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OPETOPIC ALGEBRAS I: ALGEBRAIC STRUCTURES ON OPETOPIC SETS

CÉDRIC HO THANH AND CHAITANYA LEENA SUBRAMANIAM

Abstract. We define a family of structures called “opetopic algebras”, which are algebraic structures
with an underlying opetopic set. Examples of such are categories, planar operads, and Loday’s combinads
over planar trees. Opetopic algebras can be defined in two ways, either as the algebras of a “free pasting
diagram” parametric right adjoint monad, or as models of a small projective sketch over the category of
opetopes. We define an opetopic nerve functor that fully embeds each category of opetopic algebras into
the category of opetopic sets. In particular, we obtain fully faithful opetopic nerve functors for categories
and for planar coloured Set-operads.

This paper is the first in a series aimed at using opetopic spaces as models for higher algebraic
structures.
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1. Introduction

This paper deals with algebraic structures whose operations have higher dimensional “tree-like” ar-
ities. As an example in lieu of a definition, a category C is an algebraic structure whose operation of
composition has as its inputs, or “arities”, sequences of composable morphisms of the category. These
sequences can can be seen as filiform or linear trees. Moreover, each morphism of C can itself be seen as
an operation whose arity is a single point (i.e. an object of C). A second example, one dimension above,
is that of a planar coloured Set-operad P (a.k.a. a nonsymmetric multicategory), whose operation of
composition has planar trees of operations (a.k.a. multimorphisms) of P as arities. Moreover, the arity
of an operation of P is an ordered list (a filiform tree) of colours (a.k.a. objects) of P. Heuristically ex-
tending this pattern leads one to presume that such an algebraic structure one dimension above planar
operads should have an operation of composition whose arities are trees of things that can themselves
be seen as operations whose arities are planar trees. Indeed, such algebraic structures are precisely the
PT-combinads in Set (combinads over the combinatorial pattern of planar trees) of Loday [Lod12].

Structure Sets
=0-algebras

Categories
=1-algebras

Operads
=2-algebras

PT−combinads
=3-algebras ⋯

Arity {∗}
=1-opetopes

Lists
=2-opetopes

Trees
=3-opetopes 4-opetopes ⋯

The goal of this article is to give a precise definition of the previous sequence of algebraic structures.

1.1. Context. It is well-known that higher dimensional tree-like arities are encoded by the opetopes
(operation polytopes) of Baez and Dolan [BD98], which were originally introduced in order to give a
definition of weak n-categories and a precise formulation of the “microcosm” principle.

The fundamental definitions of [BD98] are those of P-opetopic sets and n-coherent P-algebras (for
a coloured symmetric Set-operad P), the latter being P-opetopic sets along with certain “horn-filling”
operations that are “universal” in a suitable sense. When P is the identity monad on Set (i.e. the uni-
colour symmetric Set-operad with a single unary operation), P-opetopic sets are simply called opetopic
sets, and n-coherent P-algebras are the authors’ proposed definition of weak n-categories.

While the coinductive definitions in [BD98] of P-opetopic sets and n-coherent P-algebras are straight-
forward and general, they have the disadvantage of not defining a category of P-opetopes such that
presheaves over it are precisely P-opetopic sets, even though this is ostensibly the case. Directly defin-
ing the category of P-opetopes turns out to be a tedious and non-trivial task, and was worked out
explicitly by Cheng in [Che03, Che04a] for the particular case of the identity monad on Set, giving the
category O of opetopes.

The complexity in the definition of a category OP of P-opetopes has its origin in the difficulty of
working with a suitable notion of symmetric tree. Indeed, the objects of OP are trees of trees of ... of
trees of operations of the symmetric operad P, and their automorphism groups are determined by the
action of the (“coloured”) symmetric groups on the sets of operations of P.

However, when the action of the symmetric groups on the sets of operations of P is free, it turns
out that the objects of the category OP are rigid, i.e. have no non-trivial automorphisms (this follows
from [Che04a, proposition 3.2]). The identity monad on Set is of course such an operad, and this vastly
simplifies the definition of O. Indeed, such operads are precisely the (finitary) polynomial monads in Set,
and the machinery of polynomial endofunctors and polynomial monads developed in [Koc11, KJBM10,
GK13] gives a very satisfactory definition of O [HT18, CHTM19] which we review in sections 2 and 3.
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1.2. Contributions. The main contribution of the present article is to show how the polynomial defi-
nition of O allows, for all k,n ∈ N with k ≤ n, a definition of (k,n)-opetopic algebras, which constitute a
full subcategory of the category Psh(O) of opetopic sets. More precisely, we show that the polynomial
monad whose set of operations is the set On+1 of (n + 1)-dimensional opetopes can be extended to a
parametric right adjoint monad whose algebras are the (k,n)-opetopic algebras. Important particular
cases are the categories of (1,1)- and (1,2)-opetopic algebras, which are the categories Cat and Opcol of
small categories and coloured planar Set-operads respectively. Loday’s combinads over the combinatorial
pattern of planar trees [Lod12] are also recovered as (1,3)-opetopic algebras.

We further show that each category of (k,n)-opetopic algebras admits a fully faithful opetopic nerve
functor to Psh(O). As a direct consequence of this framework, we obtain commutative triangles of
adjunctions

Cat

Psh(O) Psh(∆)
N
⊥

Nu

⊥h

h!

u

h∗
⊥

Opcol

Psh(O≥1) Psh(Ω),
N
⊥

Nu

⊥
h

h!

u

h∗
⊥

(1.2.1)

where ∆ is the category of simplices, Ω is the planar version of Moerdijk and Weiss’s category of dendrices
and O≥1 is the full subcategory of O on opetopes of dimension > 0. This gives a direct comparison between
the opetopic nerve of a category (resp. a planar operad) and its corresponding well-known simplicial
(resp. dendroidal) nerve.

This formalism seems to provide infinitely many types of (k,n)-opetopic algebras. However this is not
really the case, as the notion stabilises at the level of combinads. Specifically, we show a phenomenon
we call algebraic trompe-l’œil, where an (k,n)-opetopic algebra is entirely specified by its underlying
opetopic set and by a (1,3)-opetopic algebra. In other words, its algebraic data can be “compressed”
into a (1,3)-algebra (a combinad). The intuition behind this is that fundamentally, opetopes are just
trees whose nodes are themselves trees, and that once this is obtained at the level of combinads, opetopic
algebras can encode no further useful information.

1.3. Outline. We begin by recalling elements of the theory of polynomial functors and polynomial
monads in section 2. This formalism is the basis for the modern definition of opetopes and of the
category of opetopes [KJBM10, CHTM19] that we survey in section 3. Section 4 contains the central
constructions of this article, namely those of opetopic algebras and coloured opetopic algebras, as well
as the definition of the opetopic nerve functor, which is a full embedding of (coloured) opetopic algebras
into opetopic sets. Section 5 is devoted to showing how the algebraic information carried by opetopes
turns out to be limited.

1.4. Related work. The (k,n)-opetopic algebras that we obtain are related to the n-coherent P-
algebras of [BD98] as follows: for n ≥ 1, (1, n)-opetopic algebras are precisely 1-coherent P-algebras for
P the polynomial monad On−1 ←Ð En Ð→ On Ð→ On−1. We therefore do not obtain all n-coherent
P-algebras with our framework, and this means in particular that we cannot capture all the weak n-
categories of [BD98] (except for n = 1, which are just usual 1-categories). This is not unexpected, as
weak n-categories are not defined just by equations on the opetopes of an opetopic set, but by its more
subtle universal opetopes.

However, we are able to promote the triangles of (1.2.1) to Quillen equivalences of simplicial model
categories. This, along with a proof that opetopic spaces (i.e. simplicial presheaves on O) model (∞,1)-
categories and planar ∞-operads, will be the subject of the second paper of this series.

1.5. Acknowledgments. We are grateful to Pierre-Louis Curien for his patient guidance and reviews.
The second named author would like to thank Paul-André Melliès for introducing him to nerve functors
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and monads with arities, Mathieu Anel for discussions on Gabriel–Ulmer localisations, and Eric Finster
for a discussion related to proposition 2.6.3. The first named author has received funding from the
European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska–Curie
grant agreement No. 665850.

1.6. Preliminary category theory. We review relevant notions and basic results from the theory of
locally presentable categories. Original references are [GU71, SGA72], and most of this material can be
found in [AR94].

1.6.1. Presheaves and nerve functors. For C ∈ Cat, we write Psh(C) for the category of Set-valued
presheaves over C, i.e. the category of functors Cop Ð→ Set and natural transformations between them.
If X ∈ Psh(C) is a presheaf, then its category of elements C/X is the comma category y ↓ X, where
y ∶ C↪Ð→ Psh(C) is the Yoneda embedding.

Let C ∈ Cat and F ∶ C Ð→ D be a functor to a (not necessarily small) category D. Then the nerve
functor associated to F (also called the nerve of F ) is the functor NF ∶DÐ→ Psh(C) mapping d ∈D to
D(F−, d). The functor F is said to be dense if for all d ∈D, the colimit of F ↓ dÐ→ C

FÐ→D exists in D,
and is canonically isomorphic to d. F is dense if and only if NF is fully faithful.

Let i ∶ CÐ→D be a functor between small categories. Then the precomposition functor i∗ ∶ Psh(D)Ð→
Psh(C) has a left adjoint i! and a right adjoint i∗, given by left and right Kan extension along iop

respectively. If i has a right adjoint j, then i∗ ⊣ j∗, or equivalently, i∗ ≅ j!. Note that the nerve of i is
the functor Ni = i∗yD, where yD ∶D↪Ð→ Psh(D) is the Yoneda embedding. Recall that i∗ is the nerve of
the functor yDi and that i∗ is the nerve of the functor Ni = i∗yD, i.e. it is the nerve of the nerve of i.

1.6.2. Orthogonality. Let C be a category, and l, r ∈ C→. We say that l is left orthogonal to r (equivalently,
r is right orthogonal to l), written l ⊥ r, if for any solid commutative square as follows, there exists a
unique dashed arrow making the two triangles commute (the relation ⊥ is also known as the unique
lifting property):

⋅ ⋅

⋅ ⋅
l r

If C has a terminal object 1, then for all X ∈ C, we write l ⊥ X if l is left orthogonal to the unique
map X Ð→ 1. Let L and R be two classes of morphisms of C. We write L ⊥ R if for all l ∈ L and r ∈ R we
have l ⊥ r. The class of all morphisms f such that L ⊥ f (resp. f ⊥ R) is denoted L⊥ (resp ⊥R).

1.6.3. Localisations. Let J be a class of morphisms of a category C. Recall that the localisation of C at J
is a functor γJ ∶ CÐ→ J−1C such that γJf is an isomorphism for every f ∈ J, and such that γJ is universal
for this property. We say that J has the 2-out-of-3 (or 3-for-2) property when for every composable pair
⋅
f
Ð→ ⋅

g
Ð→ ⋅ of morphisms in C, if any two of f , g and gf are in J, then so is the third.

Assume now that C is a small category, and that J is a set (rather than a proper class) of morphisms
of Psh(C), and consider the full subcategory CJ ↪Ð→ Psh(C) of all those X ∈ Psh(C) such that J ⊥ X. A
category is locally presentable if and only if it is equivalent to one of the form CJ. The pair (⊥(J⊥), J⊥)
forms an orthogonal factorisation system, meaning that any morphism f in C can be factored as f = pi,
where p ∈ J⊥ and i ∈ ⊥(J⊥). Applied to the unique arrow X Ð→ 1, this factorisation provides a left adjoint
(i.e. a reflection) aJ ∶ Psh(C) Ð→ CJ to the inclusion CJ ↪Ð→ Psh(C). Furthermore, aJ is the localisation
of Psh(C) at J. (1)

(1)The results of this paragraph still hold when Psh(C) is replaced by a locally κ-presentable category, i.e. one of the
form CJ with κ a regular cardinal and J a set of κ-small morphisms. We call a localisation of the form aK ∶ CJ Ð→ (CJ)K
the Gabriel–Ulmer localisation of CJ at K.
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With C and J as in the previous paragraph, the class of J-local isomorphisms WJ is the class of
all morphisms f ∈ Psh(C)→ such that for all X ∈ CJ, f ⊥ X (that is, WJ = ⊥CJ). It is the smallest
class of morphisms that contains J, that satisfies the 3-for-2 property, and that is closed under colimits
in Psh(C)→ [GU71, theorem 8.5]. Thus the localisation aJ is also the localisation of Psh(C) at WJ.
Furthermore, WJ is closed under pushouts.

1.6.4. Projective sketches. A projective sketch is the data of a C ∈ Cat and a set K of cones in C.
For B a category with all limits, the category of models in B of (C,K) is the category of functors
CÐ→ B that take each cone in K to a limit cone, and natural transformations between them. If (C,K)
is a projective sketch, then equivalently, K can be seen as a set of cocones in Cop, or as a set of sub-
representables (subobjects of representables) in Psh(Cop). Let C

op
K ↪Ð→ Psh(Cop) be the full subcategory

of all X ∈ Psh(Cop) such that K ⊥X. Then C
op
K is precisely the category of models in Set of the projective

sketch (C,K). Let κ be a regular cardinal, and let (C,K) be a projective sketch in which each cone in K
is to a κ-small diagram. Then C

op
K is a locally κ-presentable category, and the inclusion C

op
K ↪Ð→ Psh(Cop)

preserves κ-filtered colimits.

2. Polynomial functors and polynomial monads

We survey elements of the theory of polynomial functors, trees, and monads. For more comprehensive
references, see [Koc11, GK13].

2.1. Polynomial functors. A polynomial (endo)functor P over I is a diagram in Set of the form

I E B I.
s p t (2.1.1)

P is said to be finitary if the fibres of p ∶ E Ð→ B are finite sets. We will always assume polynomial
functors to be finitary. A morphism from a polynomial functor P over I to a polynomial functor P ′
over I ′ (on the second row) is a commutative diagram of the form

I E B I

I ′ E′ B′ I ′

f0
⌟

p

f2

s t

f1 f0

p′s′ t

where the middle square is cartesian (i.e. is a pullback square). If P and P ′ are both polynomial
functors over I, then a morphism from P to P ′ over I is a commutative diagram as above, but where f0
is required to be the identity. Let PolyEnd denote the category of polynomial functors and morphisms
of polynomial functors, and PolyEnd(I) the category of polynomial functors over I and morphisms of
polynomial functors over I.

We use the following terminology for a polynomial functor P as in equation (2.1.1), which is motivated
by the intuition that a polynomial functor encodes a multi-sorted signature of function symbols. The
elements of B are called the nodes or operations of P , and for every node b, the elements of the fibre
E(b) ∶=p−1(b) are called the inputs or arities of b. The elements of I are called the colours or sorts of
P . For every input e of a node b, we denote its colour by se(b) ∶= s(e).

b

se1b sekb⋯

t(b)

e
1 ek
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The term “polynomial (endo)functor” is due to the association of P to the composite endofunctor

P ∶ Set/I s∗Ð→ Set/E
p∗Ð→ Set/B t!Ð→ Set/I

where we have denoted a! and a∗ the left and right adjoints to the pullback functor a∗ along a map of
sets a. Explicitly, for (Xi ∣ i ∈ I) ∈ Set/I, P (X) is given by the “polynomial”

P (X) =
⎛
⎝ ∑b∈B(j)

∏
e∈E(b)

Xs(e) ∣ j ∈ I
⎞
⎠
, (2.1.2)

where B(i) ∶= t−1(i) and E(b) = p−1(b). Visually, elements of P (X)j are nodes b ∈ B such that tb = j,
and whose inputs are decorated by elements of (Xi ∣ i ∈ I) in a manner compatible with their colours.
Graphically, an element of PXi can be represented as

b

x1 xk⋯

t(b)

e
1 ek

with b ∈ B such that t(b) = i, and xj ∈Xsej b
for 1 ≤ j ≤ k. Moreover, the endofunctor P ∶ Set/I Ð→ Set/I

preserves connected limits: s∗ and p∗ preserve all limits (as right adjoints), and t! preserves and reflects
connected limits.

This construction extends to a fully faithful functor PolyEnd(I)Ð→ Cart(Set/I), the latter being the
category of endofunctors of Set/I and cartesian natural transformations(2). In fact, the image of this
full embedding consists precisely of those endofunctors that preserve connected limits [GK13, section
1.18]. The composition of endofunctors gives Cart(Set/I) the structure of a monoidal category, and
PolyEnd(I) is stable under this monoidal product [GK13, proposition 1.12]. The identity polynomial
functor I ←Ð I Ð→ I Ð→ I is associated to the identity endofunctor; thus PolyEnd(I) is a monoidal
subcategory of Cart(Set/I).

A polynomial monad over I is a monoid in PolyEnd(I). Note that a polynomial monad over I is thus
necessarily a cartesian monad on Set/I.(3)

2.2. Trees. A polynomial functor T = (T0
s←Ð T2

p
Ð→ T1

tÐ→ T0) is a (polynomial) tree [Koc11, section 1.0.3]
if

(1) the sets T0, T1 and T2 are finite (in particular, each node has finitely many inputs);
(2) the map t is injective;
(3) the map s is injective, and the complement of its image T0 − im s has a single element, called

the root;
(4) let T0 = T2 + {r}, with r the root, and define the walk-to-root function σ by σ(r) = r, and

otherwise σ(e) = tp(e); then we ask that for all x ∈ T0, there exists k ∈ N such that σk(x) = r.
We call the colours of a tree its edges and the inputs of a node the input edges of that node.

Let Tree be the full subcategory of PolyEnd whose objects are trees. Note that it is the category of
symmetric or non-planar trees (the automorphism group of a tree is in general non-trivial) and that its
morphisms correspond to inclusions of non-planar subtrees. An elementary tree is a tree with at most
one node. Let elTree be the full subcategory of Tree spanned by elementary trees.

(2)We recall that a natural transformation is cartesian if all its naturality squares are cartesian.
(3)We recall that a monad is cartesian if its endofunctor preserves pullbacks and its unit and multiplication are cartesian

natural transformations.
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For P ∈ PolyEnd, the category trP of P -trees is the comma category Tree ↓ P . The fundamental
difference between Tree and trP is that the latter is always rigid i.e. it has no non-trivial automorphisms
[Koc11, proposition 1.2.3]. In particular, this implies that PolyEnd does not have a terminal object.

Let us introduce some notation. Every P -tree T ∈ trP corresponds to a morphism from a tree (which
we shall denote by ⟨T ⟩) to P , so that T ∶ ⟨T ⟩ Ð→ P . We point out that ⟨T ⟩1 is the set of nodes of ⟨T ⟩,
while T1 ∶ ⟨T ⟩1 Ð→ P1 is a decoration of the nodes of ⟨T ⟩ by nodes of P , and likewise for edges.

For P ∈ PolyEnd, its category of elements(4) eltP is the comma category elTree ↓ P . Explicitly, for
P as in equation (2.1.1), the set of objects of eltP is I + B, and for each b ∈ B, there is a morphism
t ∶ t(b) Ð→ b, and a morphism se ∶ se(b) Ð→ b for each e ∈ E(b). Remark that there is no non-trivial
composition of arrows in eltP .

Proposition 2.2.1 ([Koc11, proposition 2.1.3]). There is an equivalence of categories Psh(eltP ) ≃
PolyEnd/P .

Proof. For X ∈ Psh(eltP ), construct the following polynomial functor over P :

∑i∈I Xi EX ∑b∈BXb ∑i∈I Xi

I E B I,

⌟

where EX Ð→ ∑i∈I Xi is given by the maps Xse ∶ Xb Ð→ Xse b, for b ∈ B and e ∈ E(b). In the other
direction, note that the full inclusion elTree↪Ð→ PolyEnd induces a full inclusion ι ∶ eltP ↪Ð→ PolyEnd/P
whose nerve functor PolyEnd/P Ð→ Psh(eltP ) maps Q ∈ PolyEnd/P to PolyEnd/P (ι−,Q). The two
constructions are easily seen to define the required equivalence of categories. □
2.3. Addresses. Let T ∈ Tree be a polynomial tree and σ be its walk-to-root function. We define the
address function & inductively on edges as follows:

(1) if r is the root edge, let &r ∶=[],
(2) if e ∈ T0 − {r} and if &σ(e) = [x], define &e ∶=[xe].

The address of a node b ∈ T1 is defined as &b ∶=&tb. Note that this function is injective since t is. Let
T ● denote its image, the set of node addresses of T , and let T ∣ be the set of addresses of leaf edges, i.e.
those not in the image of t.

Assume now that T ∶ ⟨T ⟩ Ð→ P is a P -tree. If b ∈ ⟨T ⟩1 has address &b = [p], write s[p] T ∶=T1(b). For
convenience, we let T ● ∶= ⟨T ⟩●, and T ∣ ∶= ⟨T ⟩∣.

Remark 2.3.1. The formalism of addresses is a useful bookkeeping syntax for the operations of grafting
and substitution on trees. The syntax of addresses will extend to the category of opetopes and will
allow us to give a precise description of the composition of morphisms in the category of opetopes (see
definition 3.3.2) as well as certain constructions on opetopic sets.

2.4. Grafting. Let P be a polynomial endofunctor as in equation (2.1.1). For i ∈ I, define Ii ∈ trP as
having underlying tree

{i} ∅ ∅ {i}, (2.4.1)

along with the obvious morphism to P . This corresponds to a tree with no nodes and a unique edge
decorated by i. Define Yb ∈ trP , the corolla at b, as having underlying tree

s(E(b)) + {∗} E(b) {b} s(E(b)) + {∗}, (2.4.2)

(4)Not to be confused with the category of elements of a presheaf over some category.



8 C. HO THANH AND C. LEENA SUBRAMANIAM

where the right map sends b to ∗. This corresponds to a P -tree with a unique node, decorated by b.
Observe that for T ∈ trP , giving a morphism Ii Ð→ T is equivalent to specifying the address [p] of
an edge address of T decorated by i. Likewise, morphisms of the form Yb Ð→ T are in bijection with
addresses of nodes of T decorated by b.

For S,T ∈ trP , [l] ∈ S ∣ such that the leaf of S at [l] and the root edge of T are decorated by the same
i ∈ I, define the grafting S ○[l] T of S and T on [l] by the following pushout (in trP ):

Ii T

S S ○
[l]
T.

⌜

[]

[l] (2.4.3)

Note that if S (resp. T ) is a trivial tree, then S ○[l] T = T (resp. = S). We assume, by convention, that
the grafting operator ○ associates to the right.

Proposition 2.4.4 ([Koc11, proposition 1.1.21]). Every P -tree is either of the form Ii, for some i ∈ I,
or obtained by iterated graftings of corollas.

Take T,U1, . . . , Uk ∈ trP , where T ∣ = {[l1], . . . , [lk]}, and assume the grafting T ○[li]Ui is defined for
all i. Then the total grafting will be denoted concisely by

T◯
[li]

Ui = (⋯(T ○
[l1]

U1) ○
[l2]

U2⋯) ○
[lk]

Uk. (2.4.5)

It is easy to see that the result does not depend on the order in which the graftings are performed.
Let [p] ∈ T ● and b = s[p] T . Then T can be decomposed as

T = A ○
[p]

Yb◯
[ei]

Bi, (2.4.6)

where E(b) = {e1, . . . , ek}, and A,B1, . . . ,Bk ∈ trP . For U a P -tree with a bijection ℘ ∶ U ∣ Ð→ E(b) over
I, we define the substitution T ◽[p]U as

T ◽
[p]
U ∶=A ○

[p]
U ◯
℘−1ei

Bi. (2.4.7)

In other words, the node at address [p] in T has been replaced by U , and the map ℘ provided “rewiring
instructions” to connect the leaves of U to the rest of T .

We denote by tr∣ P the set of P -trees with a marked leaf, i.e. endowed with the address of one of its
leaves. Similarly, we denote by tr● P the set of P -trees with a marked node.

2.5. Polynomial monads. Recall that a polynomial monad over I ∈ Set is a monoid in the monoidal
category PolyEnd(I). Let PolyMnd(I) be the category of monoids in PolyEnd(I). That is, PolyMnd(I)
is the category of polynomial monads over I and morphisms of polynomial functors over I that are also
monad morphisms.

Given a polynomial endofunctor P as in equation (2.1.1), we can define a new polynomial functor P ⋆
as

I tr∣ P trP I
s p t (2.5.1)

where s maps a P -tree with a marked leaf to the decoration of that leaf, p forgets the marking, and t
maps a tree to the decoration of its root. Remark that for T ∈ trP we have p−1T = T ∣.

Theorem 2.5.2 ([Koc11, section 1.2.7], [KJBM10, sections 2.7 – 2.9]). The polynomial functor P ⋆

has a canonical structure of a polynomial monad. Furthermore, the functor (−)⋆ is left adjoint to the
forgetful functor PolyMnd(I)Ð→ PolyEnd(I), and the adjunction is monadic.
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We abuse notation slightly by letting (−)⋆ denote the associated monad on PolyEnd(I). Let M be a
polynomial monad as in equation (2.1.1):

I E B I,
s p t

As a polynomial monad, M is a (−)⋆-algebra, and we will write its structure map M⋆ Ð→M as

I tr∣M trM I

I E B I.

℘ t
⌟ (2.5.3)

For T ∈ trM , we call ℘T ∶ T ∣
≅Ð→ E(tT ) the readdressing function of T , and tT ∈ B is called the target of

T . If we think of an element b ∈ B as the corolla Yb, then the target map t “contracts” a tree to a corolla,
and since the middle square is a pullback, the number of leaves is preserved. The map ℘T establishes a
coherent correspondence between the set T ∣ of leaf addresses of a tree T and the elements of E(T ).

2.6. The polynomial Baez–Dolan (−)+ construction. Let M be a polynomial monad as in equa-
tion (2.1.1), and define M+ to be

B tr●M trM B
s p t (2.6.1)

where s maps an M -tree with a marked node to the label of that node, p forgets the marking, and t is
the target map. If T ∈ trM , remark that p−1T = T ● is the set of node addresses of T . If [p] ∈ T ●, then
s[p] ∶= s[p] T .

Theorem 2.6.2 ([KJBM10, section 3.2]). The polynomial functor M+ has a canonical structure of a
polynomial monad.

The (−)+ construction is an endofunctor on PolyMnd whose definition is motivated as follows. If we
begin with a polynomial monad M , then the colours of M+ are the operations of M . The operations of
M+, along with their output colour, are given by the monad multiplication of M : they are the relations
of M , i.e. the reductions of trees of M to operations of M . The monad multiplication on M+ is given
as follows: the reduction of a tree of M+ to an operation of M+ (which is a tree of M) is obtained by
substituting trees of M into nodes of trees of M .

Let M be a finitary (i.e. the fibers of p below are finite, or equivalently, p∗, and therefore M = t!p∗s∗,
preserves filtered colimits) polynomial monad whose underlying polynomial functor is

I E B I.
s p t

The Baez–Dolan construction gives the polynomial monad M+ whose underlying polynomial functor is

B tr●M trM B.
s p t

Recall also from theorem 2.5.2 that the category PolyMnd(I) is the category of (−)⋆-algebras. The
following fact is analogous to proposition 2.2.1 and is at the heart of the Baez–Dolan construction
(indeed, it is even the original definition of the construction, see [BD98, definition 15]).

Proposition 2.6.3. For M a polynomial monad, there is an equivalence of categories Alg(M+) ≃
PolyMnd(I)/M .
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Proof. Given a M+-algebra M+X
xÐ→X in Set/B, define ΦX ∈ PolyEnd(I)/M as

I EX X I

I E B I.

⌟

There is an evident bijection trΦX ≅M+X in Set/I, and the structure map x extends by pullback along
EX Ð→ X to a map (ΦX)⋆ Ð→ ΦX in PolyEnd(I). It is easy to verify that this determines a (−)⋆-
algebra structure on ΦX, and that the map ΦX Ð→M in PolyEnd(I) is a morphism of (−)⋆-algebras.
Conversely, given an N ∈ PolyMnd(I)/M whose underlying polynomial functor is

I E′ B′ I,

then the bijection trN ≅M+B′ in Set/I and the (−)⋆-algebra map N⋆ Ð→ N provide a map M+B′
ΨNÐÐ→

B′ in Set/I. It is easy to verify that ΨN is the structure map of a M+-algebra and that the constructions
Φ and Ψ are functorial and mutually inverse. □
Remark 2.6.4. The previous result provides an equivalence between PolyMnd(I)/M and the category
of M+-algebras. A “coloured” version of this result can be (informally) stated as follows: for Algcol(M+)
a suitable category of coloured M+-algebras, there is an equivalence Algcol(M+) ≃ PolyMnd/M , where
PolyMnd is the category of all polynomial monads (for all I in Set).

3. Opetopes

In this section, we use the formalism of polynomial functors and polynomial monads of section 2 to
define opetopes and morphisms between them. This gives us a category O of opetopes and a category
Psh(O) of opetopic sets. Our construction of opetopes is precisely that of [KJBM10], and by [KJBM10,
theorem 3.16], also that of [Lei04, Lei98], and by [Che04b, corollary 2.6], also that of [Che03]. As we
will see, the category O is rigid, i.e. it has no non-trivial automorphisms (it is in fact a direct category).

3.1. Polynomial definition of opetopes. Let Z0 be the identity polynomial monad on Set:

{∗} {∗} {∗} {∗},

and let Zn ∶=(Zn−1)+. Write Zn as

On En+1 On+1 On.
s p t (3.1.1)

An n-dimensional opetope (or simply n-opetope) ω is by definition an element of On, and we write
dimω = n. The unique 0-opetope is denoted ⧫ and called the point, and the unique 1-opetope is denoted
◾ and called the arrow.

If n ≥ 2, then ω ∈ On is a Zn−2-tree, i.e. a tree whose nodes are labeled in (n − 1)-opetopes, and
edges are labeled in (n − 2)-opetopes. In particular, 2-opetopes are Z0-trees, i.e. linear trees, and thus
in bijection with N. We will refer to them as opetopic integers, and write n for the 2-opetope having
exactly n nodes. An opetope ω ∈ On with n ≥ 2 is called degenerate if its underlying tree has no nodes
(thus consists of a unique edge); it is non degenerate otherwise.

Following (2.5.3), for ω ∈ On+2, the structure of polynomial monad (Zn)⋆ Ð→ Zn gives a bijection
℘ω ∶ ω∣ Ð→ (tω)● between the leaves of ω and the nodes of tω, preserving the decoration by n-opetopes.
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3.2. Higher addresses. By definition, an opetope ω of dimension n ≥ 2 is a Zn−2-tree, and thus
the formalism of tree addresses presented in section 2.3 can be applied to designate nodes of ω, also
called its source faces or simply sources. In this section, we refine this formalism into the concept of
higher dimensional address, which turns out to be more convenient. This material is largely taken from
[CHTM19, section 2.2.3].

Start by defining the set An of n-addresses as follows:
A0 = {∗} , An+1 = listsAn,

where listsX is the set of finite lists (or words) on the alphabet X. Explicitly, the unique 0-address is
∗ (also written [] by convention), while an (n+ 1)-address is a sequence of n-addresses. Such sequences
are enclosed by brackets. Note that the address [], associated to the empty word, is in An for all
n ≥ 0. However, the surrounding context will almost always make the notation unambiguous. Here are
examples of higher addresses:

[] ∈ A1, [∗ ∗ ∗∗] ∈ A1, [[][∗][]] ∈ A2, [[[[∗]]]] ∈ A4.

For ω ∈ O an opetope, nodes of ω can be specified uniquely using higher addresses, as we now show.
Recall that En−1 is the set of arities of Zn−2, see (3.1.1). In Z0, set E1(◾) = {∗}, so that the unique node
address of ◾ is ∗ ∈ A0. For n ≥ 2, recall that an opetope ω ∈ On is a Zn−2-tree ω ∶ ⟨ω⟩Ð→ Zn−2, and write
⟨ω⟩ as

Iω Eω Bω Iω.

A node b ∈ Bω has an address &b ∈ listsEω, which by ω2 ∶ Eω Ð→ En−1 is mapped to an element
of listsEn−1. By induction, elements of En−1 are (n − 2)-addresses, whence ω2(&b) ∈ listAn−2 = An−1.
For the induction step, elements of En(ω) are nodes of ⟨ω⟩, which we identify by their aforementioned
(n− 1)-addresses. Consequently, for all n ≥ 1 and ω ∈ On, elements of En(ω) = ω● can be seen as the set
of (n − 1)-addresses of the nodes of ω, and similarly, ω∣ can be seen as the set of (n − 1)-addresses of
edges of ω.

We now identify the nodes of ω ∈ On+2 with their addresses. In particular, for [p] ∈ ω● a node address
of ω, we make use of the notation s[p] ω of section 2.2 to refer to the decoration of the node at address [p],
which is an (n + 1)-opetope. Let [l] = [p[q]] ∈ An−1 be an address such that [p] ∈ ω● and [q] ∈ (s[p] ω)

●.
Then as a shorthand, we write

e[l] ω ∶= s[q] s[p] ω. (3.2.1)

Example 3.2.2. Consider the 2-opetope on the left, called 3:

.

. .

.
⇓

◾

◾

◾

⧫

⧫

⧫

⧫

Its underlying pasting diagram consists of 3 arrows ◾ grafted linearly. Since the only node address of ◾
is ∗ ∈ A0, the underlying tree of 3 can be depicted as on the right. On the left are the decorations: nodes
are decorated with ◾ ∈ O1, while the edges are decorated with ⧫ ∈ O0. For each node in the tree, the
set of input edges of that node is in bijective correspondence with the node addresses of the decorating
opetope, and that address is written on the right of each edges. In this low dimensional example, those
addresses can only be ∗. Finally, on the right of each node is its 1-address, which is just a sequence of
0-addresses giving “walking instructions” to get from the root to that node.
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The 2-opetope 3 can then be seen as a corolla in some 3-opetope as follows:

3

◾

◾ ◾ ◾

As previously mentioned, the set of input edges is in bijective correspondence with the set of node
addresses of 3.

Here is now an example of a 3-opetope, with its annotated underlying tree on the right (the 2-opetopes
1 and 2 are analogous to 3):

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
3

12

◾

◾◾◾

◾◾ ◾

Lemma 3.2.3. Let n ≥ 2, ν, ν′ ∈ On, and [l] ∈ ν● be such that e[l] ν = e[] ν′. In particular, the grafting
ν ○[l] ν′ is well-defined, and by (Glob1) and (Glob2), s℘ν[l] tν = e[l] ν = e[] ν′ = t t ν′. We have

t(ν ○
[l]
ν′) = (tν) ◽

℘ν[l]
(tν′).

Proof. This is a direct consequence of the fact that Zn−2 is a polynomial monad, i.e. a (−)⋆-algebra.
□

3.3. The category of opetopes. In this subsection, we define the category O of opetopes, originally
introduced in [HT18].

Proposition 3.3.1 (Opetopic identities, [HT18, theorem 4.1]). Let ω ∈ On with n ≥ 2.
(1) (Inner edge) For [p[q]] ∈ ω● (forcing ω to be non degenerate), we have t s[p[q]] ω = s[q] s[p] ω.
(2) (Globularity 1) If ω is non degenerate, we have t s[] ω = t tω.
(3) (Globularity 2) If ω is non degenerate, and [p[q]] ∈ ω∣, we have s[q] s[p] ω = s℘ω[p[q]] tω.
(4) (Degeneracy) If ω is degenerate, we have s[] tω = t tω.

Definition 3.3.2 ([HT18, section 4.2]). With these identities in mind, we define the category O of
opetopes by generators and relations as follows.

(1) (Objects) We set obO = ∑n∈NOn.
(2) (Generating morphisms) Let ω ∈ On with n ≥ 1. We introduce a generator tω

tÐ→ ω, called
the target embedding. If [p] ∈ ω●, then we introduce a generator s[p] ω

s[p]ÐÐ→ ω, called a source
embedding. A face embedding is either a source or the target embedding.

(3) (Relations) We impose 4 relations described by the following commutative squares, that are well
defined thanks to proposition 3.3.1. Let ω ∈ On with n ≥ 2
(a) (Inner) for [p[q]] ∈ ω● (forcing ω to be non degenerate), the following square must com-

mute:
s[q] s[p] ω s[p] ω

s[p[q]] ω ω

s[q]

t s[p]
s[p[q]]
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(b) (Glob1) if ω is non degenerate, the following square must commute:

t tω tω

s[] ω ω.

t

t t
s[]

(c) (Glob2) if ω is non degenerate, and for [p[q]] ∈ ω∣, the following square must commute:

s℘ω[p[q]] tω tω

s[p] ω ω.

s℘ω[p[q]]

s[q] t
s[p]

(d) (Degen) if ω is degenerate, the following square must commute:

t tω tω

tω ω.

t

s[] t

t

See [HT18] for a graphical explanation of a geometrical interpretation of those relations.

For n ∈ N, we let O≤n be the full subcategory of O spanned by opetopes of dimension at most n. The
subcategories O<n, O≥n, O>n, and O=n are defined similarly. Note that the latter is simply the set On.

3.4. Opetopic sets. Write Psh(O) for the category of opetopic sets, i.e. Set-valued presheaves over
O. For X ∈ Psh(O) and ω ∈ O, we will refer to the elements of the set Xω as the cells of X of form
ω. The representable presheaf at ω ∈ On is denoted O[ω]. Its cells are morphisms of O of the form
f ∶ ψ Ð→ ω, for f a sequence of face embeddings, which we write fω ∈ O[ω]ψ for short. For instance, the
cell of maximal dimension is simply ω (as the corresponding sequence of face embeddings is empty), its
(n − 1)-cells are {s[p] ω ∣ [p] ∈ ω●} ∪ {tω}, and there is no cell of dimension > n. The boundary ∂O[ω] of
ω is the maximal subpresheaf of O[ω] not containing the cell ω. We write bω ∶ ∂O[ω] ↪Ð→ O[ω] for the
boundary inclusion. The target horn Λt[ω] is the maximal subpresheaf of ∂O[ω] not containing the cell
tω, and we write hω ∶ Λt[ω]↪Ð→ O[ω] for the target horn inclusion.

Lemma 3.4.1. For ω ∈ O, with dimω ≥ 1 the following square is a pushout and a pullback(5), where all
arrows are canonical inclusions:

∂O[tω] Λt[ω]

O[tω] ∂O[ω].

(5)Recall that in a topos, the pushout of a monomorphism along any arrow is a monomorphism, and the pushout square
is a pullback square – this property is sometimes called “adhesivity”, and is a consequence of van Kampen-ness, or descent,
for pushouts of monomorphisms.
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Lemma 3.4.2. Let n ≥ 1, ν ∈ On, [l] ∈ ν ∣, and ψ ∈ On−1 be such that e[l] ν = tψ, so that the grafting
ν ○[l]Yψ is well-defined. Then the following square is a pushout:

O[e[l] ν] O[ψ]

Λt[ν] Λt[ν ○
[l]
Yψ].

t

e[l] s[l]

We now introduce notations for important sets of morphisms:

B ∶={bω ∶ ∂O[ω]↪Ð→ O[ω] ∣ ω ∈ O} , (3.4.3)

H ∶={hω ∶ Λt[ω]↪Ð→ O[ω] ∣ ω ∈ O} , (3.4.4)

O ∶={oω ∶ ∅↪Ð→ O[ω] ∣ ω ∈ O} . (3.4.5)

For F ∶ O Ð→ homC a function that maps opetopes to morphisms in some category C, and M the
set of maps defined by M ∶={F (ω) ∣ ω ∈ O}. Then for n ∈ N, we define M≥n ∶={F (ω) ∣ ω ∈ O≥n}, and
similarly for M>n, M≤n, M<n, and M=n. For convenience, the latter is abbreviated Mn. If m ≤ n, we
also let Mm,n = M≥m ∩M≤n. By convention, M≤n = ∅ if n < 0. For example, H≥2 = {hω ∣ ω ∈ O≥2}, and
Hn,n+1 = Hn ∪Hn+1. With those notations in mind, let

Ak,n ∶=O<n−k ∪H≥n+1. (3.4.6)

Lemma 3.4.7. (1) Let X ∈ Psh(O) such that Hn,n+1 ⊥ X. Then Bn+1 ⊥ X. In general, every
morphism in B≥n+1 is an H≥n-local isomorphism.

(2) Let X ∈ Psh(O) such that (Hn,n+1 ∪Bn+2) ⊥ X. Then Hn+2 ⊥ X. In particular, if (Hn,n+1 ∪
B≥n+2) ⊥X, then H≥n ⊥X.

Proof. (1) Let ω ∈ On+1. By 2-for-3, since the composite hω ∶ Λt[ω]↪Ð→ ∂O[ω]↪Ð→ O[ω] is in Hn,n+1,
it suffices to show that (Λt[ω] ↪Ð→ ∂O[ω]) ⊥ X. Let f ∶ Λt[ω] Ð→ X be a morphism. The
existence of a lift ∂O[ω]Ð→X follows from the existence of a lift O[ω]Ð→X. Next, given two
lifts g, h ∶ ∂O[ω]Ð→X of f , by lemma 3.4.1, it suffices to show that they coincide on O[tω] to
show that they are equal. But since they coincide on Λt[ω], they coincide on Λt[tω], and hence
on O[tω] since htω ⊥X.

(2) Let ω ∈ On+2 and f ∶ Λt[ω] Ð→ X. Then the restriction f ∣Λt[tω] of f to Λt[tω] extends to a
unique f ∣O[tω]

Λt[tω]. We now show that the following square commutes:

∂O[tω] Λt[ω]

O[tω] X.

f
f ∣O[tω]

Λt[tω]

(3.4.8)

Tautologically, we have f ∣Λt[tω] = f ∣
O[tω]
Λt[tω]∣Λt[tω], and in particular, f ∣Λt[t tω] = f ∣

O[tω]
Λt[tω]∣Λt[t tω].

Since Hn−2 ⊥ X, we have f ∣O[t tω] = f ∣
O[tω]
Λt[tω]∣O[t tω]. Therefore, square (3.4.8) commutes, and by

lemma 3.4.1, f extends to a unique f ∣∂O[ω] ∶ ∂O[ω] Ð→ O[ω] such that f ∣∂O[ω]∣O[tω] = f ∣
O[tω]
Λt[tω].

Since Bn ⊥X, f ∣∂O[ω] extends to a unique morphism O[ω]Ð→X. □
Lemma 3.4.9. Let n ∈ N, and ω ∈ On+2. Then the inclusion Λt[tω] ↪Ð→ Λt[ω] is a relative Hn+1-cell
complex.
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Proof. We show that the morphism Λt[tω]↪Ð→ Λt[ω] is a (finite) composite of pushouts of elements of
Hn+1. Let X0 = Λt[tω]. At stage k ≥ 0, let J be the (necessarily finite) set of inclusions j = (j1, j2) in
Psh(O)→ as on the left

Λt[ψj] Xk

O[ψj] Λt[ω],

j1

hψj
j2

∐j∈J Λt[ψj] Xk

∐j∈J O[ψj] Xk+1.
⌜

j1

hψj
j2

where ψj ∈ On+1, such that j1 that do not factor through Xl for any l < k. Define Xk+1 with the pushout
on the right. There is a k, bounded by the height of the tree ω ∈ trZn, at which the sequence converges
to Λt[tω] =X0 ↪Ð→X1 ↪Ð→ . . .↪Ð→Xk = Λt[ω]. □

Corollary 3.4.10. (1) Let n ∈ N, and ω ∈ On+2. Then the target embedding tω Ð→ ω of ω is an
Hn+1,n+2-local isomorphism.

(2) Let k,n ∈ N, and ω ∈ O≥n+2. Then the target embedding tω Ð→ ω is an Ak,n-local isomorphism.

Proof. (1) In the square below

Λt[tω] O[tω]

Λt[ω] O[ω]

htω

r t

hω

the map r is an Hn+1-local isomorphism by lemma 3.4.9, and the horizontal maps are in Hn+1,n+2.
The result follows by 2-for-3.

(2) Let ω ∈ Om. Since Hm−1,m+1 ⊂ Ak,n by definition, this follows from the previous point. □
Corollary 3.4.11. Let ψ ∈ On.

(1) t t = s[] t ∶ ψ Ð→ Iψ is in Hn+2.
(2) The morphisms s[], t ∶ ψ Ð→ Yψ are Hn+1,n+2-local isomorphisms.

Proof. (1) The embedding t t = s[] t ∶ ψ Ð→ Iψ is precisely the horn inclusion hIϕ of the degenerate
(n + 2)-opetope Iψ.

(2) The source embedding s[] ∶ ψ Ð→ Yψ is precisely the horn inclusion hYψ of the (n + 1)-opetope
Yψ. The target embedding t ∶ ψ Ð→ Yψ is the morphism t ∶ t t Iψ Ð→ t Iψ and is the vertical arrow
in the diagram below.

ψ = Λt[Iψ]

Yψ = t Iψ Iψ.

t
hIψ

t

The horizontal arrow is an Hn+1,n+2-local isomorphism by corollary 3.4.10 and the diagonal arrow
is in Hn+2 by point (1). The result follows by 2-for-3. □

3.5. Extensions. Recall that a functor between small categories u ∶ A Ð→ B induces a restriction
u∗ ∶ Psh(B) Ð→ Psh(A) that admits both adjoints u! ⊣ u∗ ⊣ u∗, given by pointwise left and right Kan
extensions.

Let m ∈ N and n ∈ N ∪ {∞} be such that m ≤ n, and let Om,n be the full subcategory of O spanned
by opetopes ω such that m ≤ dimω ≤ n. For instance, Om,∞ = O≥m.

The inclusion ι≥m ∶ Om,n Ð→ O≥m induces a restriction functor (−)m,n ∶ Psh(O≥m) Ð→ Psh(Om,n),
called truncation, that have both a left adjoint ι≥m! and a right adjoint ι≥m∗ . Explicitly, for X ∈ Psh(Om,n),



16 C. HO THANH AND C. LEENA SUBRAMANIAM

the presheaf ι≥m! X is the “extension by 0”, i.e. (ι≥m! X)m,n =X, and (ι≥m! X)ψ = ∅ for all ψ ∈ O>n. On the
other hand, ι≥m∗ X is the “canonical extension” of X intro a presheaf over O≥m: we have (ι≥m∗ X)m,n =X,
and B>n ⊥ ι≥m∗ X, which uniquely determines ι≥m∗ X.

Likewise, the inclusion ι≤n ∶ Om,n Ð→ O≤n induces a restriction functor Psh(O≤n) Ð→ Psh(Om,n),
also denoted by (−)m,n and again called truncation, that have both a left adjoint ι≤n! and a right adjoint
ι≤n∗ . Explicitly, for X ∈ Psh(Om,n), the presheaf ι≤n! X is the “canonical extension” of X intro a presheaf
over O≤n:

ι≤n! X = colim
O[ψ]m,n→X

O[ψ].

On the other hand, ι≤n∗ X is the “terminal extension” of X in that (ι≤n∗ X)m,n = X, and (ι≤n∗ X)ψ is a
singleton, for all ψ ∈ O<n. Note that O<m ⊥ ι≤n∗ X, and that it is uniquely determined by this property.

For n < ∞, we write (−)≤n for (−)0,n ∶ Psh(O≥0) = Psh(O) Ð→ Psh(O0,n) = Psh(O≤n), and let
(−)<n = (−)≤n−1 if n ≥ 0. Similarly, we note (−)m,n ∶ Psh(O≤∞) = Psh(O) Ð→ Psh(Om,∞) = Psh(O≥m)
by (−)≥m, and let (−)>m = (−)≥m+1.
Proposition 3.5.1. (1) The functors ι≥m! , ι≥m∗ , ι≤n! , and ι≤n∗ are fully faithful.

(2) A presheaf X ∈ Psh(O≥m) is in the essential image of ι≥m! if and only if X>n = ∅.
(3) A presheaf X ∈ Psh(O≥m) is in the essential image of ι≥m∗ if and only if for all ω ∈ O>n we have
(bω)≥m ⊥X.

(4) A presheaf X ∈ Psh(O≤n) is in the essential image of ι≤n∗ if and only if for all ω ∈ O<m we have
(oω)≤n ⊥X, i.e. Xω is a singleton.

Proof. The first point follows from the fact that ι≥m and ι≤n are fully faithful, and [SGA72, exposé I,
proposition 5.6]. The rest is straightforward verifications. □

To ease notations, we sometimes leave truncations implicit, e.g. point (3) of last proposition can be
reworded as: a presheaf X ∈ Psh(O≥m) is in the essential image of ι≥m∗ if and only if B>n ⊥X.

4. The opetopic nerve of opetopic algebras

4.1. Opetopic algebras. Let k ≤ n ∈ N. Recall that On−k,n ↪Ð→ O is the full subcategory of opetopes of
dimension at least n−k and at most n. A k-coloured, n-dimensional opetopic algebra, or (k,n)-opetopic
algebra, will be an algebraic structure on a presheaf over On−k,n. Specifically, we describe a monad
on the category Psh(On−k,n), whose algebras are the (k,n)-opetopic algebras. Such an algebra X has
“operations” (its cells of dimension n) that can be “composed” in ways encoded by (n+ 1)-opetopes(6).
The operations of X will be “coloured” by its cells dimension < n, which determines which operations
can be composed together.

As we will see, the fact that the operations and relations of an (k,n)-opetopic algebra are encoded by
opetopes of dimension > n results in the category Algk(Zn) of (k,n)-opetopic algebras always having a
canonical full and faithful nerve functor to the category Psh(O) of opetopic sets (theorem 4.5.10).

We now claim some examples. A classification of (k,n)-opetopic algebras is given by proposition 4.3.5.
Example 4.1.1 (Monoids and categories). Let k = 0 and n = 1. Then On−k,n = O1 = {∗}, and
Psh(On−k,n) = Set. The category of (0,1)-opetopic algebras is precisely the category of associative
monoids. If k = 1 instead, then On−k,n = O0,1, and Psh(On−k,n) = Graph, the category of directed graphs.
The category of (1,1)-opetopic algebras is precisely the category of small categories.
Example 4.1.2 (Coloured and uncoloured planar operads). Let k = 0 and n = 2. Then On−k,n = O2 ≅ N,
and Psh(O2) ≃ Set/N. The category of (0,2)-opetopic algebras is precisely the category of planar,
uncoloured Set-operads. If k = 1 instead, then Psh(O1,2) is the category of planar, coloured collections.
The category of (1,2)-opetopic algebras is precisely the category of planar, coloured Set-operads.

(6)Recall that an (n + 1)-opetope is precisely a pasting scheme of n-opetopes.
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Example 4.1.3 (Combinads). Let k = 0 and n = 3. Then On−k,n = O3 is the set of planar finite trees,
and (0,3)-opetopic algebras are exactly the combinads over the combinatorial pattern of non-symmetric
trees, presented in [Lod12].

4.2. Parametric right adjoint monads. In preparation to the main results of this section, we survey
elements of the theory of parametric right adjoint (p.r.a.) monads, which will be essential to the definition
and description of (k,n)-opetopic algebras. A comprehensive treatment of this theory can be found in
[Web07].

Let T ∶ CÐ→D be a functor, and let C have a terminal object 1. Then T factors as

C = C/1 T1Ð→D/T1Ð→D.

We say that T is a parametric right adjoint (abbreviated p.r.a.) if T1 has a left adjoint E.
We immediately restrict ourselves to the case C =D = Psh(A) for a small category A. Then T1 is the

nerve of the restriction E ∶ A/T1Ð→ Psh(A), and the usual formula for nerve functors gives
TXa = ∑

x∈T1a
Psh(A)(Ex,X) (4.2.1)

for X ∈ Psh(A) and a ∈ A. In fact, it is clear that the data of the object T1 ∈ Psh(A) and of the functor
E completely describe (via equation (4.2.1)) the functor T up to unique isomorphism.

A p.r.a. monad is a monad whose endofunctor is a p.r.a. and whose unit and multiplication are
cartesian natural transformations(7). Assume now that T ∶ Psh(A)Ð→ Psh(A) is a p.r.a. monad. Define
Θ0 to be the full subcategory of Psh(A) spanned by the image of E ∶ A/T1 Ð→ Psh(A). Objects of Θ0

are called T -cardinals. By [Web07, proposition 4.20], the Yoneda embedding A↪Ð→ Psh(A) factors as

A Θ0 Psh(A),i i0

or in other words, representable presheaves are T -cardinals.
Every p.r.a. monad on a presheaf category is an example of a monad with arities [BMW12]. The

theory of monads with arities provides a remarkable amount of information about the free-forgetful
adjunction Psh(A)Ð→←Ð Alg(T ) and about the category of algebras Alg(T ). We summarise those results
that we will use below.

Proposition 4.2.2. The fully faithful functor i0 ∶ Θ0 ↪Ð→ Psh(A) is dense, or equivalently, its associated
nerve functor N0 ∶ Psh(A)↪Ð→ Psh(Θ0) is fully faithful.

Proof. We denote the inclusion A ↪Ð→ Θ0 by i, and note that N0 is isomorphic to i∗ ∶ Psh(A) Ð→
Psh(Θ0). Now, i is fully faithful, and by [SGA72, exposé I, proposition 5.6], this is equivalent to i∗
being fully faithful. □
Corollary 4.2.3. Let JA ∶={εθ ∶ i!i∗θ Ð→ θ ∣ θ ∈ Θ0 − im i}, where εθ is the counit at θ. Then a presheaf
X ∈ Psh(Θ0) is in the essential image of N0 if and only if JA ⊥X.

Proof. By the formula i∗Y = Psh(A)(Θ0(i−,−), Y ) we have the sequence of isomorphisms
(i∗Y )θ = Psh(A)(Θ0(i−, θ), Y )

≅ Psh(A)(i∗θ, i∗i∗Y ) since i∗ is fully faithful
≅ Psh(Θ0)(i!i∗θ, i∗Y ) since ι! ⊣ i∗.

(7)P.r.a. monads on presheaf categories are a strict generalisation of polynomial monads, since an endofunctor Set/I Ð→
Set/I is a polynomial functor iff it is a p.r.a., see [Web07, example 2.4].
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It is easy to check that one direction of the previous isomorphism is pre-composition by εθ. Conversely,
take X ∈ Psh(Θ0) such that εθ ⊥X for all θ ∈ Θ0. Then

i∗i∗Xθ ≅ Psh(Θ0)(θ, i∗i∗X)
≅ Psh(Θ0)(i!i∗θ,X)
≅ Psh(Θ0)(θ,X) since εθ ⊥X
≅Xθ,

and thus X ∈ im i∗. Thus a presheaf X is isomorphic to one of the form i∗Y if and only if we have
εθ ⊥ X for all θ ∈ Θ0. But if θ ∈ im i, then the associated counit map is already an isomorphism, hence
we can restrict to JA. □

Let the (identity-on-objects, fully faithful) factorisation of the composite functor FT i0 ∶ Θ0 ↪Ð→
Psh(A)Ð→ Alg(T ) be denoted

Θ0 ΘT Alg(T ).t iT (4.2.4)

Theorem 4.2.5. (1) The fully faithful functor iT ∶ ΘT ↪Ð→ Alg(T ) is dense, or equivalently, its
associated nerve functor NT ∶ Alg(T )↪Ð→ Psh(ΘT ) is fully faithful.

(2) The following diagram is an exact adjoint square(8).

Psh(A) Alg(T )

Psh(Θ0) Psh(ΘT )

N0

FT

NT

UT

⊥

t!

t∗
⊥

In particular, both squares commute up to natural isomorphism.
(3) (Nerve theorem) Any X ∈ Psh(ΘT ) is in the essential image of NT if and only if t∗X is in the

essential image of N0.

Proof. See [Web07, theorem 4.10], and [BMW12, proposition 1.9]. □
Corollary 4.2.6. Let JT ∶= t!JA = {t!εθ ∶ t!i!i∗θ Ð→ t!θ ∣ θ ∈ Θ0 − im i}, where εθ ∶ i!i∗θ Ð→ θ is the counit
at θ. Then X ∈ Psh(ΘT ) is in the essential image of NT if and only if JT ⊥X.

Proof. This follows from theorem 4.2.5 point (3), and from corollary 4.2.3. □
4.3. Coloured Zn-algebras. In this section, we extend the polynomial monad Zn over Set/On =
Psh(On) to a p.r.a. monad Zn over Psh(On−k,n), for k ≤ n ∈ N.

This new setup will encompass more known examples (see proposition 4.3.5). For instance, recall that
the polynomial monad Z2 on Set/O2 ≅ Set/N is exactly the monad of planar operads. The extension of
Z2 will retrieve coloured planar operads as algebras. Similarly, the polynomial monad Z1 on Set is the
free-monoid monad, which we would like to vary to obtain “coloured monoids”, i.e. small categories.

4.3.1. The p.r.a. endofunctor Zn. Let k ≤ n ∈ N. Let us define a p.r.a. endofunctor Zn (that ) on the
category Psh(On−k,n), that will restrict to the polynomial monad Zn ∶ Psh(On)Ð→ Psh(On) in the case
k = 0. Following section 4.2, to define the p.r.a. endofunctor Zn as the composite

Psh(On−k,n)
Zn1Ð→ Psh(On−k,n)/Zn1 ≃ Psh(On−k,n/Zn1)Ð→ Psh(On−k,n),

(8)There exists a natural isomorphism N0UT ≅ t∗NT whose mate t!N0 Ð→ NTFT is invertible (satisfies the Beck-
Chevalley condition).
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up to unique isomorphism, it suffices to define its value Zn1 on the terminal presheaf, and to define a
functor E ∶ On−k,n/Zn1Ð→ Psh(On−k,n). Define Zn1 as:

(Zn1)ψ ∶={∗}, (Zn1)ω ∶={ν ∈ On+1 ∣ tν = ω}.
where ψ ∈ On−k,n−1 and ω ∈ On. We define the functor E ∶ On−k,n/Zn1 Ð→ Psh(On−k,n) as follows. On
objects, for ψ and ν as above,

Eψ ∶=On−k,n[ψ], Eν ∶=Λt[ν],
and on morphisms as the canonical inclusions. The functor Zn1 ∶ Psh(On−k,n) Ð→ Psh(On−k,n/Zn1) is
defined as the right adjoint to the left Kan extension of E along the Yoneda embedding. We now recover
the endofunctor Zn explicitly using equation (4.2.1): for ψ ∈ On−k,n−1 we have (ZnX)ψ ≅ Xψ, and for
ω ∈ On we have

(ZnX)ω ≅ ∑
ν∈On+1
t ν=ω

Psh(On−k,n)(Λt[ν],X).

Note that (ZnX)ω matches with the “uncolored” version of Zn of equation (3.1.1).

4.3.2. The p.r.a. monad structure on Zn. Recall from section 4.2 that a p.r.a. monad is a monad M
whose unit idÐ→M and multiplication MM Ð→M are cartesian, and such that M is a p.r.a. endofunc-
tor. We now endow the p.r.a. endofunctor Zn with the structure of a p.r.a. monad over Psh(On−k,n). We
first specify the unit and multiplication η1 ∶ 1Ð→ Zn1 and µ1 ∶ ZnZn1Ð→ Zn1 on the terminal object 1,
and extend them to cartesian natural transformations (lemma 4.3.2). Next, we check that the required
monad identities hold for 1 (lemma 4.3.3), which automatically gives us the desired monad structure
on Zn.

Lemma 4.3.1. The polynomial functor ZnZn ∶ Set/On Ð→ Set/On is given by

On E O(2)n+2 On,
e t t

where
(1) O(2)n+2 is the set of (n + 2) opetopes of height 2, i.e. of the form

Yν ◯
[[pi]]

Yνi ,

with ν, νi ∈ On+1 and [pi] ranging over a (possibly empty) subset of ν●,
(2) for ξ ∈ O(2)n+2, E(ξ) = ξ∣,
(3) for ξ ∈ O(2)n+2 and [l] ∈ E(ξ) = ξ∣, e[l] = e[l] t.

We now define η1 and µ1.
(1) The presheaf Zn1 ∈ Psh(On−k,n) is pointed in the following way: the morphism η1 ∶ 1 Ð→ Zn1 is

the identity in dimension < n, and given by ω z→ Yω for ω ∈ On.
(2) First, note that for every non-degenerate ν ∈ On+1, a morphism x ∶ Λt[ν]Ð→ Zn1 in Psh(On−k,n)

and an element of ZnZn1, this corresponds to an opetope ν̄ ∈ On+2 height 2 (see lemma 4.3.1)
such that s[] ν̄ = ν.

Next, the map of presheaves µ1 ∶ ZnZn1Ð→ Zn1 is defined as the identity function on opetopes
of dimension n − k ≤ d < n, and as the function
µ1,ω ∶ ∑

ν∈On+1
t ν=ω

Psh(On−k,n)(Λt[ν],Zn1)Ð→ ∑
ν∈On+1
t ν=ω

Psh(On−k,n)(Λt[ν],1)

(ν, x)z→ (t ν̄,∗) if ν non-degen.
(ν,∗)z→ (ν,∗) if ν degen.
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on opetopes ω ∈ On. This is well-defined thanks to (Glob1).

Lemma 4.3.2. For X ∈ Psh(On−k,n), the unique morphism ! ∶X Ð→ 1 induces pullback squares

X ZnX

1 Zn1,

⌟
ηX

! Zn!

η1

ZnZnX ZnX

ZnZn1 Zn1

⌟

µX

ZnZn! Zn!

µ1

Proof. Straightforward verifications, see appendix A for details. □
We have suggestively named the topmost arrows ηX and µX , since this choice of pullback square for

each X gives cartesian natural transformations η ∶ idÐ→ Zn and µ ∶ ZnZn Ð→ Zn.

Lemma 4.3.3. The following diagrams commute:

Zn1 ZnZn1 Zn1

Zn1,

ηZn1

µ1

Znη1
ZnZnZn1 ZnZn1

ZnZn1 Zn1.

Znµ1

µZn1 µ1

µ1

Proof. Straightforward computations. See appendix A for details. □
Proposition 4.3.4. The cartesial natural transformations µ and η give Zn a structure of p.r.a. monad
on Psh(On−k,n).

Proof. This is a direct consequence of lemmas 4.3.2 and 4.3.3. □
Clearly, when k = 0, we recover the usual polynomial monad on Set/On. Let Algk(Zn), the category

of k-coloured n-dimensional opetopic algebras, be the Eilenberg–Moore category of Zn considered as a
monad on Psh(On−k,n). One readily checks the following:

Proposition 4.3.5. Up to equivalence, and for small values of k and n, the category Algk(Zn) is given
by the following table:

k/n 0 1 2 3
0 Set Mon Op CombPT
1 Cat Opcol Alg1(Z3)
2 Alg2(Z2) Alg2(Z3)
3 Alg3(Z3)

where Set is the category of sets, Mon of monoids, Cat of small categories, Op of non coloured planar
operads, Opcol of coloured planar operads, and CombPT of combinads over the combinatorial pattern of
planar trees [Lod12]. The lower half of the table is left empty since Algk(Zn) = Algn(Zn) for k ≥ n.

4.4. Zn-cardinals and opetopic shapes. Following section 4.2, the category of Zn-cardinals is the
full subcategory i0 ∶ Θ0 ↪Ð→ Psh(On−k,n) whose objects are the representables ω ∈ On−k,n and the
target horns Λt[ν], for ν ∈ On+1. Analogous to equation (4.2.4), we denote the (identity-on-objects, fully
faithful) factorisation of Zni0 ∶ Θ0 ↪Ð→ Psh(On−k,n)Ð→ Algk(Zn) by

Θ0
zÐ→ Λk,n

u
↪Ð→ Algk(Zn).

We call the category Λk,n of free algebras on the Zn-cardinals the category of (k,n)-opetopic shapes.
For the reminder of this section, we fix parameters k ≤ n ∈ N once and for all, and suppress them in

notation whenever unambiguous, e.g. Λ ∶=Λk,n, Z ∶=Zn, Alg ∶=Algk(Zn).
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Let A[−] ∶ Λ Ð→ Psh(Λ) denote the Yoneda embedding. For ω ∈ On+1, let Hω ∶=On−k,n/Λt[ω]. We
denote the colimit, in Psh(Λ), by

S[ω] ∶= colim(Hω Ð→ On−k,n
ZÐ→ Λ

A[−]
ÐÐ→ Psh(Λ)) ,

and call it the spine on ω. It is clearly a subobject S[ω]↪Ð→ A[ZΛt[ω]] of the representable on ZΛt[ω] ∈ Λ.
The theory reviewed in section 4.2 has the following immediate consequences.

Proposition 4.4.1. (1) The inclusion u ∶ Λ ↪Ð→ Alg is dense, i.e., its associated nerve functor
Nu ∶ Alg Ð→ Psh(Λ) is fully faithful.

(2) Any X ∈ Psh(Λ) is in the essential image of Nu if and only if S ⊥X, where
S ∶={S[ω]↪Ð→ A[ZΛt[ω]] ∣ ω ∈ On+1} .

(3) The reflective adjunction u ∶ Psh(Λ)Ð→←Ð Alg ∶ Nu exhibits Alg ≃ S−1Psh(Λ) as the localisation of
Psh(Λ) at the set of morphisms S.

Example 4.4.2. The category Λ1,1 is the category of simplices ∆, and Λ2,1 is the planar version of
Moerdijk and Weiss’s category of dendrices Ω. Then proposition 4.4.1 is the well-known fact that Cat
and Opcol have fully faithful nerve functors to Psh(∆) and to Psh(Ω) respectively, exhibiting them as
localisations of the respective presheaf categories at a set of spine inclusions.(9)

The previous examples may lead one to believe that calling Λ the category of “opetopic” shapes is
rather specious. However, our motivation stems from the following remarkable fact: there is a functor
ḣ ∶ On−k,n+2 Ð→ Λ (that we will define below), that is neither full nor faithful (it is, however, surjective on

objects and on morphisms), but is such that the composite functor Alg ↪Ð→ Psh(Λ) ḣ∗Ð→ Psh(On−k,n+2)
is a fully faithful right adjoint, and moreover exhibits Alg as the category of models of a projective
sketch on Oop

n−k,n+2. In addition, the composite fully faithful functor Λ ↪Ð→ Psh(On−k,n+2) is simply the
nerve associated to ḣ (this says that ḣ is dense), and allows us to view Λ as a full subcategory of
(n − k,n + 2)-truncated opetopic sets, justifying the use of the term “opetopic shape”.

The functor ḣ ∶ On−k,n+2 Ð→ Λ is defined on objects as follows:
ḣ ∶ On−k,n+2 Ð→ Λ

ψ ∈ O≤n z→ ZO[ψ]
ω ∈ On+1 z→ ZΛt[ω]
ξ ∈ On+2 z→ ZΛt[t ξ].

On morphisms, ḣ is the same as the free functor Z on On−k,n. Take ω ∈ On+1 and ξ ∈ On+2.

(1) Let [p] ∈ ω●, and ḣ(s[p] ω
s[p]ÐÐ→ ω) = Z(O[s[p] ω]

s[p]ÐÐ→ Λt[ω]).

(2) Let ḣ (tω tÐ→ ω) = (ZO[tω] ḣ tÐ→ ZΛt[ω]) correspond to the cell idΛt[ω] ∈ ZΛt[ω]tω under the
Yoneda embedding.

(3) Let ḣ (t ξ tÐ→ ξ) = (ZΛt[t ξ] ḣ tÐ→ ZΛt[t ξ]) be the identity map.

(4) Let [p] ∈ ξ●. In order to define ḣ(s[p] ξ
s[p]ÐÐ→ ξ) = (ZΛt[s[p] ξ]

ḣ s[p]ÐÐÐ→ ZΛt[t ξ]), it is enough to

provide a morphism ḣ s[p] ∶ Λt[s[p] ξ]Ð→ ZΛt[t ξ] in Psh(On−k,n), which we now construct.

(9)Sometimes called “Grothendieck-Segal” colimits.
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Using equation (2.4.6), ξ decomposes as
ξ = ζ ○

[p]
Ys[p] ξ ◯

[[qi]]
ζi,

where [qi] ranges over (s[p] ξ)●. The leaves of ζi are therefore a subset of the leaves of ξ. Precisely,
a leaf address [r] ∈ ζ ∣i corresponds to the leaf address [p[qi]r] ∈ ξ∣, defining an inclusion fi ∶
Λt[t ζi]↪Ð→ Λt[t ξ] that maps the node ℘ζi[r] ∈ (t ζi)● to ℘ξ[p[qi]r] ∈ (t ξ)●.

Note that by definition, each fi is an element of Psh(On−k,n)(Λt[t ζi],Λt[t ξ]) ⊆ ZΛt[t ξ]t t ζi ,
and since t t ζi = t s[] ζi = s[qi] s[p] ξ (by (Glob1) and (Inner)), we have fi ∈ ZΛt[t ξ]s[qi] s[p] ξ.

Together, the fi assemble into the required morphism ḣ s[p] ∶ Λt[s[p] ξ]Ð→ ZΛt[t ξ], that maps
the node [qi] ∈ (s[p] ξ)● to fi. So in conclusion, we have

ḣ s[p] ∶ Λt[s[p] ξ]Ð→ ZΛt[t ξ]

(ḣ s[p])([qi]) ∶ Λt[t ζi]Ð→ Λt[t ξ]
℘ζi[r]z→ ℘ξ[p[qi]r],

for [qi] ∈ (s[p] ξ)● and [r] ∈ ζ ∣i.
This defines ḣ on object and morphisms, and functoriality is straightforward.

Example 4.4.3. Consider the case (k,n) = (1,1), so that ḣ ∶ O0,3 Ð→ Λ1,1 ≅ ∆. In low dimensions, we
have ḣ1,1⧫ = [0], ḣ1,1◾ = [1], and ḣ1,1n = [n], for n ∈ N. Consider now the following 3-opetope ξ:

ξ = Y3 ○
[[∗]]

Y2 ○
[[∗∗]]

Y1 =
⎛
⎜⎜⎜
⎝ .

. .

.

.

⇓ ⇓
⇓

⇛
.

. .

.

.

⇓

⎞
⎟⎟⎟
⎠

Then ḣ1,1ξ = Z1Λt[t ξ] = [4]. This result should be inderstood as the poset of points of ξ (represented
as dots in the pasting diagram above) ordered by the topmost arrows of ξ.

Take the face embedding s[] ∶ 3Ð→ ξ. Then ḣ1,1 s[] maps points 0, 1, 2, 3 of ḣ1,13 = [3] to points 0, 1,
3, 4 of ḣ1,1ξ, respectively. In other words, it “skips” point 2, which is exactly what the pasting diagram
above depicts: the []-source of ξ does not touch point 2. Likewise, the map ḣ1,1 s[[∗∗]] ∶ [1] = ḣ1,11 Ð→
ḣ1,1ξ maps 0, 1 to 3, 4, respectively.

Consider now the target embedding t ∶ 4 Ð→ ξ. Since the target face touches all the points of ξ (this
can be checked graphically, but more generally follows from (Glob2)), ḣ1,1 t should be the identity map
on [4], which is precisely what the definition gives.

We spend the rest of this section proving various (rather technical) facts about the functor ḣ, which
will allow us to construct the opetopic nerve functor (and to prove that it is fully faithful) in section 4.5.

Definition 4.4.4. Let ω,ω′ ∈ On+1. A morphism f ∶ ḣω Ð→ ḣω′ in Λ is diagrammatic if there exists a
ξ ∈ On+2 and a [p] ∈ ξ● such that s[p] ξ = ω, t ξ = ω′, and f = ḣ(ω

s[p]ÐÐ→ ξ).
This situation is summarised by the following diagram, called a diagram of f .

ξ

ω ω′

s [p
]

t

ḣω ḣω′
f
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Example 4.4.5. Consider the case (k,n) = (1,1) again, and recall that Λ1,1 ≅ ∆. Consider the map
f ∶ [2] Ð→ [3] mapping 0, 1, and 2 to 0, 2, and 3, respectively (in other words, f is the 1st simplicial
coface map [Jar06]). Taking ξ as on the left, we obtain a diagram of f on the right:

ξ = Y2 ○
[[∗]]

Y2 =
⎛
⎜⎜
⎝ .

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

⎞
⎟⎟
⎠
,

ζ

2 2

s []
t

[2] [3]g

Consider now a non injective map g ∶ [2] Ð→ [1] mapping 0, 1, and 2 to 0, 1, and 1, respectively
(in other words, g is the 1st simplicial codegeneracy map [Jar06]). Taking ζ as on the left, we obtain a
diagram of g on the right:

ζ = Y2 ○
[[∗]]

Y0 =
⎛
⎜
⎝

. .
⇓ ⇓ ⇛

. .

⇓
⎞
⎟
⎠
,

ζ

2 1

s [[
∗]
]

t

[2] [1]g

On the one hand, lemma 4.4.6 below states that the composite of diagrammatic morphisms remains
diagrammatic, onan the other hand, those two examples seem to indicate that all simplicial cofaces
and codegeneracies are diagrammatic. One might thus expect all morphisms of ∆ to be in the image of
ḣ1,1 ∶ O0,3 Ð→ Λ1,1 ≅ ∆. This is proved in corollary 4.5.11.

Lemma 4.4.6. If f1 and f2 are diagrammatic as on the left, the diagram on the right is well defined,
and is a diagram of f2f1.

ξ1 ξ2

ω0 ω1 ω2

s [p 1
]

t s [p 2
]

t

ḣω0 ḣω1 ḣω2,
f1 f2

ξ2 ◽[p2] ξ1

ω0 ω2

s[p2p1
]

t

ḣω0 ḣω2
f2f1

Proof. It is a simple but lengthy matter of unfolding the definition of ḣ. See appendix A for details.
□

Lemma 4.4.7. (1) Let ω ∈ On+1, and ψ = tω. Then the following is a diagram of h t ∶ ḣψ Ð→ ḣω:

ξ

Yψ ω

s []

t

ḣψ ḣω,h t
ξ ∶=YYψ ○[[]]

Yω.

(Note that ω = t ξ by lemma 3.2.3)
(2) Let β,ω ∈ On+1 = trZn−1, and i ∶ Λt[β]Ð→ Λt[ω] a morphism of presheaves. Then i corresponds

to an inclusionb of Zn−1 trees β ↪Ð→ ω, mapping node at address [q] to [pq], where [p] = i[] ∈ ω●.
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Write ω = β̄ ◽[p] β, for an adequate β̄ ∈ On+1. Then following is a diagram of ḣi:

ξ

β ω

s [p
]

t

ḣβ ḣω,ḣi
ξ ∶=Yβ̄ ○[[p]]

Yβ.

(Note that ω = t ξ by lemma 3.2.3)

Proof. It is a simple matter of unfolding the definition of ḣ. See appendix A for details. □
Lemma 4.4.8 (Diagrammatic lemma). Let ω,ω′ ∈ On+1 with ω non degenerate, and f ∶ ḣω Ð→ ḣω′.
Then f is diagrammatic.

Proof (sketch, see appendix A for details). The idea is to proceed by induction on ω. The case ω = Yψ
for some ψ ∈ On is fairly simple. In the inductive case (ω = ν ○[l]Yψ, for suitable ν, ψ, and [l]), we
essentially show that f exhibits an inclusion of Zn-trees ω ↪Ð→ ω′ by constructing a (n + 1)-opetope ω̄
such that ω′ = ω̄ ◽[q] ω. Thus by lemma 4.4.7, the following is a diagram of ḣf :

ξ

ω ω′
s [[
q 1
]]

t

ḣω ḣω′,
f

ξ ∶=Yω̄ ○
[[q1]]

Yω.

□
4.5. The opetopic nerve functor. This section is entirely devoted to constructing the opetopic nerve
functor N ∶ Alg ↪Ð→ Psh(O), which is a fully faithful right adjoint and which exhibits Alg as the category
of models of a projective sketch on Oop (theorem 4.5.10).

Let A[−] ∶ ΛÐ→ Psh(Λ) denote the Yoneda embedding. Recall from corollary 4.2.6 that the reflective
adjunction Psh(Λ) Ð→←Ð Alg exhibits Alg as the localisation of Psh(Λ) at the set of morphisms that we
denote

S ∶= {S[ω]↪Ð→ A[ZΛt[ω]] ∣ ω ∈ On+1}.
Recall the definition of the set Hn+1,n+2 of morphisms in Psh(O) from section 3.4. With slight abuse,

we overcharge the notation Hn+1,n+2 to denote the image of this set under the truncation functor
Psh(O) Ð→ Psh(On−k,n+2). In corollary 4.5.9, we show an equivalence H−1n+1,n+2Psh(On−k,n+2) ≃ Alg,
from which theorem 4.5.10 will follow directly.

Lemma 4.5.1. The functor ḣ! ∶ Psh(On−k,n+2) Ð→ Psh(Λ) takes Hn+1 to S and takes morphisms in
Hn+2 to S-local isomorphisms.

Proof. (1) We show that ḣ!Hn+1 = S. Take ω ∈ On+1. Then
ḣ!Λ

t[ω] = ḣ! colim
ψ∈Hω

O[ψ] ≅ colim
ψ∈Hω

ḣ!O[ψ] = colim
ψ∈Hω

A[ḣψ] = S[ω].

(2) For ω ∈ On+2, the inclusion Λt[tω] Ð→ Λt[ω] is a relative Hn+1-cell complex by lemma 3.4.9.
Since ḣ! preserves colimits, and since ḣ!Hn+1 = S, we have that ḣ!(Λt[tω]↪Ð→ Λt[ω]) is a relative
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S-cell complex, and thus an S-local isomorphism. In the square below

ḣ!Λ
t[tω] ḣ!Λ

t[ω]

ḣ!O[tω] ḣ!O[ω]
ḣ!htω ḣ!hω

ḣ! t

we know that ḣ! t = O[ḣ t] is an isomorphism, and that ḣ!htω ∈ S by the previous point. We have
just shown that the top arrow is an S-local isomorphism. By 2-for-3, we conclude that ḣ!hω is
too. □

We will prove two crucial lemmas that are key to the proof of theorem 4.5.10. Before doing so, let us
make some preliminary remarks that will make the task easier.

Lemma 4.5.2. Let ω ∈ On−k,n+2, and let X ∈ H⊥n+1,n+2. Then the following are all spans of isomorphisms.

(1) Λ(ḣω, ḣψ) ×Xψ
id×Xt t←ÐÐÐÐ Λ(ḣω, ḣψ) ×XIψ

Λ(ḣω,ḣ t t)×id
ÐÐÐÐÐÐÐ→ Λ(ḣω, ḣIψ) ×XIψ , where ψ ∈ On−1.

(2) Λ(ḣω, ḣψ) ×Xψ

id×Xs[]←ÐÐÐÐ Λ(ḣω, ḣψ) ×XYψ

Λ(ḣω,ḣ s[])×idÐÐÐÐÐÐÐ→ Λ(ḣω, ḣYψ) ×XYψ , where ψ ∈ On.

(3) Λ(ḣω, ḣ tψ) ×Xtψ
id×Xt←ÐÐÐ Λ(ḣω, ḣ tψ) ×Xψ

Λ(ḣω,ḣ t)×id
ÐÐÐÐÐÐÐ→ Λ(ḣω, ḣψ) ×Xψ, where ψ ∈ On+2

Proof. (1) The first map is an isomorphism by corollary 3.4.11 point (1) and the second map is one
by definition of ḣ.

(2) The first map is an isomorphism by corollary 3.4.11 point (2) and the second is one by definition
of ḣ.

(3) The first map is an isomorphism by corollary 3.4.10 point (1) and the second is one by definition
of ḣ. □

Lemma 4.5.3. Let ω ∈ On−k,n+2. If ψ ∈ On−k,n−2, then Λ(ḣω, ḣψ) ≅ On−k,n+2(ω,ψ).

Proof. Easy verification. □
The first of the two crucial propositions will provide us one half of an equivalence between the category

H−1n+1,n+2Psh(On−k,n+2) and Alg.

Proposition 4.5.4. Let X ∈ Psh(On−k,n+2). If Hn+1,n+2 ⊥X, then the unit X Ð→ ḣ∗ḣ!X is an isomor-
phism.

Proof. It suffices to show that for each ω ∈ On−k,n+2, the map

Xω Ð→ h∗h!Xω = ∫
ψ∈On−k,n+2

Λ(ḣω, ḣψ) ×Xψ

is a bijection. We proceed to construct the required inverse via a cowedge Λ(ḣω, ḣ−) ×X(−) Ð→ Xω,
using a case analysis on ω ∈ On−k,n+2.

(1) Assume ω ∈ On−k,n−1. We have Λ(ḣω, h−) ≅ On−k,n+2(ω,−) and this is just the change-of-variable
formula.
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(2) Assume ω ∈ On. By lemma 4.5.2 and lemma 4.5.3, it suffices to consider the case ψ ∈ On+1. We
have the sequence of morphisms

Λ(ḣω, ḣψ) ×Xψ ≅
⎛
⎜⎜
⎝
∑

ν∈On+1
tν=ω

Psh(On−k,n+2)(Λt[ν],Λt[ψ])
⎞
⎟⎟
⎠
×Psh(On−k,n+2)(Λt[ψ],X)

Ð→ ∑
ν∈On+1
tν=ω

Psh(On−k,n+2)(Λt[ν],X) ≅ ∑
ν∈On+1
tν=ω

Xν

tÐ→Xω.

It is straightforward to verify that this defines a cowedge whose induced map is the required
inverse.

(3) Assume ω ∈ On+1. If ω is degenerate, say ω = Iϕ for some ϕ ∈ On−1, then Λ(ḣω, ḣ−) ≅ Λ(ḣϕ, ḣ−)
and we are in a case we have treated before. So let ω be non-degenerate. By lemmas 4.5.2
and 4.5.3, we may suppose ψ ∈ On,n+1. Recall that for every f ∈ Λ(ḣω, ḣψ), the diagrammatic
lemma 4.4.8 computes a ξ ∈ On+2 and [p] ∈ ξ● such that s[p] ξ = ω, t ξ = ψ and ḣ s[p] = f . By
corollary 3.4.10, Xξ ≅Xψ, and thus this gives a function

Λ(ḣω, ḣψ) ×Xψ Ð→Xω

(f, x)z→ s[p](x).
It is straightforward to verify that this assignment defines a cowedge, whose associated map is
the required inverse.

(4) Assume ω ∈ On+2. Then by definition of ḣ, Λ(ḣω, ḣ−) ≅ Λ(ḣ tω, ḣ−), and this is the case we have
just treated. □

Corollary 4.5.5. If Hn+1,n+2 ⊥X, then S ⊥ ḣ!X.

Proof. Recall from lemma 4.5.1 that S = ḣ!Hn+1. Let ω ∈ On+1. We have
Psh(Λ)(ḣ!Λt[ω], ḣ!X) ≅ Psh(On−k,n+2)(Λt[ω], ḣ∗ḣ!X) since ḣ! ⊣ ḣ∗

≅ Psh(On−k,n+2)(Λt[ω],X) by proposition 4.5.4
≅ Psh(On−k,n+2)(ω,X) since Hn+1 ⊥X

≅ Psh(On−k,n+2)(ω, ḣ∗ḣ!X) by proposition 4.5.4
≅ Psh(Λ)(ḣ!ω, ḣ!X) since ḣ! ⊣ ḣ∗.

□
This second crucial proposition will provide the other half of the equivalence between Alg and the

localisation H−1n+1,n+2Psh(On−k,n+2).

Proposition 4.5.6. Let Y ∈ Psh(Λ). If S ⊥ Y , then the counit ḣ!ḣ∗Y Ð→ Y is an isomorphism.

Proof. It suffices to prove that for each λ ∈ Λ, the map

(ḣ!Y )λ = ∫
ψ∈On−k,n+2

Λ(λ, ḣψ) × Yḣψ Ð→ Yλ (4.5.7)
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is a bijection. Since the map(10)

Yλ Ð→ ∫
ψ

Λ(λ, ḣψ) × Yḣψ
y z→ id⊗y

is clearly a section, it is enough to prove that it is is surjective. The map is well defined, as ḣ is surjective
on objects and it is easy to verify that it is independent of the choice of an antecedent ḣν = λ. We need
to show that for every ψ ∈ On−k,n+2, every f ⊗ y ∈ Λ(λ, ḣψ) × Yḣψ is equal, in the colimit (4.5.7), to
id⊗y′ ∈ Λ(λ,λ) × Yλ for some y′ ∈ Yλ.

(1) Assume λ = Zϕ, with ϕ ∈ On−k,n−1. Then Λ(λ, ḣ−) ≅ On−k,n+2(ϕ,−) and any pair f ⊗ y ∈
On−k,n+2(ϕ,ψ) × Yψ is related via a zig-zag relation

f ⊗ y idϕ⊗(ḣf)(y)
f

to an element of the required form.
(2) Assume λ = Zω, with ω ∈ On. By lemma 4.5.2 and lemma 4.5.3, we may consider only the case

where ψ ∈ On+1. Note that Λ(λ, ḣψ) ≅ Λ(ḣYω, ḣψ). Then f ⊗ y ∈ Λ(ḣYω, ḣ−) is related via a
zig-zag relation

f ⊗ y idḣYω ⊗(ḣ s[p])(y)
s[p]

where we use lemma 4.4.8 to obtain s[p] ∶ Yω Ð→ ξ such that ḣ s[p] = f .
(3) The case λ = ZΛt[ω], with ω ∈ On+1 identical to the previous one. □

Let the localisation of Psh(On−k,n+2) at the set of horn inclusions Hn+1,n+2 be denoted
v ∶ Psh(On−k,n+2)Ð→←Ð H−1n+1,n+2Psh(On−k,n+2) ∶ Nv

On the other hand, recall from proposition 4.4.1 that we have a localisation u ∶ Psh(Λ)Ð→←Ð Alg ∶ Nu. We
are now well-equipped to prove that Alg is equivalent to the localised category H−1n+1,n+2Psh(On−k,n+2).

Proposition 4.5.8. The adjunction ḣ! ∶ Psh(On−k,n+2) Ð→←Ð Psh(Λ) ∶ ḣ∗ restricts to an adjunction
h̃! ⊣ h̃∗, as shown below.

H−1n+1,n+2Psh(On−k,n+2) Alg

Psh(On−k,n+2) Psh(Λ).

v

h̃!

Nu
h̃∗
⊥

ḣ!

ḣ∗
⊥

Proof. For all Y ∈ Alg ≃ S−1Psh(Λ), by lemma 4.5.1, we have that h!Hn+1,n+2 ⊥ NuY , or equivalently,
Hn+1,n+2 ⊥ h∗NuY . Thus h∗Nu factors through H−1n+1,n+2Psh(On−k,n+2). Next, by corollary 4.5.5, ḣ!Nv

factors through Alg. □
Corollary 4.5.9. The adjunction h̃! ∶ H−1n+1,n+2Psh(On−k,n+2)Ð→←Ð Alg ∶ h̃∗ is an equivalence.

Proof. This is a direct consequence of propositions 4.5.4 and 4.5.6. □
(10)We use the notation a ⊗ b to refer to elements in a coend of sets of the form ∫

c∈C
Ac ×Bc, with A ∈ [Cop,Set] and

B ∈ [C,Set], our motivation being the tensor product of modules.
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With corollary 4.5.9 in hand, let
h ∶ Psh(O)Ð→←Ð Alg ∶ N.

be the composite adjunction

Psh(O)Ð→←Ð Psh(On−k,n+2)
vÐ→←Ð Hn+1,n+2Psh(On−k,n+2)

h̃!Ð→←Ð Alg.

Theorem 4.5.10 (Nerve theorem for opetopic algebras). The reflective adjunction h ∶ Psh(O) Ð→
Alg ∶ N exhibits Alg as the Gabriel–Ulmer localisation of Psh(O) at the set of arrows A. That is
Alg ≃ A−1Psh(O).

Proof. By a general fact about composite localisations, the reflective adjunction h ∶ Psh(O)Ð→ Alg ∶ N
exhibits Alg as the localisation of Psh(O) at the set O<n−k ∪ Hn+1,n+2 ∪ B>n+2. The result then follows
from lemma 3.4.7. □
Corollary 4.5.11. We have Λ = hOn−k,n+2, i.e. h = ḣ ∶ On−k,n+2 Ð→ Λ is surjective on objects (by
definition) and on morphisms.

Proof. Let ω,ω′ ∈ On−k,n+2.
(1) If dimω,dimω′ < n − 1, then hω = ω and hω′ = ω′ as presheaves over On−k,n+2, and thus

Λ(hω,hω′) = hPsh(On−k,n+2)(ω,ω′) = hO(ω,ω′).
(2) If dimω < n − 1 and dimω′ ≥ n − 1, then since hω = ω we have

Λ(hω,hω′) ≅ Psh(On−k,n+2)(ω,hω′) ≅ hPsh(On−k,n+2)(ω,ω′) ≅ hO(ω,ω′),
where the second isomorphism comes from the fact that for X ∈ Psh(On−k,n), ZnX<n =X<n.

(3) If dimω ≥ n − 1 and dimω′ < n − 1, then Λ(hω,hω′) = ∅.
(4) Lastly, assume dimω,dimω′ ≥ n−1. By corollary 3.4.11, if dimω = n−1, then h maps t t ∶ ω Ð→ Iω

to an isomorphism, and if dimω = n, then h maps s[] ∶ ω Ð→ Yω to an isomorphism. By
corollary 3.4.10, if dimω = n + 2, then h maps t ∶ tω Ð→ ω to an isomorphism as well. Hence,
without loss of generality, we may assume that dimω = dimω′ = n + 1. If ω is non degenerate,
then every morphism in Λ(hω,hω′) is diagrammatic, thus in the image of h. Otherwise, if ω = Iϕ
for some ϕ ∈ On−1, then

Λ(hω,hω′) ≅ Λ(hϕ,hω′) ≅ hO(ϕ,ω′).
where the first isomorphism comes from corollary 3.4.11. □

5. Algebraic trompe-l’œil

As we saw in section 4, for each k,n ≥ 1, we have a notion of k-coloured opetopic n-algebra. For
such an algebra B ∈ Algk(Zn), operations are n-cells (so that their shapes are n-opetopes), and colours
are cells of dimension n − k to n − 1, thus the “colour space” is stratified over k dimensions. Notable
examples include

Cat ≃ Alg1(Z1), Opcol ≃ Alg1(Z2).
But are all Algk(Zn) fundamentally different?

In this section, we answer this question negatively: in a sense that we make precise, the most “alge-
braically rich” notion of opetopic algebra is given in the case (k,n) = (1,3). Although opetopes can be
arbitrarily complex, the algebraic data can be expressed by much simpler 3-opetopes, a.k.a. trees. We call
this phenomenon algebraic trompe-l’œil, a french expression that literally translates as “fools-the-eye”.
And indeed, the eye is fooled in two ways: by colour (proposition 5.1.4) and shape (proposition 5.2.7).
In the former, we argue that the colours of an algebra B ∈ Algk(Zn), expressing how operations may or
may not be composed, only need 1 dimension, and thus that cells of dimension less than n − 1 do not
bring new algebraic data, only geometrical one. For the latter, recall from section 3.1 that opetopes are
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trees of opetopes. In particular, 3-opetopes are just plain trees, and O3 already contains all the possible
underlying trees of all opetopes. Consequently, operations of B, which are its n-cells, may be considered
as 3-cells in a very similar 3-algebra B†. Finally, we combine those two results in theorem 5.2.8, which
states that an algebra B ∈ Algk(Zn) is exactly a presheaf B ∈ Psh(On−k,n) with a 1-coloured 3-algebra
structure on Bn−1,n,†.

5.1. Colour. For B ∈ Algk(Zn), recall that the colours of B are its cells of dimension n − k to n − 1.
They express which operations (n-cells) of B may or may not be composed. However, since that criterion
only depends on (n − 1)-cells, constraints expressed by lower dimensional cells should be redundant. In
proposition 5.1.4, we show that this is indeed the case, in that the algebra structure on B is completely
determined by a 1-coloured n-algebra structure on Bn−1,n.

Lemma 5.1.1. Let k,n ≥ 1, and ν ∈ On+1. Then
Λt[ν]n−k,n ≅ ι!(Λt[ν]n−1,n),

where ι! is the left adjoint to the truncation Psh(On−k,n)Ð→ Psh(On−1,n).

Proof. It follows from the fact that Λt[ν] is completely determined by the incidence relation of the n-
and (n − 1)-faces of ν. □
Proposition 5.1.2. For X ∈ Psh(On−k,n) we have Zn(Xn−1,n) ≅ (ZnX)n−1,n. Consequently, the trun-
cation functor (−)n−1,n ∶ Psh(On−k,n)Ð→ Psh(On−1,n) lifts as

Algk(Zn) Alg1(Zn)

Psh(On−k,n) Psh(On−1,n).

(−)n−1,n

(−)n−1,n

(5.1.3)

Proof. First, Zn(Xn−1,n)n−1 =Xn−1 = (ZnX)n−1. Then, for ψ ∈ On, we have
Zn(Xn−1,n)ψ = ∑

ν∈On+1
t ν=ψ

Psh(On−1,n)(Λt[ν],Xn−1,n)

≅ ∑
ν∈On+1
t ν=ψ

Psh(On−1,n)(ι!(Λt[ν]),X)

≅ ∑
ν∈On+1
t ν=ψ

Psh(On−1,n)(Λt[ν],X) by lemma 5.1.1

= (ZnX)ψ.
□

Proposition 5.1.4. The square (5.1.3) is a pullback. That is, a Zn-algebra structure on X ∈ Psh(On−k,n)
is completely determined by a Zn-algebra structure on Xn−1,n.

Proof. Let X ∈ Psh(On−k,n). By proposition 5.1.2, a Zn-algebra structure on X restricts to one on
Xn−1,n. Conversely, since (ZnX)<n = X<n, a Zn-algebra structure on Xn−1,n extends to one on X.
Since the truncation functor (−)n−1,n ∶ Algk(Zn) Ð→ Alg1(Zn) is faithful, it establishes a bijective
correspondence between the algebra structures on X and on Xn−1,n. □
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5.2. Shape. We start by defining a functor (−)† ∶ On−1,n Ð→ O2,3, for n ≥ 1, mapping an n-opetope ω
to the unique 3-opetope ω† having the same underlying polynomial tree, i.e. ⟨ω†⟩ ≅ ⟨ω⟩ (see notations
of section 2.2).

If n = 1, then (−)† simply maps O0,1 = (⧫
s∗,tÐÐ→ ◾) to the diagram (0

s[],tÐÐ→ Y0).
Assume now that n ≥ 2. Recall that a 3-opetope is a Z1-tree, where Z1 is given by

{◾} E2 O2 {◾},s p t

with O2 = {n ∣ n ∈ N} and E2(n) = n●. Let f ∶ Zn−2 Ð→ Z1 be given by

On−2 En−2 On−1 On−2

{◾} E2 O2 {◾},

f0

s

f2

p

⌟
f1

t

f0

s p t

where f1(ψ) = m, for m = #ψ● the number of source faces of ψ, and where f2 is fiberwise increasing.
This morphism of polynomial functors induces a functor f∗ ∶ On = trZn−2 Ð→ trZ1 = O3 mapping an
n-opetope to its underlying tree, seen as a 3-opetope. Explicitely,

f∗Iϕ = I◾, f∗
⎛
⎝
Yψ ◯
[[pi]]

νi
⎞
⎠
=m ◯

[[∗i]]
f∗(νi),

where ϕ ∈ On−2, ψ ∈ On−1, ψ● = {[p0] ≺ ⋯ ≺ [pm−1]}, and ν0, . . . , νm−1 ∈ On. For ω ∈ On, since ω and ω†
have the same underlying tree, they have the same number of source faces: #ω● = #ω●† , and we write
aω for the unique increasing map ω● Ð→ ω●† (with respect to the lexicographical order ≺). Intuitively, aω
maps a node of the underlying tree ⟨ω⟩ of ω to that same node in ⟨ω†⟩, but using addresses. Since the
source faces of ω and ω† are not the same, aω is not strictly speaking an identity, but rather a conversion
of a “walking instruction in the tree ω” (which is what an address is) to one in ω†. Explicitely, a node
address [[q1]⋯[qk]] ∈ ω● (with [qi+1] ∈ s[[q1]⋯[qi]] ω) is mapped to [f2,s[] ω[q1] ⋯ f2,s[[q1]⋯[qk−1]] ω

[qk]].
Define now (−)† ∶ On−1,n Ð→ O2,3 as follows: for ψ ∈ On−1 and ω ∈ On

(1) ψ† = f1(ψ) as above;
(2) ω† = f∗(ω) as above;
(3) we have (tω)† = tω†, so let (tω tÐ→ ω)

†
= ((tω)†

tÐ→ ω†);

(4) for [p] ∈ ω●, we have (s[p] ω)† = saω[p] ω†, so let (s[p] ω
s[p]ÐÐ→ ω)

†
= ((s[p] ω)†

saω[p]ÐÐÐ→ ω†).

Example 5.2.1. Consider the 4-opetope ω, represented graphically and in tree form below:

. .

.

⇓
⇓ ⇛

. .

.

⇓

.

.

.

.

.

.
⇓

⇓ ⇓
⇓

⇛
.

.

.
.

.

.

⇓

.

.

.

.

.

⇓
.
⇓

⇓ ⇓

⇓
⇛

.

.

.
.

.

.

⇓ 5
ψ1 []

3
2 2

1

ψ2 [[[∗]]]
1 2
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where ψ1 and ψ2 are the 3-opetopes on the top right and top left hand corner respectively. Then ω† is
as follows:

.

. . .

.

.

⇓

⇓
⇛

.

. . .

.

.

⇓

◾
4 []

◾
◾ ◾

◾

2 [[∗]]
◾ ◾

Although the graphical representations of ω and ω† look nothing alike, note that their underlying
undecorated trees are identical.

We abuse notations and let (−)† ∶ Psh(On−1,n)Ð→ Psh(O2,3) be the left Kan extension of On−1,n
(−)†ÐÐ→

O2,3 Ð→ Psh(O2,3) along the Yoneda embedding. Explicitely, for X ∈ Psh(On−1,n), we have
X†,m = ∑

ψ∈On−1
ψ†=m

Xψ, X†,γ = ∑
ω∈On−1
ω†=γ

Xω,

with m ∈ N and γ ∈ O3. Clearly, (−)† is faithful, and if n ≤ 3, then (−)† is also injective on object. Note
that this is no longer the case if n ≥ 4, as distinct n-opetopes may have the same underlying tree.

Notation 5.2.2. Let C be a small category, and X ∈ Psh(C) be presheaf over C. There is a canonical
projection (−)♮ ∶ C/X Ô⇒ C, mapping x ∈ Xc to c ∈ C. We may then see the category of elements C/X
of X as having objects elements of ∑c∈CXc, and a morphism f ∶ x Ð→ y is a morphism f ∶ x♮ Ð→ y♮

in C such that f(y) = x. A morphism g ∶ X Ð→ Y of presheaves over C then amounts to a functor
g ∶ C/X Ð→ C/Y that preserves shapes.

Take n ≥ 1. For X ∈ Psh(On−1,n), note that there is a canonical isomorphism Psh(On−1,n)/X Ð→
Psh(O2,3)/X†, which is the identity on objects, maps s[p] ∶ x Ð→ y to saω[p] x Ð→ y, where ω = y♮, and
target embeddings to target embeddings.

Lemma 5.2.3. (1) For ν ∈ On+1, there exists a unique 4-opetope ν′ ∈ O4 such that Λt[ν]n−1,n,† ≅
Λt[ν′].

(2) Let X ∈ Psh(On−1,n), ν ∈ O4, and f ∶ Λt[ν] Ð→ X†. Then there exists a unique ν′ ∈ On+1 and
f ′ ∶ Λt[ν′]Ð→X such that Λt[ν′]n−1,n,† = Λt[Λ], and f ′† = f .

Proof. (1) If ν = Iϕ for ϕ ∈ On−1, let ν′ = Iϕ† . If ν = Yω◯[[pi]] νi, let
ν′ = Yω† ◯

[aω[pi]]
ν′i,

where the ν′i are given by induction. The graftings are well defined since
t s[] ν

′
i = t(s[] νi)† = (t s[] νi)† = (s[pi] ω)† = saω[pi] ω†.

The isomorphism Λt[ν]n−1,n,† ≅ Λt[ν′] can easily be shown by induction on the structure of ν
and using lemma 3.4.2.

(2) For ν● = {[p1], . . . , [pm]}, f maps [pi] to a cell xi ∈ X†,2 = Xn−1, and let ψi ∈ On−1 be the shape
of xi as a cell of X. If [pi] = [pj[q]] for some j and [q], then s[q] xj = txi in X†, so sa−1

ψj
[q] xj = txi

in X, and in particular, sa−1
ψj
[q]ψj = tψi. Consequently, the ψis may be grafted together into a

(n+ 1)-opetope ν′ such that ν′† = ν, and sa−1
ν′ [pi]

= ψi. Define f ′ ∶ Λt[ν′]Ð→X mapping sa−1
ν′ [pi]

ν′

to xi, and observe that f ′† = f . □
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Proposition 5.2.4. For X ∈ Psh(On−1,n) we have Z3(X†) ≅ (ZnX)†. Consequently, the functor (−)†
lifts as

Alg1(Zn) Alg1(Z3)

Psh(On−1,n) Psh(O2,3).

(−)†

(−)†

(5.2.5)

Proof. First, Z3(X†)2 =X†,2 =Xn−1 = (ZnX)n−1 = (ZnX)†,2. Then,
Z3(X†)3 = ∑

ν∈O4

Psh(O2,3)(Λt[ν],X†)

≅ ∑
ν∈On+1

Psh(On−1,n)(Λt[ν],X) by lemma 5.2.3

= (ZnX)n = (ZnX)†,3.
□

Lemma 5.2.6. Let X ∈ Psh(On−1,n) and m ∶ ZnX Ð→ X. Then m is an algebra structure on X if and
only if m† ∶ Z3X† Ð→X† is an algebra structure on X†.

Proof. Clearly, (−)† maps the multiplication µn ∶ ZnZn Ð→ Zn to µ3, and the unit ηn ∶ id Ð→ Zn to η3.
Since (−)† is faithful, the square on the left commutes if and only if the square on the right commutes

ZnZnX ZnX

ZnX X,

Znm

µn m

m

Z3Z3X† Z3X†

Z3X† X†,

Z3m†

µ3 m†
m†

and likewise for the diagram involving ηn and η3. □
Proposition 5.2.7. The square (5.2.5) is a pullback. That is, a Zn-algebra structure on X ∈ Psh(On−1,n)
is completely determined by a Z3-algebra structure on X†.

Proof. Let X ∈ Psh(On−1,n). By proposition 5.2.4, a Zn-algebra structure on X induces a Z3-algebra
structure on X†.

Conversely, let m ∶ Z3X† Ð→ X† be a Z3-algebra structure on X†, and define m′ ∶ ZnX Ð→ X as the
identity in dimension n − 1, and mapping f ∶ Λt[ν] Ð→ X to m(f†) ∈ X†,2 = Xn−1. Recall that f† is a
map of the form Λt[ν′]Ð→X†, for some ν′ such that tν′ = (tν)†, and thus m′ is a map of opetopic sets.
By lemma 5.2.6, it is a Zn-algebra structure on X.

Since (−)† is faithful, it establishes a bijective correspondence between the Zn-algebra structures on
X and the Z3-algebra structures on X†. □
Theorem 5.2.8 (Algebraic trompe-l’œil). The following square is a pullback:

Algk(Zn) Alg1(Z3)

Psh(On−k,n) Psh(O2,3).

(−)n−1,n,†

(−)n−1,n,†

(5.2.9)

In otherwords, a Zn-algebra structure on X ∈ Psh(On−k,n) is completely determined by a Z3-algebra
structure on (Xn−1,n)†.
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Proof. This is a direct consequence of proposition 5.1.4, proposition 5.2.7, and the pasting lemma for
pullbacks. □

Appendix A. Omitted proofs

Proof of lemma 4.3.2. (1) Let P be the pullback of the cospan 1
η1Ð→ Zn1

Zn!←ÐÐ ZnX. Since (ZnX)<n =
X<n, we trivially have P<n =X<n. Next, for ω ∈ On, we have

Pω = {x ∈ ZnX ∣ Zn!(x) = Yω} = Psh(On−k,n)(Λt[Yω],X) =Xω

as Λt[Yω] = O[ω].
(2) Let P be the pullback of the cospan ZnZn1

µ1Ð→ Zn1
Zn!←ÐÐ ZnX. As before, since (ZnX)<n = X<n,

we trivially have P<n =X<n = (ZnZnX)<n. Recall from lemma 4.3.1 that as a polynomial functor,
ZnZn ∶ Set/On Ð→ Set/On is given by

On E O(2)n+2 On,
e t t

where O(2)n+2 is the set of (n + 2)-opetopes of height at most 2. Then, for ω ∈ On, we have:

Pω = {(ξ, x) ∣ x ∶ Λt[ν]→X,ξ ∈ O(2)n+2, t ξ = ν} = {x ∶ Λ
t[t ξ] ∣ ξ ∈ O(2)n+2} = Z

nZnXω.

□
Proof of lemma 4.3.3. For X ∈ Psh(On−k,n), (ZnX)<n = X<n, thus all diagrams commute trivially in
dimension < n.

(1) Let ω ∈ On and ν ∈ Zn1ω, i.e. ν ∈ On+1 such that tν = ω. Then

µ1ηZn1(ν) = µ1 (YYtν ○[[]]
Yν) = t(YYtν ○[[]]

Yν) = ν.

(2) Let ω ∈ On and ν ∈ Zn1ω, i.e. ν ∈ On+1 such that tν = ω. Then

µ1(Znη1)(ν) = µ1
⎛
⎝
Yν ◯
[[pi]]

YYs[pi]
ν

⎞
⎠
= t
⎛
⎝
Yν ◯
[[pi]]

YYs[pi]
ν

⎞
⎠
= ν,

where [pi] ranges over ν●.
(3) Akin to lemma 4.3.1, one can show that elements of ZnZnZn1ω are (n + 2)-opetopes ξ of height

3 such that t t ξ = ω. Let ξ be such an opetope, and write it as

ξ = Yα ◯
[[pi]]

⎛
⎝
Yβi ◯

[[qi,j]]
Yγi,j
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Xi

=
⎛
⎝
Yα ◯
[[pi]]

Yβi
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Y

◯
[[pi][qi,j]]

Yγi,j

where α,βi, γi,j ∈ On, [pi] ranges over α● and [qi,j] over β●i . Then

µ1(Znµ1)(γ) = t
⎛
⎝
Yα ◯
[[pi]]

YtXi

⎞
⎠

= t
⎛
⎝
YtY ◯

[℘Y [[pi][qi,j]]]
Yγi,j
⎞
⎠

♠

= µ1µZn1(γ),
where ♠ derives from the associativity axiom of the uncolored monad Zn.

□
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Proof of lemma 4.4.6. First, note that
t(ξ2 ◽

[p2]
ξ1) = t t(Yξ2 ○

[[p2]]
Yξ1) by lemma 3.2.3

= t s[](Yξ2 ○
[[p2]]

Yξ1) (Glob2)

= t ξ2 = ω2.

Using (2.4.6), we write

ζ = ξ2 ◽
[p2]

ξ1 = (α2 ○
[p2]

α1) ○
[p2p1]

Yω0 ◯
[[qi]]

⎛
⎝
βi ◯
[li,j]

γi,j
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δi

where [qi] ranges over ω●0 and [li,j] over β ∣i, such that
ξ1 = α1 ○

[p1]
Yω0 ◯

[[qi]]
βi, ξ2 = α2 ○

[p2]
Yω1 ◯

[℘ξ1 [p1[qi]li,j]]
γi,j

Since leaf addresses of ξ1 are of the form [p1[qi]li,j] for some [qi] ∈ ω●0 and [li,j] ∈ β ∣i, and since ω1 = t ξ1,
the node addresses of ω1 are of the form ℘ξ1[p1[qi]li,j], which justifies the decomposition of ξ2 above.

Applying the definition of ḣ we have, for [qi] ∈ ω●0, [li,j] ∈ β ∣i, and [r] ∈ γi,j ,
ḣ s[p2p1] ∶ Λ

t[ω0]Ð→ ZΛt[ω2]

(ḣ s[p2p1])[qi] ∶ Λ
t[t δi]Ð→ Λt[ω2]

℘δi[li,jr]z→ ℘ζ[p2p1[qi]li,jr]; ♠

ḣ s[p1] ∶ Λ
t[ω0]Ð→ ZΛt[ω1]

(ḣ s[p1])[qi] ∶ Λ
t[tβi]Ð→ Λt[ω1]
℘βi[li,j]z→ ℘ξ1[p1[qi]li,j]; ♢

ḣ s[p2] ∶ Λ
t[ω1]Ð→ ZΛt[ω2]

(ḣ s[p2])(℘ξ1[p1[qi]li,j]) ∶ Λ
t[tγi,j]Ð→ Λt[ω2]
℘γi,j [r]z→ ℘ξ2[p2 ℘ξ1[p1[qi]li,j] r]. ♣

Thus,
(ḣ s[p2p1])([qi])(℘δi[li,jr]) = ℘ζ[p2p1[qi]li,jr] by ♠

= ℘ξ2[p2 ℘ξ1[p1[qi]li,j] r] ♡

= (ḣ s[p2])(℘ξ1[p1[qi]li,j])(℘γi,j [r]) by ♣
= (ḣ s[p2]) ((ḣ s[p1])([qi])(℘βi[li,j])) (℘γi,j [r]) by ♢
= (ḣ s[p2] ○ ḣ s[p1])) ([qi])(℘δi[li,jr]), ✠

where equality ♡ comes from the monad structure on Z, and ✠ from the definition of the composition
in Λ when considered as the Kleisli category of Z. □
Proof of lemma 4.4.7. (1) Unfolding the definition of ḣ s[] we get, for [q]ω●:

ḣ s[] ∶ Λt[Yψ]Ð→ ZΛt[ω]

(ḣ s[])([]) ∶ Λt[tYω]z→ Λt[ω]
℘Yω[[q]]z→ ℘ξ[[][q]].
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Since ℘Yω[[q]] = [q] = ℘ξ[[][q]], ḣ s[] corresponds to the cell idΛt[ω] ∈ ZΛt[ω]tω, thus is equal to
ḣ t as claimed.

(2) First, graft trivial trees to ξ so it’s in the form of equation (2.4.6):
ξ = Yβ̄ ○[[p]]

Yβ ◯
[[qi]]

Is[qi] β
,

where [qi] ranges over β●. Unfolding the definition of ḣ s[p] we get, for [q]β●:

ḣ s[p] ∶ Λt[β]Ð→ ZΛt[ω]

(ḣ s[p])([q]) ∶ Λt[t Is[q] β]Ð→ Λt[ω]
[] = ℘Is[q] β []z→ ℘ξ[[p][q]] = [pq],

thus ḣ s[p] = ḣi. □
Proof of lemma 4.4.8. We proceed by induction on ω.

(1) Assume ω = Yψ for some ψ ∈ On. Then
Λ(ḣYψ, ḣω′) = Λ(ZΛt[Yψ],ZΛt[ω′])

≅ (ZΛt[ω])ψ .

Thus f corresponds to a unique morphism f̃ ∶ Λt[ν] Ð→ Λt[ω′], for some ν ∈ On+1 such that
tν = ψ, and f is the composite

ḣYψ = ḣψ
ḣ tÐ→ ḣν

Zf̃
Ð→ ḣω′.

Those two arrows are diagrammatic by lemma 4.4.7, and thus f is too by lemma 4.4.6.
(2) By induction, write ω = ν1 ○[l]Yψ2 for some ν1 ∈ On+1, [l] ∈ ν ∣1, and ψ2 ∈ On. Write ψ1 = tν1, and

ν2 = Yψ2 . Then f restricts as fi, i = 1,2, given by the composite ḣνi Ð→ ḣω
f
Ð→ ḣω′.

Let [l′] be the edge address of ω′ such that e[l′] ω
′ = f(e[l] ω). Then ω′ decomposes as ω′ =

β1 ○[l′] β2, for some β1, β2 ∈ On+1 (in particular, β1 and β2 are sub Zn−1-trees of ω′), and f1 and
f2 factor as on the left

ḣνi ḣβi

ḣω′,

f̄i

fi
ui

ξi

νi βi

s [p i
]

t

ḣνi ḣβi.
f̄i

where ui correspond to the subtree inclusion βi ↪Ð→ ω′. By induction, f̄i is diagrammatic, say
with the diagram on the right above, and thus βi can be written as βi = ν̄i ◽[qi] νi, for some
ν̄i ∈ On+1 and [qi] ∈ ν̄●i . In the case i = 2, note that β2 = ν̄2 ◽[q2] ν2 = ν̄2 ◽[q2]Yψ2 = ν̄2.
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On the one hand we have
e[l′] ω

′ = f(e[l] ω) by def. of [l′]
= f1(e[l] ν1) since ω = ν1 ○

[l]
Yψ2

= u1f̄1(e[l] ν1) since f1 = u1f̄1
= u1(e[q1l] β1) since β1 = ν̄1 ◽

[q1]
ν1

= e[q1l] ω,
showing [l′] = [q1l], and thus that ν̄1 is of the form

ν̄1 = µ1 ○
[q1]

Yψ1 ◯
[[r1,j]]

µ1,j , (A.0.1)

where [r1,j] ranges over ψ●1 − {℘ν1[l]}, and µ1, µ1,j ∈ On+1. On the other hand,
e[l′] ω

′ = f(e[l] ω) by def. of [l′]
= f2(e[] ν2) since ω = ν1 ○

[l]
Yψ2

= u2f̄2(e[] ν2) since f1 = u2f̄2
= u2(e[q2] β2) since β2 = ν̄2 ◽

[q2]
ν2

= e[l′] ω′,
showing [q2] = [], and so s[] β2 = s[] ν̄2 = ψ2, and we can write β2 as

β2 = Yψ2 ◯
[[r2,j]]

µ2,j , (A.0.2)

where [r2,j] ranges over ψ●2, and µ2,j ∈ On+1. Finally, we have
ω′ = β1 ○

[l′]
β2 = (ν̄1 ◽

[q1]
ν1) ○

[l′]
β2

=
⎛
⎜
⎝
µ1 ○
[q1]

ν1 ◯
℘−1ν1 [r1,j]

µ1,j
⎞
⎟
⎠
○
[l′]

⎛
⎝
Yψ2 ◯

[[r2,j]]
µ2,j
⎞
⎠

by (A.0.1) and (A.0.2)

=

⎛
⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜
⎝

µ1 ○
[q1]

ν1 ○
[l]
Yψ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ω

⎞
⎟⎟⎟⎟
⎠

◯
[q1]⋅℘−1ν1 [r1,j]

µ1,j

⎞
⎟⎟⎟⎟
⎠

◯
[l′[r2,j]]

µ2,j rearranging terms

= ω̄ ◽
[q1]

ω,
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for some ω̄′ ∈ On+1.(11) Finally, by lemma 4.4.7, the following is a diagram of ḣf :

ξ

ω ω′
s [[
q 1
]]

t

ḣω ḣω′,
f

ξ ∶=Yω̄ ○
[[q1]]

Yω.

□

(11)Specifically,

ω′ = µ1 ○
[q1]

⎛
⎜
⎝

⎛
⎜
⎝
Ytω ◯

[℘ω℘−1ν1 [r1,j]]
µ1,j

⎞
⎟
⎠

◯
[℘ω[l′[r2,j]]]

µ2,j

⎞
⎟
⎠
=
⎛
⎜
⎝
(µ1 ○

[q1]
Ytω) ◯

[q1]⋅[℘ω℘−1ν1 [r1,j]]
µ1,j

⎞
⎟
⎠

◯
[q1]⋅[℘ω[l′[r2,j]]]

µ2,j .
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