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Abstract

We introduce an adaptive domain decomposition (DD) method for
solving saddle point problems defined as a block two by two matrix.
The algorithm does not require any knowledge of the constrained space.
We assume that all sub matrices are sparse and that the diagonal blocks
are the sum of positive semi definite matrices. The latter assumption
enables the design of adaptive coarse space for DD methods, see [6].
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1 Introduction

Solving saddle point problems with parallel algorithms is very important for
many branches of scientific computing: fluid (see e.g. [14]) and solid mechan-
ics, computational electromagnetism, inverse problem and optimization.

We are interested in domain decomposition (DD) methods since they are
naturally well-fitted to modern parallel architectures. For specific systems
of partial differential equations with a saddle point formulation, efficient DD
methods have been designed, see e.g. [17, 13, 18] and [22] references therein.

Here as in [15, 2, 5], we consider the problem in the form of a two by
two block matrix. Let m and n be two integers with m ă n. Let A n ˆ n
SPD matrix and B be a sparse mˆ n full rank matrix of constraints and C
a mˆm non negative matrix (in particular, C “ 0 is allowed), we consider
the following saddle point matrix:

A :“

ˆ

A BT

B ´C

˙

. (1)

When the kernel of matrix B is known, very efficient multigrid methods have
been designed in the context of finite element methods, see e.g. [4, 11, 10, 1,
19, 7].

Here we do not assume any knowledge on the kernel of matrix B. But
in order to build a scalable method, we assume that all three matrices are
sparse and that A and C are the sum of positive semi definite matrices.
This is easily achieved in finite element or finite volume contexts for partial
differential equations. The latter assumption enables the design of adaptive
coarse space for DD methods, see [6].

2 Schur complement preconditioning

The sparse n ˆ n SPD matrix A is preconditioned by a two-level Schwarz
type DD method :

M´1
A :“ RT0 pR0AR

T
0 q
´1R0 `

N
ÿ

i“1

RTi pRiAR
T
i q
´1Ri , (2)

where R0 is full rank dimpV0q ˆ n where V0 denotes the space spanned by
the columns of RT0 . The following assumptions are crucial to ensure the final
method is scalable:

Assumption 2.1 (dimension and structure of the coarse space)

• The coarse space dimension, dimpV0q, is OpNq typically 10-20 times
N .

• The coarse space is made of extensions by zero of local vectors.
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Using the GenEO metod [20], it is possible to fix in advance two constants
0 ă λm ă 1 ă λM and then build a coarse space V0 such that M´1

A is
spectrally equivalent to A´1:

1

λM
M´1
A ď A´1 ď

1

λm
M´1
A ,

The coarse space V0 is made extensions by zero of local generalized eigen-
value problems and its dimension is typically proportional to the number of
subdomains. This corresponds to Assumption 2.1.
Our aim is first to precondition the Schur complement ´S of matrix A
(eq. (1)) where

S :“ C `BA´1BT , (3)

via the spectrally equivalent preconditioning of the spectrally equivalent
Schur complement MS ,

MS :“ C `BM´1
A BT . (4)

This is done in § 3. Then preconditioner MS is itself by a spectrally equiv-
alent preconditioner NS , see eq. (12) in § 3.2 . Finally in § 4.2 we will use
NS to precondition the saddle point matrix A.

Note that MS is by definition a sum of N ` 2 positive semi definite
matrices

MS :“ BRT0 pR0AR
T
0 q
´1R0B

T ` C `
N
ÿ

i“1

BRTi pRiAR
T
i q
´1RiB

T . (5)

Since B is a sparse matrix, it is interesting to introduce, for all 0 ď i ď N ,
R̃i the restriction operator on the support of =pBRTi q so that R̃Ti R̃iBR

T
i “

BRTi . Then by defining for 0 ď i ď N ,

B̃i :“ R̃iBR
T
i ,

the operator MS is rewritten as

MS :“ R̃T0 B̃0 pR0AR
T
0 q
´1 B̃T

0 R̃0 ` C `
N
ÿ

i“1

R̃Ti B̃i pRiAR
T
i q
´1 B̃T

i R̃i . (6)

We consider a partition of unity on H :“ Rm defined with local diagonal
matrices pD̃iq1ďiďN P RdimpImpBR

T
i qqˆdimpImpBR

T
i qq:

N
ÿ

i“1

R̃Ti D̃i R̃i “ IH .

Remark 2.1 This partition of unity exists since

B “
N
ÿ

i“1

BRTi DiRi “
ÿ

R̃Ti R̃ipBR
T
i DiRiq

is full rank.
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3 Preconditioning of MS

We make the following assumption

Assumption 3.1 There exist symmetric positive semidefinite matrices pC̃iq1ďiďN
such that

C “
N
ÿ

i“1

R̃Ti C̃i R̃i .

This assumption is not so restrictive. Indeed, if C “ 0, it is automatically
satisfied, this corresponds to a minimization problem with constraints en-
forced exactly without penalization nor relaxation. Moreover, we have:

Lemma 3.1 If C is a diagonal matrix, Assumption 3.1 is satisfied.

Proof If C is a diagonal matrix, it suffices to take

C̃i :“ R̃iCR̃
T
i D̃i ,

which is a diagonal non negative matrix. Indeed, we have then:

C P “
N
ÿ

i“1

C R̃Ti D̃iR̃iP “
N
ÿ

i“1

R̃Ti pR̃iC R̃
T
i D̃iqR̃iP .

Then, the operator MS is the sum of a non local but low rank matrix S0:

S0 :“ R̃T0 B̃0 pR0AR
T
0 q
´1 B̃T

0 R̃0 ,

and of S1 which is a sum of N local positive semi definite matrices:

S1 :“
N
ÿ

i“1

R̃Ti pC̃i ` B̃i pRiAR
T
i q
´1 B̃T

i qR̃i ,

that is
MS “ S0 ` S1 .

Note that we may assume that S1 is invertible whereas it does not make
sense for S0.

We consider next the construction of a preconditioner M´1
S1

to S1.

3.1 Equivalent preconditioner of S1

3.1.1 One-level DD

As in [6] chapter 7, we begin with a one-level Neumann-Neumann type DD
method defined in terms of the Fictitious Space Lemma (FSL) [16, 8]. This
study will be the basis for constructing the two-level preconditioner. Recall

H :“ Rm
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and let a be the following bilinear form:

a : H ˆH Ñ R apP,Qq :“ pS1P,Qq .

Let
HD :“ ΠN

i“1RrankpB̃iq ,

and b be the following bilinear form:

b : HD ˆHD Ñ R bpP,Qq :“
N
ÿ

i“1

p pC̃i ` B̃i pRiAR
T
i q
´1 B̃T

i qPi , Qiq .

We define R:
R : HD Ñ H

pPiq1ďiďN ÞÑ
řN
i“1 R̃

T
i D̃iPi ,

We now check the three assumptions of the FSL.

Surjectivity of R For any P P H, we have:

P “
N
ÿ

i“1

R̃Ti D̃iR̃iP ,

so that
P “ RppR̃iPq1ďiďN q . (7)

Continuity of R On one hand, we have using k0 the number of neighbours
of a subdomain plus one, k0 :“ max1ďiďN #Opiq where Opiq :“ t1 ď j ď
N | R̃i D̃i S1 D̃j R̃

T
j ‰ 0u:

apRpPq , RpPqq “ }p
řN
i“1 R̃

T
i D̃iPiq}

2
a ď k0

řN
i“1 }R̃

T
i D̃iPi}

2
a

“ k0 p
´

ř

jPOpiq R̃
T
j pC̃j ` B̃j pRjAR

T
j q
´1 B̃T

j qR̃j

¯

R̃Ti D̃iPi , R̃
T
i D̃iPiq .

On the other hand, we have by definition:

bpP , Pq “
N
ÿ

i“1

p pC̃i ` B̃i pRiAR
T
i q
´1 B̃T

i qPi , Piq .

We can take:

cR :“ max
1ďiďN

max
PiPRrankpB̃iq

p
ř

jPOpiq R̃i R̃
T
j pC̃j ` B̃j pRjAR

T
j q
´1 B̃T

j q R̃j R̃
T
i D̃iPi , D̃iPiq

p pC̃i ` B̃i pRiARTi q
´1 B̃T

i qPi , Piq
.

Stable decomposition Let P P H, we start from its decomposition (7)
and estimate its b-norm

bpP , Pq “
řN
i“1p pC̃i ` B̃i pRiAR

T
i q
´1 B̃T

i q R̃iP , R̃iPq “ apP , Pq ,

so that we can take cT “ 1.
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3.1.2 Two-level DD

In order to control the value of cR defined above, we introduce a two-level
preconditioner similarly to what is done for Schur complement method in [6,
§ 7.8.3, page 197] or in [21]. In our case, the generalized eigenvalue value
problem in each subdomain 1 ď i ď N to be solved to build the coarse space
reads:

D̃i

´

ř

jPOpiq R̃i R̃
T
j pC̃j ` B̃j pRjAR

T
j q
´1 B̃T

j qR̃j R̃
T
i

¯

D̃i Pi k

“ λi kpC̃i ` B̃i pRiAR
T
i q
´1 B̃T

i q Pi k .
(8)

It can be solved in Op1q communications. The coarse space is defined as
follows. Let τS1 be a user-defined threshold; for each subdomain 1 ď i ď N ,
we introduce a subspace Wi Ă RrankpB̃iq:

W̃i :“ SpantPi k | λi k ą τS1u . (9)

Then the coarse space W̃0 is defined by

W̃0 :“
à

1ďiďN

R̃Ti D̃iW̃i .

Let ZS1 be a rectangular matrix whose columns span the coarse space W̃0.
Let P̃0 be the S1 orthogonal projection from Rm on W̃0 whose formula is

P̃0 “ ZS1pZ
T
S1
S1ZS1q

´1ZTS1
S1 . (10)

Remark 3.1 We forget for the moment the projection related to the possible
kernel of C̃i ` B̃i pRiARTi q

´1 B̃T
i )

Finally, the preconditioner for S1 reads

M´1
S1

:“ ZS1 pZ
T
S1
S1ZS1q

´1 ZTS1
` pI ´ P̃0q

ˆ

´

řN
i“1 R̃

T
i D̃i pC̃i ` B̃i pRiAR

T
i q
´1 B̃T

i q
: D̃iR̃i

¯

pI ´ P̃ T0 q .

(11)
Recall that we have for α :“ maxp1, k0τS1

q:

1

α
M´1
S1
ď S´1 ďM´1

S1
.

Remark 3.2 Solving a linear system with a local Schur complement

pC̃i ` B̃i pRiAR
T
i q
´1 B̃T

i qPi “ Gi ,

amounts to solving an augmented sparse system of the form

´

ˆ

RiAR
T
i B̃T

i

B̃i ´C̃i

˙ ˆ

Ui

Pi

˙

“

ˆ

0
Gi

˙

.
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3.2 Preconditioner for MS

From the spectrally equivalent preconditioner MS1 to S1, we define NS a
spectrally equivalent preconditioner to MS and thus to S as well:

NS :“ S0 `MS1 . (12)

We now consider the application of the preconditioner, that is the solving of
NSP “ G in P for some right handsize G P Rm. By factorizing R0AR

T
0 “

L0 L
T
0 P RdimpV0qˆdimpV0q, we have a Cholevsky factorization of S0:

S0 “ R̃T0 B̃0 L
T
0
´1
L´10 B̃T

0 R̃0 .

By Sherman-Morrison’s technique, solving NSP “ G, amounts to solving
˜

MS1 R̃T0 B̃0 L
T
0
´1

L´10 B̃T
0 R̃0 ´I

¸

ˆ

P
y

˙

“

ˆ

G
0

˙

,

with y :“ L´10 B̃T
0 R̃0P P RdimpV0q. This is equivalent to solving its Schur

complement:

MA0y :“ pI `L´10 B̃T
0 R̃0M

´1
S1
R̃T0 B̃0 L

T
0
´1
qy “ L´10 B̃T

0 R̃0M
´1
S1

G P RdimpV0q .
(13)

Following 3.2.1, computing the entries of MA0 is scalable.

3.2.1 Scalability of the computation of MA0

The idea is that the computation of the entries of MA0 is scalable since
R̃T0 B̃0 “ BTR0 has a sparse structure, see Assumption 2.1. We sketch here
the idea by considering for instance the term corresponding to the coarse
space in the formula for M´1

S1
(see eq. (11)):

L´10 B̃T
0 R̃0ZS1 pZ

T
S1
S1ZS1q

´1 ZTS1
R̃T0 B̃0 L

T
0
´1
.

Matrix ZTS1
R̃T0 P RdimpW̃0qˆdimpV0q is the product of two DD coarse spaces so

that its computation is Op1q.
For the other computations, we need extra assumptions 3.2 and 3.3.

Indeed, let’s look at the sum over the subdomains in (11) and we isolate one
subdomain 1 ď i ď N :

L´10 B̃T
0 R̃0pI´P̃0qR̃

T
i D̃i pC̃i`B̃i pRiAR

T
i q
´1 B̃T

i q
: D̃iR̃ipI´P̃

T
0 qR̃

T
0 B̃0 L

T
0
´1
.

This can be decomposed into a four term sum, the first term being:

L´10 B̃T
0 R̃0R̃

T
i D̃i pC̃i ` B̃i pRiAR

T
i q
´1 B̃T

i q
: D̃iR̃iR̃

T
0 B̃0 L

T
0
´1
,
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Assumption 3.2 We assume that, for all 1 ď i ď N , the local matrix

D̃iR̃iR̃
T
0 B̃0 “ D̃iR̃iB

TR0

has Op1q non zero columns.

The second term being:

´L´10 B̃T
0 R̃0R̃

T
i D̃i pC̃i ` B̃i pRiAR

T
i q
´1 B̃T

i q
: D̃iR̃iP̃

T
0 R̃

T
0 B̃0 L

T
0
´1
.

We focus on the term

D̃iR̃iP̃
T
0 R̃

T
0 B̃0 “ D̃iR̃iS1ZS1pZ

T
S1
S1ZS1q

´1ZTS1
BT R0 .

Assumption 3.3 We assume that, for all 1 ď i ď N , the local matrix
D̃iR̃iS1ZS1 has Op1q non zero columns

Using this assumption, the computation of second term is scalable. The two
other terms can also be computed in a scalable way.

Note that, the resulting matrix MA0 being of small size, it can be factor-
ized by a direct method.

4 Recap

4.1 Setup for the Schur complement preconditioner MS

We have a setup phase which is composed of:

1. Build the two-level preconditioner M´1
A for A, see eq. (2),

2. Build the two-level preconditioner M´1
S1

for S1, see eq. (11),

3. Compute the entries of matrix MA0 , see eq. (13) and factorize it.

Once the setup is complete, applying preconditioner N´1S can be per-
formed following Algorithm 1.

Algorithm 1 N´1S matvec product

INPUT: G P Rm OUTPUT: P “ N´1S G
1. Compute “ G1 :“M´1

S1
G.

2. Compute the right handside L´10 B̃T
0 R̃0G

1 of eq. (13).
3. Solve eq. (13) in y.
4. Compute P :“M´1

S1
pG´ R̃T0 B̃0 L

T
0
´1

yq
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4.2 DD solver for the saddle point system

We now consider the solving of the saddle point problem:
ˆ

A BT

B ´C

˙ ˆ

U
P

˙

“

ˆ

FU
FP

˙

. (14)

The following three factor factorization, see e.g. [3]:
ˆ

A BT

B ´C

˙

“

ˆ

I 0
BA´1 I

˙ˆ

A 0
0 ´pC ` BA´1BT q

˙ˆ

I A´1BT

0 I

˙

,

shows that solving eq. (14) can be performed by solving sequentially linear
systems with A and one with C `BA´1BT . This leads to Algorithm 2.

Algorithm 2 DD saddle point solver

INPUT:
ˆ

FU
FP

˙

P Rn`m OUTPUT:
ˆ

U
P

˙

the solution to (14).

1. Solve AGU “ FU by a PCG with M´1
A as a preconditioner

2. Compute GP :“ FP ´BGU

3. Solve pC`BA´1BT qP “ ´GP by a PCG withN´1S as a preconditioner,
see Algorithm 1.
4. Compute GU :“ FU ´B

TP
5. Solve AU “ GU by a PCG with M´1

A as a preconditioner

5 Variants

In § (2), we start with a two level additive Schwarz method (ASM) eq. (2)
as a preconditioner for matrix A in (1). Another possibility is to start from
a balancing Neumann-Neumann (BNN) or more generally a SORAS [9] or
BDD-H [12] type method:

M´1
ASORAS

:“ RT0 pR0AR
T
0 q
´1R0 `

N
ÿ

i“1

RTi DiA
Rob
i

´1
DiRi , (15)

where for each subdomain 1 ď i ď N , ARobi is a local Neumann matrix
(BNN algorithm) or an arbitrary invertible matrix. In order to build the
preconditioners for matrix S and then A, it is sufficient to replace matrices
pRiAR

T
i q
´1 with ARobi

´1 in the above sections.
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