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Abstract As part of the Phase 2 Bagnold Dune campaign at Gale Crater, Mars, constraints on the
geochemistry, mineralogy, and oxidation state of pristine and disturbed linear sand ripples were made
using visible/near-infrared spectral observations for comparison to Phase 1 spectra of the barchan dunes to
the north. Spectra acquired by the ChemCam and Mastcam instruments (400–1,000 nm) at four Phase 2
locations revealed similar overall spectral trends between the two regions, but most Phase 2 sands were
redder in the visible wavelengths. The majority of targets exhibited lower red/infrared ratios, higher ~530-nm
band depths, and higher red/blue ratios than Phase 1 samples, suggesting a greater proportion of redder,
fine-grained, ferric sands in Phase 2 samples. This is consistent with the slightly greater proportion of
hematite in Phase 2 samples as determined from CheMin analyses of the Ogunquit sands, which may reflect
contamination from the surrounding hematite-bearing Murray formation bedrock.

Plain Language Summary The Mars Science Laboratory Curiosity rover visited the southern
portion of the Bagnold Dunes to look for differences in the types of sand grains that comprised the dunes
and ripples. The rover’s cameras and spectrometers provided information about the color of the sands,
which was used to infer the composition and types of minerals. Overall, the sands in this part of the
Bagnold Dunes were a bit redder than those further to the north that were studied previously. We interpreted
this to mean that the southern sands contained more oxidized (rusted) iron particles. Because the rocks
surrounding these dunes were known to contain a fair amount of red, iron-rich minerals, it is probable that
the sands were mixed with a small amount of broken fragments from these rocks.

1. Introduction

Understanding the provenance and evolution of windblown sands on Mars requires a combination of
regional and local analyses of their geochemical and mineralogical diversity. During Phase 1 of the
Bagnold Dune campaign conducted by the Mars Science Laboratory Curiosity (Sols 1,181–1,254) the barchan
dunes in the Namib and High Dune areas were investigated (Bridges & Ehlmann, 2018; Ehlmann et al., 2017).
Phase 2 of the campaign (Sols 1,601–1,653) studied ripple fields and linear dunes in the Mount Desert Island
and Nathan Bridges Dune regions 2 km to the south and ~100m higher in elevation (Lapôtre & Rampe, 2018).
Both campaigns acquired visible/near-infrared (400–1,000 nm) reflectance spectra of pristine, disturbed, and
sieved sands using Mast Camera (Mastcam) multispectral imaging (445–1,013 nm) and Chemistry and
Camera (ChemCam) passive point spectroscopy (400–840 nm). Johnson et al. (2017) reported that the
Phase 1 dune sands were distinct from other Martian dusty sands and typically exhibited low relative
reflectance, weak ~530-nm absorption bands, an absorption band near 620 nm, and a decrease in spectral
reflectance longward of ~685 nm. These characteristics were consistent with dominantly olivine-bearing
sands, with likely contributions from high-calcium pyroxene (cf. Lapôtre et al., 2017). However, variations
were observed between the finer- and coarser-grained sands. Fine sands exhibited higher 535-nm absorption
band depths and lower 600-/700-nm spectral ratios, consistent with a combination of ferric materials
(e.g., hematite, magnetite, nanophase, and/or amorphous oxides). Conversely, the coarsest grains (in ridge
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crests and lee slopes) were the darkest and bluest, with strong reflectance downturns in the near-infrared,
higher 600-/700-nm ratios (flatter spectra in this region) and near-zero 535-nm band depths, consistent
with greater proportions of mafic silicate minerals.

We report here analyses of Mastcam and ChemCam reflectance data acquired during the Phase 2 campaign,
which comprised four stops along the rover traverse (Figure 1). The first three of these stops (Mapleton, Sandy
Point Beach, and Southern Cove) sampled locations on the eastern margin of Nathan Bridges Dune
(Figures S1–S4 in the supporting information). The fourth stop was on the western edge of Mount Desert
Island at Ogunquit Beach (Figure S5), where scooped sands were sieved for onboard analyses (Rampe
et al., 2018; Stern et al., 2018). The presieved (>150 μm) and postsieved (<150 μm) samples were kept
onboard the rover until they were dumped on Sol 1,968 and analyzed with Mastcam and ChemCam shortly
thereafter (Figure S6).

2. Methodology
2.1. ChemCam Passive Spectra

The ChemCam instrument is used for laser-induced breakdown spectroscopy (LIBS) in which light from a
laser-generated plasma is dispersed onto three spectrometers to detect elemental emission lines at high
spectral resolution (< 1 nm; Wiens et al., 2013, 2015). Relative reflectance spectra (400–840 nm) can be
collected in passive mode (i.e., without using the laser) for each sunlit location to provide information
on variations in ferrous and ferric components (Johnson et al., 2015, 2016, 2017). For materials near the
rover (~2–7 m) the 0.65-mrad field of view of each point measurement sampled areas 1.3–4.5 mm. Each
LIBS measurement included a 3-ms exposure passive (dark) measurement used to subtract ambient light
from the LIBS spectrum. Because the laser shock wave creates pits in the sands, passive measurements
shown here were acquired prior to its use to avoid pit shadows. Passive measurements at 30-ms exposures
were acquired for specific targets to increase the signal-to-noise ratio. Data acquired on Sol 76 at 12:52
LTST of the white ChemCam calibration target holder were used to minimize dark current variations
between scene and calibration targets. Raw data were converted to radiance (Johnson et al., 2015), with
an estimated absolute 6–8% calibration uncertainty. The ratio of the scene and Sol 76 calibration target
radiance was multiplied by the laboratory reflectance of the calibration target material (Wiens et al.,
2012) to provide relative reflectance. Images from the Remote Micro-Imager were acquired to provide
accurate positions for raster locations (Le Mouélic et al., 2015; Maurice et al., 2012, 2016; Wiens et al.,
2012, 2015; Figure S6).

Figure 1. High Resolution Imaging Science Experiment (HiRISE) orbital color scene of Phase 2 region, showing rover
traverse (white) and four stops made during the campaign. Background image is HiRISE ESP_035772_1755.
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We calculated spectral parameters using ±5-nm averages around a central wavelength. Near-infrared ratios
(e.g., 600/700 nm) and peak reflectance wavelengths are indicative of the strength of iron absorptions from
mafic minerals, and 600-/440-nm (red/blue) ratios are sensitive to oxidation state and/or dust deposition. The
535-nm band depth (calculated using shoulders at 500 and 600 nm) is sensitive to the presence of crystalline
ferric oxides (e.g., Bell et al., 2000; Morris et al., 1997, 2000).

2.2. Mastcam Passive Spectra

The Mastcam system includes two cameras (M100, 100-mm focal length and M34, 34-mm focal length) that
use 1,600 × 1,200 pixel Bayer-patterned CCDs. Each uses six narrow band (±10 nm) filters to characterize the
445- to 1,013-nm reflectance spectra of surface targets. One filter position has a broadband infrared-cutoff
filter for RGB color imaging using a Bayer pattern bonded directly to the detectors (Wellington et al., 2017).
The two cameras provide 12 center wavelengths for multispectral analysis, including the three RGB Bayer
bands (which have ±40-nm bandwidths). Wellington et al. (2017) and Bell et al. (2003, 2017) describe conver-
sion of raw Mastcam data to radiance (W/m2/nm/sr) and to radiance factor (I/F) using observations of the
onboard Mastcam calibration target (Bell et al. 2003; He et al. 1991; Kinch et al., 2015; Wellington et al.,
2017). Radiance factors were divided by the cosine of the solar incidence angle to provide relative reflectance
(R*), an approximation of the reflectance factor defined in Hapke (1993, 2012). Relative reflectance spectra
presented here are average values derived from manually defined regions selected of the same region in
the M34 and M100 images. M100 filter values were scaled to the left eye at the 1,013-nm wavelength (which
is least affected by uncertainties in the dust correction) and averaged with the M34 values at overlapping
wavelengths to produce a combined spectrum. The absolute radiometric accuracy for Mastcam is estimated
to be 10–20%, with a filter-to-filter uncertainty of <5% and pixel-to-pixel variation of <1% (Bell et al. 2003,
2017; Wellington et al. 2017).

Mastcam spectral parameters were calculated using wavelengths similar to the ChemCam spectral
parameters. Parameters sensitive to ferric crystallinity, oxidation state, and/or dust deposition included
the band depth at 527 nm (calculated using shoulders at 494 and 639 nm), the peak reflectance position,
and the 639-/446-nm ratio. Near-infrared parameters (676-/751-nm ratio) are sensitive to mafic
silicate minerals.

3. Data Sets Used

Table 1 lists the ChemCam and Mastcam data sets acquired at each Stop that were used in this analysis. At
Stop 1, Mastcam observations were acquired of undisturbed and Alpha Particle X-Ray Spectrometer
(APXS)-disturbed ripple sands at Matagamon and two locations on pristine and rover wheel-disturbed sands
in the Scarboro area (Figures S1 and S2). ChemCam data were acquired at Mapleton. At Stop 2, Mastcam
imaging at Macworth documented rover tracks and pristine sands (Figure S3), while ChemCam observations
sampled the edge of a rover track (Macworth) and ripple crests (Towow, Leighton, Carrassett, and Swanback).
Between Stops 2 and 3 ChemCam observed the ripple crest Mattawamkeag. At Stop 3, Mastcam targeted the
pristine and disturbed sands at Hildreths (Figure S4), while ChemCam observed disturbed sands at Greenvale
Cove and the ripple crests Ripogenus (Figure S7) and Spragueville (acquired twice owing to shadows
obscuring raster locations 7–10 during the first attempt). At Stop 4, Mastcam observed pristine and
rover-disturbed sands near Ogunquit (Figure S5), and ChemCam acquired spectra on a rover scuff wall
(Tumbledown Mountain), the base of that wall (Elephant Mountain), and on the scuff floor (Canoe Point).
Undisturbed sand was observed at North Brother, and ripple crests of different sizes were sampled at
Hamlin Peak (small), Avery Peak (medium), and Baxter Peak (large; Figure S7). Unused portions of the
Ogunquit sand samples were kept onboard until Sol 1,970, when the postsieve (<150 μm) and presieve
(>150 μm) samples were dumped onto bedrock while the rover was on Vera Rubin Ridge and analyzed by
Mastcam and using dedicated passive and active ChemCam methods (Figures S6 and S8–S10).

4. Results
4.1. ChemCam and Mastcam Spectra

Representative Chemcam passive and Mastcam relative reflectance spectra from the four stops are shown in
Figure 2. Spectral differences among disturbed, undisturbed, and ripple crest/trough sands are marked by
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changes in the visible spectral slope, maximum reflectance position, and the steepness of the near-infrared
slope. These are due to variations in the relative abundance and/or grain size of mafic minerals (olivines and
pyroxenes) versus finer-grained, more ferric, oxidized materials, particularly in the disturbed sands,
modulated by the effects of amorphous components (e.g., Achilles et al., 2017; Rampe et al., 2018). In the

Figure 2. (a) ChemCam passive reflectance spectra of representative samples acquired at the four stops of the Phase 2 campaign. Legend shows Sol number and
raster location number in parentheses. Gap between 468 and 478 nm represents region between ChemCam detectors. Each spectrum includes a 50-channel
average line overlain; only this average is shown in the 400- to 500-nm region owing to low SNR in this region. (b) Mastcam relative reflectance spectra of repre-
sentative samples acquired at the four stops. Error bars represent standard deviation of region of interest selected (see Figures S1–S5 for locations fromwhich spectra
were extracted). APXS = Alpha Particle X-Ray Spectrometer; SNR = signal-to-noise ratio.

Table 1
ChemCam and Mastcam Sequences Used

Target Stop no. Sol Sequence ID LTST (start) Raster size column × row

Mapleton 1 1,602 ccam1602 12:11 5 × 1
New Sweden 2 1,617 ccam1617 10:26 1 × 5
Macworth 2 1,618 ccam3618 10:44 1 × 10
Towow 2 1,618 ccam1618 10:18 5 × 1
Leighton 3 1,623 ccam2623 12:30 10 × 1
Carrassett 3 1,625 ccam1625 11:43 10 × 1
Swanback 3 1,627 ccam1627 11:42 1 × 10
Mattawamkeag 2/3 1,630 ccam2630 12:45 1 × 5
Ripogenus 3 1,637 ccam2637 10:35 1 × 10
Spragueville 3 1,637 ccam1637 10:06 1 × 10
Spragueville_2 3 1,638 ccam2638 12:12 1 × 10
Greenvale Cove 3 1,639 ccam1639 11:49 1 × 7
Tumbledown Mountain 4 1,652 ccam1652 11:18 5 × 1
Elephant Mountain 4 1,652 ccam2652 11:32 5 × 1
Canoe Point 4 1,652 ccam3652 11:48 5 × 1
North Brother 4 1,653 ccam1653 11:04 5 × 1
Avery Peak 4 1,653 ccam2653 11:19 10 × 1
Baxter Peak 4 1,653 ccam3653 14:15 10 × 1
Ogunquit postsieve passive — 1,970 ccam5968 12:27 5 × 1
Ogunquit presieve passive — 1,971 ccam1971 13:24 5 × 1
Ogunquit postsieve active — 1,971 ccam2971 13:33 5 × 1
Ogunquit presieve active — 1,972 ccam1972 12:53 5 × 1
Matagamon 1 1,603 mcam08177 12:40 —
Scarboro 1 1,603 mcam08179 12:50 —
Macworth 2 1,618 mcam08273 11:28 —
Hildreths 3 1,637 mcam08465 11:12 —
Ogunquit 4 1,652 mcam08558 10:50 —
Ogunquit dump — 1,970 mcam10306 12:07 —

Note. LTST = Local True Solar Time.
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Mapleton and Towow areas, ChemCam spectra are typical of reddish sands observed elsewhere throughout
the traverse (Johnson et al., 2015, 2016). The crest of the Ripogenus ripple exhibited reflectance maxima at
shorter wavelengths than the flank, consistent with more ferrous materials on the crest (cf. Figure S7). The
spectral shapes of nearby Spragueville sands were nearly identical to the Ripogenus flank. The Baxter Peak
ripple target’s crest showed the strongest near-infrared downturn, consistent with more ferrous sands
compared to the trough (cf. Figure S7). In enhanced Mastcam color images, the coarser disturbed sands
in the Hildreths area appear bluish (Figure S4). The corresponding Mastcam spectra in Figure 2b show a
maximum reflectance near 675 nm compared to a maximum reflectance position near 750 nm associated
with redder sands of Macworth and Ogunquit. Similar shorter-wavelength maxima were observed for
bluer regions at the Ogunquit area and the ripple crest target Scarboro in the Mapleton area. For
comparison, redder sands in the troughs of scuff areas and flanks of ripples in the Scarboro area
exhibited longer-wavelength maxima. In summary, ripple crests (e.g., Ripogenus, Baxter Peak, and
Scarboro) and collections of coarser grains in disturbed soils (e.g., Hildreths and Ogunquit) tend to exhibit
reflectance peaks at shorter wavelengths, steeper near-infrared downturns, and weak to nonexistent
~530-nm band depths, consistent with more ferrous materials compared to the redder, more ferric ripple
flanks or troughs.

The Ogunquit presieve and postsieve dumped samples exhibited very similar ChemCam passive and
Mastcam relative reflectance spectra (Figures 3 and S6), with ~530- and 867-nm absorption bands in both
samples. Nearby background sand exhibited similar Mastcam spectra, albeit with some variations in the
strength of the 867-nm band. This is evident in the Mastcam 867-nm band depth image (Figure S8) in which
the dumped samples and background sands are essentially indistinguishable. However, the 527-nm band
depth images showed that the dumped samples were slightly brighter than the background sands
(Figures S8–S10), and the decorrelation stretch images manifest this with more purple hues in the dump
piles. This spectral behavior suggests a greater proportion of ferric oxides in the Ogunquit sieved sands.
Rampe et al. (2018) discuss the possible contamination of this sample by remnants of the previously drilled,
hematite-rich sample Sebina. However, they did not estimate hematite contamination and concluded from
Chemistry and Mineralogy (CheMin) data that minor (1.2 wt%) hematite is likely present in the
crystalline + amorphous portion of the Ogunquit <150-μm sample.

4.2. Spectral Parameters

Spectral parameters computed from ChemCam spectra are shown in Figure 4, where the 600-/700-nm (red/
infrared) ratio is compared to the 535-nm band depth and 600-/440-nm (red/blue) ratio. Parameters from
representative Phase 1 targets are shown for comparison (square symbols). Phase 2 samples were redder

Figure 3. (a) ChemCam passive reflectance spectra of Ogunquit presieved (150> μm) and postsieved (<150 μm) dumped
samples. (b) Mastcam relative reflectance spectra of Ogunquit dumped samples (extracted from same area sampled by
ChemCam raster, cf. Figure S6) compared to spectra of background sands in the same scene.
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(higher 600-/440-nm ratios) than most Phase 1 samples, with lower red/near-infrared ratios. Exceptions were
the bluer portions of ripple crests with higher red/infrared ratios (e.g., Baxter Peak and Ripogenus), which
transitioned into redder, more ferric materials along the flanks or troughs of the ripples, as shown
schematically by the orange arrows in Figure 4. The Ogunquit dump samples exhibited high 535-nm
band depths but were among the least red Phase 2 samples, similar to the Dump E (< 150 μm) sands
from Phase 1.

Figure 5 shows similar spectral parameters computed from Mastcam spectra from both campaign phases,
where the 676-/751-nm (red/infrared) ratio is compared to the 527-nm band depth and the 639/446 (red/
blue) ratio. Nearly all Phase 2 samples were redder with stronger 527-nm band depths than Phase 1 sands,
with low red/infrared ratios closer to the <150-μm Phase 1 sieved samples. The exceptions were the bluer,
coarser disturbed sands from Hildreths, Ogunquit, and Matagamon, which exhibited the weakest 527-nm
band depths and highest red/infrared ratios, transitioning to finer, redder sands as shown schematically by
the arrows (cf. Figures S1–S5). The Ogunquit samples were much less red than other Phase 2 samples and
most similar to Phase 1 sands. However, their 527-nm band depths and red/infrared ratios were similar to
the other Phase 2 sands.

Figure 4. ChemCam spectral parameters for Phase 2 (circles) and representative Phase 1 samples (squares; cf. Johnson et al., 2017). (a) The 535-nm band depth ver-
sus 600-/700-nm ratio. (b) The 600-/440-nm ratio versus 600-/700-nm ratio. Orange arrow points from coarser, more ferrous sands on larger ripple crests to finer,
more ferric sands on smaller ripple crests.

Figure 5. Mastcam spectral parameters for Phase 2 (circles) and representative Phase 1 samples (squares; cf. Johnson et al., 2017). (a) The 527-nm band depth versus
676-/751-nm ratio. (b) The 639-/446-nm ratio versus 676-/751-nm ratio. Black arrows point from coarser, bluer, more ferrous sands on larger ripple crests to finer,
more red, ferric sands on smaller ripple crests.

10.1029/2018GL079025Geophysical Research Letters

JOHNSON ET AL. 9485



5. Discussion and Conclusions

Based on their higher ~530-nm band depths and red/blue ratios and lower red/infrared ratios, we interpret
that most of the Phase 2 sands contained greater proportions of redder, fine-grained, ferric materials than
Phase 1 sands. However, several of the bluer, coarser-grained Phase 2 ripple crests were similar to Phase 1
sands, and some exhibited higher red/infrared ratios for a given red/blue ratio than Phase 1 sands
(e.g., Hildreths and Baxter Peaks’ crest in Figure 5b). This likely resulted from the more active wind regime
in this region (cf. Baker et al., 2018; Lapôtre et al., 2018), which limited dust contamination and exposed more
ferrous sands. Indeed, APXS analyses suggested low dust content (implied from low S, Cl, and Zn
concentrations), particularly for the more mafic ripple crests which contained relatively great amounts of
Mg and Ni, compared to enrichments in Ti and Cr in off-crest sands (O’Connell-Cooper et al., 2018). By
comparison, the sieved Ogunquit samples exhibited strong ~530-nm band depths but an overall less red
appearance than other Phase 2 sands even though APXS analyses suggested higher dust contributions.
We conclude that Phase 2 sands contained minor, detrital, hematite-rich particles sourced from the
surrounding bedrock of the Murray formation in addition to relatively low proportions of mafic minerals.
Analyses by Rampe et al. (2018) suggested lower olivine and higher plagioclase abundances in the crystalline
portion of the <150-μm Ogunquit fraction than in the Phase 1 Gobabeb samples, along with ~2 wt%
hematite. The proportion of crystalline hematite was likely larger in the Phase 2 sands, and/or the grain size
distribution of hematite was smaller, in order to account for their stronger ~530-nm bands. In addition,
images from the Mars Hand Lens Imager (MAHLI) suggested the presence of reddish outcrop fragments
<500 mm in size, although the average grain size was smaller in the Phase 2 dune sands than Phase 1
(Weitz et al., 2018). Analyses of sands along the rest of the Curiosity rover traverse will continue to document
compositional and mineralogical variations and potential bedrock contributions from the stratigraphy of
Mount Sharp.
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