed diagonal matrix I -P , i.e., they are given by 1 -ρ 2 i for some indices i. These eigenvalues are essentially hidden by noise and non-exploitable in practice. We are interested in large eigenvalues that (significantly) exceed 1.

Practical approximation

As we will discuss in detail in Sec. 3.5, empirical data exhibit the shortrange memory effect (α is small) and the relatively small impact of the factors onto the variance of individual stocks as compared to the stock-specific fluctuations (γ i are small). In this situation, which is particular to the time series of securities returns at the considered time scales, one has η(τ )/γ i ≫ 1 so that ρ i (τ ) in Eq. ( 23) can be approximated as

ρ 2 i (τ ) ≃ γ i η(τ ) . ( 31 
)
This approximation greatly simplifies the elements of the matrix ρ † ρ:

(ρ † ρ) f,g = N i=1 Σ f β i,f ρ i (τ ) β i =ρ i,f Σ g β i,g ρ i (τ ) β i =ρ i,g ≈ N η(τ ) Γ f,g , (32) 
where the matrix elements Γ f,g do not depend on the time scale:

Γ f,g = Σ f Σ g N N i=1 β i,f β i,g σ 2 i . ( 33 
)
As a consequence, all the elements of the matrix ρ † ρ and thus its eigenvalues exhibit the same dependence on the time scale τ , expressed via the explicit function η(τ ) given by Eq. ( 9). Denoting the eigenvalues of the matrix Γ as γ f (f = 1, . . . , F ), one gets the following approximation for large eigenvalues of the correlation matrix:

λ f ≈ Nγ f η(τ ) (f = 1, . . . , F ) . ( 34 
)
From the explicit form ( 16) of η(τ ), one deduces a slow, 1/τ , power law approach of the eigenvalue to the saturation level as the time scale τ increases. Within this approximate computation, all large eigenvalues exhibit the same dependence on the time scale. In practice, one aims at constructing the factors R f to capture independent features of cross-correlations in the market. The sensitivies β i,f and β i,g of the stock i to factors R f and R g are thus expected to be "orthogonal", and this property can be formally expressed by requiring that the nondiagonal elements of the matrix Γ are negligible. In this case, the eigenvalues γ f are given by the diagonal elements

γ f = Γ f,f = 1 N N i=1 Σ 2 f β 2 i,f σ 2 i . ( 35 
)
This is a kind of empirical mean of the squared sensitivities β 2 i,f , normalized by the squared volatilities σ 2 i .

Application to empirical data

We aim at applying the lead-lag factor model to fit the eigenvalues of the empirical correlation matrix of U.S. stocks' returns. The fitting formula (34) has two adjustable parameters: the relaxation time α in the function η(τ ) and the amplitude Nγ f . Using the least square fitting algorithm implemented as the routine lsqcurvefit in Matlab, we apply the formula (34) separately to each empirical eigenvalue.

Figure 2 shows the fitting of the four largest eigenvalues. The good quality of the fit by the lead-lag factor model indicates that, in spite of numerous simplifying assumptions on which the model was built, it captures the overall behavior qualitatively well. In particular, the eigenvalues converge to limiting values, at least for the considered short-time scales (up to 2 hours). Moreover, this saturation level is approached slowly, with the characteristic 1/τ power law dependence. The adjustable parameters are summarized in Table 1. Rewriting the attenuation factor α k in the lead-lag factor model (2) as exp(-t/t α ) with t = kτ 0 and t α = τ 0 / ln(1/α), where τ 0 = 1 min is the finest time scale of the time series used, one gets the relaxation time t α in minutes. One can see that the relaxation times α (or t α ) for four eigenvalues are close to each other. In other words, all the dominant eigenmodes evolve 34) of the four largest eigenvalues of the correlation matrix of N = 533 U.S. stocks' returns, computed by aggregating 1-min returns with the time scale τ . The adjustable parameters α and γ are summarized in Table 1.

at comparable time scales. This is an important conclusion which refutes a common belief that the market mode (corresponding to the largest eigenvalue) evolves at a time scale that is significantly different from other modes (sectors and style factors). The values of t α are of the order of one minute, in agreement with predictions by Benzaquen et al. [START_REF] Benzaquen | Dissecting cross-impact on stock markets: an empirical analysis[END_REF]. Remarkably, while the lead-lag memory effects vanish so rapidly, they impact the behavior of the eigenvalues at much longer time scales. In particular, if the lead-lag was ignored (by setting α = 0), the largest eigenvalue would be ≃ Nγ 1 and independent of the time scale τ . For instance, using the estimated value γ 1 = 0.17 and setting α = 0, one would get the largest eigenvalue to be 90, which is significantly smaller than the expected limit 128 for α = 0.16 or the observed value 130 at τ = 128 min.

Conclusion

We investigated the dependence of the eigenvalues of the correlation matrix on the time scale τ . Aggregating 1-min returns of the largest 533 U.S. stocks (2013-2017) to estimate the correlation matrix at different time scales, we showed that its large eigenvalues grow with τ and apparently saturate to limiting values. This growth reflects the important phenomenon that interstock correlations accumulate over time scales.

To rationalize this phenomenon and to interpret empirical observations, we developed the lead-lag factor model. In the one-factor case, each stock is considered to be partly correlated to a given lead-lag factor. Under several simplifying assumptions, we derived a simple formula for large relevant eigenvalues. This formula containing just two easily interpretable adjustable parameters, was then validated on empirical data.

The relaxation time of the stock market was estimated to be around 1 minute. A possible interpretion of this observation can be that a transaction can generate a cascade of transactions that decays in 1 minute so that the impact of transaction on price decays in 1 minute. As correlations emerge from the cross-impact of transactions on prices, we model this effect by extending the Kyle model to the impact of transaction on preferential portfolios with a lead lag effect.

The small value of the observed relaxation time suggests that correlation measurements based on 5 minutes returns should provide a good proxy of correlation of daily returns for risk management, in line with the conclusion by Liu et al. on volatility estimation [START_REF] Liu | Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes[END_REF]. However, other phenomena are likely to occur at much larger time scales (from day to month), e.g., autocorrelations of returns of financial factors (book, size, momentum) due to herding effect, or lack of liquidity. An accurate estimation of correlations at larger time scales remains a challenging problem because of a limited number of the available returns and thus higher impact of noise in the estimated correlation matrix. To overcome this limitation, one can either consider time horizons over several decades (in which case neglecting variations of corrections over time becomes debatable), or reduce the number of considered securities and thus the dimension of the correlation matrix (in which case financial meaning of estimated correlations may be debatable). A possible solution consists in constructing relevant financial factors and investigating how their correlations change with the time scale, as suggested by our factor-based model.

Appendix B. Analysis of the lead-lag one-factor model

We study in more detail the model [START_REF] Ross | The Arbitrage Theory of Capital Asset Pricing[END_REF] of the correlation matrix C, with ρ i (τ ) given by Eq. ( 16). This matrix is a perturbation of the identity matrix by a rank one matrix, for which many spectral properties are known (see, e.g., [START_REF] Golub | Some modified matrix eigenvalue problems[END_REF]). This matrix combines both effects: the correlation coefficient ρ and the impact of the exponential moving average (with the coefficient α). We search for an eigenvector of this matrix as

v = (v 1 , v 2 , . . . , v n ) † . Writing explicitly Cv = λv, we get v i (1 -ρ 2 i ) + ρ i Q = λv i (i = 1, . . . , N), (B.1)
where

Q = N i=1 v i ρ i . (B.2)
First, we note that if ρ i = 0 for some i, then the above equation is reduced to v i = λv i that has two solutions: either λ = 1 and v i can be arbitrary; or v i = 0. One can check that if ρ i 1 = . . . = ρ i k = 0 for k stocks, then the correlation matrix has the eigenvalue λ = 1 with the multiplicity k. The corresponding eigenvectors can be chosen as an orthogonal basis in the subspace R k . In turn, the remaining n -k eigenvalues are nontrivial, and can be determined as discussed below. In what follows, we focus on these nontrivial eigenvalues, i.e., we assume that all ρ i = 0.

The equation (B.1) has two solutions:

(i) either λ = 1 -ρ 2 i and Q = 0; or (ii) λ = 1 -ρ 2 i and v i = ρ i Q λ -1 + ρ 2 i . (B.3)
In the latter case, one can substitute this expression into Eq. (B.2) to get an equation on the eigenvalue λ:

N i=1 ρ 2 i λ -1 + ρ 2 i = 1. (B.4)
This equation can be seen as a polynomial of degree N which has N (a priori complex-valued) zeros. Finally, Q can be fixed by setting the normalization condition on v:

1 = N i=1 v 2 i = Q 2 N i=1 ρ 2 i (λ -1 + ρ 2 i ) 2 . (B.5)
This is a generic situation.

Let us return to the first option, namely, we suppose that λ = 1 -ρ 2 k for some index k that implies that Q = 0. If all ρ i are distinct, i.e., ρ 1 = ρ 2 = . . . = ρ N , so that v i = 0 for all i = k, but, due to Q = 0, it would also imply that v k = 0. As a consequence, v = 0 but this is not an eigenvector. We conclude that, if all ρ i are distinct, then λ cannot be given by 1 -ρ 2 i , and this option is excluded. Now, we consider the case when two or more values ρ i are identical. For instance, let us assume that ρ 1 = ρ 2 = ρ 3 = . . . = ρ N . In this case, λ = 1 -ρ 2 1 is indeed an eigenvalue. In fact, one gets Q = 0 and thus v i = 0 for i > 2. However, one has

Q = ρ 1 v 1 + ρ 2 v 2 = ρ 1 (v 1 + v 2 ) = 0, implying that v 1 = -v 2 .
The normalization condition implies thus v 1 = -v 2 = 1/ √ 2. We conclude that λ = 1 -ρ 2 1 is then a single eigenvalue. More generally, if ρ 1 = ρ 2 = . . . = ρ k = ρ k+1 = . . . = ρ N , then the eigenvalue λ = 1 -ρ 2 1 has the multiplicity k -1.

In general, it is convenient to denote z i = 1 -ρ 2 i and to order them in an increasing order:

z 1 ≤ z 2 ≤ z 3 ≤ . . . ≤ z N (B.6)
or, equivalently, by grouping the eventual identical values: In other words, there are i 1 identical values z 1 = . . . = z i 1 ; i 2 identical values z i 1 +1 = . . . = z i 1 +i 2 , etc. (note that when all z i are distinct, one has i 1 = i 2 = . . . = 1). In this configuration, the correlation matrix has: the eigenvalue z 1 with the multiplicity i 1 -1 (if i 1 > 1); the eigenvalue z 2 with the multiplicity i 2 -1 (if i 2 > 1); etc. If for some k, z i k = 1, then this eigenvalues has the multiplicity i k . Finally, the remaining eigenvalues are determined as solutions of Eq. (B.4) that can be written as f (z) = 1, with

f (z) = N i=1 ρ 2 i z -1 + ρ 2 i = N i=1 1 -z i z -z i . (B.8)
The terms with z i = 1 (resulting in the eigenvalue λ = 1) are excluded from this sum. Moreover, if some z i are identical, the corresponding terms are just grouped together. As a consequence, the equation f (z) = 1 is reduced to a polynomial of degree at most N (the degree N corresponding to the case when all z i are distinct).

It is worth noting that the function f (z) is decreasing everywhere:

f ′ (z) = - N i=1 ρ 2 i (z -z i ) 2 < 0. (B.9)
As a consequence, one gets immediately that each interval (z i , z i+1 ) (with z i < z i+1 and z N +1 = ∞) has exactly one solution of the equation f (z) = 0, i.e., one eigenvalue. In particular, one gets the following bounds for the smallest eigenvalue

z 1 ≤ min 1≤i≤N {λ i } ≤ z 2 . (B.10)
We conclude that all eigenvalues are positive if and only if z 1 ≥ 0, i.e., ρ 2 i ≤ 1 for all i. In other words, the inequalities ρ 2 i ≤ 1 for all i present the necessary and sufficient condition for the positive definiteness of the matrix. These conditions are evidently satisfied in our setting.

Since f (1) ≥ 1, one gets the following bound for the largest eigenvalue (note that the eigenvalues are ordered in descending order, λ 1 ≥ λ 2 ≥ . . ., in contrast to z k ). However, this bound is rather weak. In turn, since λ 2 ≤ z N = 1 -ρ 2 N < 1, all other eigenvalues are below 1: λ i < 1 (i = 2, 3, . . . , N). (B.12)

Figure 1 :

 1 Figure 1: Four largest eigenvalues of the covariance matrix (a) and of the correlation matrix (b) for returns of 533 U.S. stocks, computed by aggregating 1-min returns with the time scale τ , varying from 1 minute to 128 minutes (2 hours).

Figure 2 :

 2 Figure 2: Fitting by Eq. (34) of the four largest eigenvalues of the correlation matrix of N = 533 U.S. stocks' returns, computed by aggregating 1-min returns with the time scale τ . The adjustable parameters α and γ are summarized in Table1.

z 1 =

 1 z 2 = . . . = z i 1 < z i 1 +1 = z i 1 +2 = . . . = z i 1 +i 2 < . . . < z i 1 +...+im = z i 1 +...+im+1 = . . . = z N .(B.7)

Table 1 :

 1 Two adjustable parameters of the fitting formula (34) applied to four largest eigenvalues of the correlation matrix of N = 533 U.S. stocks' returns. The corresponding relaxation time t α in minutes is obtained as 1 min/ ln(1/α).

	f	1	2	3	4
	γ	0.17 0.03 0.02 0.01
	α	0.16 0.25 0.18 0.26
	t α (min) 0.55 0.72 0.58 0.74

If λ exceeds 1, it cannot be equal to 1 -ρ 2 i for all i, the matrix λI -I + P is nonsingular, its inverse exists, so that one can rewrite Eq. (25) as 0 = det λI -I + P det I -ρ † (λI -I + P ) -1 ρ ,

from which one gets a new equation on eigenvalues:

(here we used a general property: if A ∈ C m×m is nonsingular matrix and U, V ∈ C m×r , then det(A + UV * ) = det(A)det(I + V * A -1 U), see [START_REF] Xiong | On the eigenvalues of a specially rank-r updated complex matrix[END_REF]). Denoting the F × F matrix in the determinant as φ(λ), one can write explicitly its elements as

The solutions of Eq. (27) determine some eigenvalues λ of the correlation matrix in Eq. [START_REF] Bouchaud | How markets slowly digest changes in supply and demand[END_REF]. As one typically deals with the situation N ≫ F , the reduction of the original determinant equation ( 25) for a matrix of size N ×N to Eq. ( 27) for a matrix of size F × F is a significant numerical simplification of the problem. Most importantly, this formal solution allows one to get analytical insights onto the eigenvalues, as we did in the one-factor case in Appendix B. Note that in the one-factor case (F = 1), the determinant equation ( 27) is simply reduced to

i.e., we retrieve Eq. ( 18). If one searches for large eigenvalues, λ ≫ 1, one can neglect the matrix P -I in comparison to λI in Eq. ( 27), that yields

In other words, the large eigenvalues of the correlation matrix can be approximated by the eigenvalues of the matrix ρ † ρ of size F × F . This symmetric positive semi-definite matrix has F nonnegative eigenvalues that correspond to F factors.

Appendix A. Computation of the covariance matrix

The covariance matrix of aggregated centered Gaussian returns r τ i (t) defined by Eq. ( 3) is

The first term in this expression comes from the uncorrelated stock-dependent fluctuations. The independence of returns R(k) implies

To calculate these four sums, it is convenient to consider separately various terms depending on ℓ 1 and ℓ 2 :

• there are τ terms with

(A.3)

• there are τ -1 terms with

Moreover, the same contribution comes from ℓ 1 = ℓ 2 -1 and k 1 = k 2 + 1.

• similarly, there are τ -j terms with

and this contribution is doubled by the symmetry argument.

• finally, there is one term with ℓ 1 = ℓ 2 +(τ -1) and thus k 1 = k 2 -(τ -1) whose contribution is α τ -1 /(1 -α 2 ).

Combining all these terms, one gets after simplifications Eq. ( 4).