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Abstract
We introduce an adaptive element-based domain decomposition (DD) method for

solving saddle point problems defined as a block two by two matrix. The algorithm
does not require any knowledge of the constrained space. We assume that all sub
matrices are sparse and that the diagonal blocks are spectrally equivalent to a sum of
positive semi definite matrices. The latter assumption enables the design of adaptive
coarse space for DD methods that extends the GenEO theory [40] to saddle point
problems. Numerical results on three dimensional elasticity problems for steel-rubber
structures discretized by a finite element with continuous pressure are shown for up to
one billion degrees of freedom.

1 Introduction

Solving saddle point problems with parallel algorithms is very important for many branches
of scientific computing: fluid and solid mechanics especially for incompressible or nearly
incompressible materials, computational electromagnetism, multi-physics problems, inverse
problems and optimization. They also arise when analyzing realistic problems with the in-
corporation of a set of linear multipoint constraints (MPC) into the linear solver. Examples
of the problems described by the MPCs are the non-penetration condition in the contact
problem, connection of different types of finite elements, modelling of rigid bodies, and so
on. Using Lagrange multipliers to enforce them, yields linear saddle point systems.

For small enough problems, direct solvers are the method of choice since they are robust
and have a predictable efficiency. But for large problems the memory requirements are very
large and at some point the solver runs out of memory, see e.g. the tests performed in § 5.5.1.
Then iterative solvers are needed. Domain decomposition methods are, alongside multigrid
methods, one of the dominant paradigms for defining efficient and robust preconditioners
in modern large-scale applications dealing with partial differential equations and algebraic
systems of equations.

We are interested in domain decomposition (DD) methods since they are naturally well-
fitted to modern parallel architectures. For specific systems of partial differential equations
with a saddle point formulation, efficient DD methods have been designed, see e.g., [36,
31, 37] and [42] references therein. Also in [23], a GenEO coarse space is introduced for
the P.L. Lions’ algorithm and its efficiency is mathematically proved for symmetric definite
positive problems. In the above article, numerical experiments are conducted on three
dimensional elasticity problems for steel-rubber structures discretized by a finite element
with continuous pressure. Although the method works well in practice, it lacks theoretical
convergence guarantees and also demands the design of specific absorbing conditions as
interface conditions.

As for a convergence rate analysis for a discretization with a continuous pressure, the
recent article [45] generalizes the theory developed in [44] to the case of nonzero pressure
block but under the assumption that the discontinuities are resolved by the subdomains.
Compared to the above mentioned works, the method we propose has a provable control
on the condition number for zero or non zero pressure block with a continuously discretized
pressure also in the case arbitrary heterogeneities and, contrarily to [23], bypasses the need
for absorbing boundary conditions.

Here as in [34, 5, 11, 38], we consider the problem in the form of a two by two block
matrix. Let m and n be two integers with m ă n. Let A nˆn be a SPD matrix, B a sparse
m ˆ n full rank matrix of constraints and C a m ˆ m non negative matrix (in particular,
C “ 0 is allowed), we consider the following saddle point matrix:

A :“

ˆ

A BT

B ´C

˙

. (1)
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When the kernel of matrix B is known, very efficient multigrid methods have been de-
signed in the context of finite element methods, see e.g., [9, 26, 25, 2, 39, 16]. Without this
knowledge, it is nevertheless also possible to design efficient geometric multigrid methods
as in [13] where the fine mesh is obtained by several uniform mesh refinements. In the
case where matrix C is zero, augmented Lagrangian methods [18, 20, 17] may be used.
Applications to incompressible fluid dynamics and incompressible elasticity are numerous,
see e.g. in [16, 19] and references therein.

Here we do not assume any knowledge on the kernel of matrix B nor that C is zero and
we work with arbitrary meshes. The following three factor factorization, see e.g., [6]:

ˆ

A BT

B ´C

˙

“

ˆ

I 0
BA´1 I

˙ ˆ

A 0
0 ´pC ` BA´1BT q

˙ ˆ

I A´1BT

0 I

˙

,

shows that solving the linear system with A can be performed by solving sequentially linear
systems with A and one with the Schur complement C ` BA´1BT . In order to build a
scalable method, we assume that all three matrices A, B and C are sparse and that A and
C are the sum of positive semi definite matrices. This is easily achieved in finite element
or finite volume contexts for partial differential equations. The latter assumption enables
the design of adaptive coarse space for DD methods, see [12].

The highlights of the article are:

• new provably scalable DD method that is a blend of two-level Schwarz and Neumann-
Neumann domain decomposition methods.

• successfully applied to the notorious difficult problem of large scale (1 billion d.o.f’s)
nearly incompressible elasticity with heterogeneities not resolved by the domain de-
composition and discretized with a continuous pressure.

The paper is organized as follows. In § 2, we recall the two-level additive Schwarz
method denoted MA used to precondition the matrix A (the primal-primal block of the
saddle point problem). Then in § 3, we introduce the operator PS :“ C `BM´1

A BT which
is spectrally equivalent to the Schur complement S. Its preconditioning is studied in § 3.2.
In § 4, we combine these different components to define in a compact way the parallel
saddle point preconditioner. In § 5, we present weak and strong scaling experiments on
large scale elasticity problems for steel-rubber structures discretized by a finite element
with continuous pressure. Comparisons with direct and multigrid solvers are also given.
These problems are highly heterogeneous since the Lamé-Poisson coefficients of the rubber
are pE1, ν1q “ p1 ˆ 107, 0.4999q and those of the steel are pE2, ν2q “ p2 ˆ 109, 0.35q.

2 Preconditioning of the primal problem

The sparse nˆn SPD matrix A is preconditioned by a two-level Schwarz type DD method:

M´1
A :“ RT

0 pR0AR
T
0 q´1R0 `

N
ÿ

i“1

RT
i pRiAR

T
i q´1Ri , (2)

where R0 is full rank dimpV0q ˆ n with V0 denoting the space spanned by the columns of
RT

0 . The following assumptions are crucial to ensure the final method is scalable:

Assumption 2.1 (dimension and structure of the coarse space)

• The coarse space dimension, dimpV0q, is OpNq typically 10-20 times N .

• The coarse space is made of extensions by zero of local vectors.
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Using the GenEO method [40], it is possible to specify in advance two constants 0 ă λm ă

1 ă λM and then build a coarse space V0 such that M´1
A is spectrally equivalent to A´1:

1

λM
M´1

A ď A´1 ď
1

λm
M´1

A . (3)

The dimension of the coarse space V0 is typically proportional to the number of subdomains.
This corresponds to Assumption 2.1. More precisely, for each subdomain 1 ď i ď N , let
Di be a non negative diagonal matrix that defines a discrete partition of unity, i.e.:

N
ÿ

i“1

RT
i DiRi “ I ,

and ANeu
i be a symmetric semi-definite positive matrix such that for the maximum multi-

plicity of the intersection of subdomains denoted k1, we have:

N
ÿ

i“1

RT
i A

Neu
i Ri ď k1A . (4)

Then, the GenEO eigenvalue problem is local to each subdomain and reads:
Find pλik, Vikq P R ˆ RrankpRiq such that:

pDiRiAR
T
i DiqVik “ λikA

Neu
i Vik . (5)

Let τ ą 0 be a positive threshold, the coarse space is the vector space spanned by the
vectors RT

i DiVik for all λik ą τ . Then inequality (3) holds with λm :“ p1 ` k1τq´1 and
λM :“ k0 where k0 is the maximal number of neighbours of a subdomain including itself.

Our aim in the next section is to precondition the Schur complement ´S of matrix A
(eq. (1)) where

S :“ C ` BA´1BT . (6)

This is achieved by a series of spectrally equivalent matrices or preconditioners, the first
one being PS defined as follows:

PS :“ C ` BM´1
A BT (7)

and the final one being N´1
S introduced in § 3.3, see eq. (24). Finally in § 4.2 we will

introduce the preconditioner of the saddle point matrix A.

3 Schur complement preconditioning

3.1 First spectrally equivalent preconditioner

Note that PS is by definition a sum of N ` 2 positive semi definite matrices

PS :“ BRT
0 pR0AR

T
0 q´1R0B

T ` C `

N
ÿ

i“1

BRT
i pRiAR

T
i q´1RiB

T . (8)

Since B is a sparse matrix, it is interesting to introduce, for all 0 ď i ď N , R̃i the restriction
operator on the support of ℑpBRT

i q (the image of BRT
i ) so that:

R̃T
i R̃iBRT

i “ BRT
i . (9)

Then, by defining for 0 ď i ď N ,

B̃i :“ R̃iBRT
i ,
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the operator PS is rewritten as

PS :“ R̃T
0 B̃0 pR0AR

T
0 q´1 B̃T

0 R̃0 ` C `

N
ÿ

i“1

R̃T
i B̃i pRiAR

T
i q´1 B̃T

i R̃i . (10)

We consider a partition of unity on H :“ Rm defined with local diagonal matrices pD̃iq1ďiďN P

RdimpℑpBRT
i qqˆdimpℑpBRT

i qq:
N
ÿ

i“1

R̃T
i D̃i R̃i “ IH .

We make the following assumption

Assumption 3.1 There exist symmetric positive semidefinite matrices pC̃iq1ďiďN such
that for some constant k̃1

C ď

N
ÿ

i“1

R̃T
i C̃i R̃i ď k̃1C . (11)

This assumption is not so restrictive. Indeed, for a minimization problem with constraints
enforced exactly without penalization nor relaxation, we have C “ 0 and the assumption
is automatically satisfied. Moreover, we have:

Lemma 3.1 If C is a diagonal matrix, Assumption 3.1 is satisfied with k̃1 “ 1.

Proof If C is a diagonal matrix, it suffices to take

C̃i :“ R̃iCR̃T
i D̃i ,

which is a diagonal non negative matrix. Indeed, we then have:

C “

N
ÿ

i“1

C R̃T
i D̃iR̃i “

N
ÿ

i“1

R̃T
i pR̃iC R̃T

i D̃iqR̃i .

Remark 3.1 Note also that in the finite element case it suffices to restrict the variational
form that defines C to the subdomains. In this case k̃1 is the multiplicity of the intersections
of the subdomains used to define the C̃i’s.

Let us define the operator MS as the sum of a non local but low rank matrix S0:

S0 :“ R̃T
0 B̃0 pR0AR

T
0 q´1 B̃T

0 R̃0 ,

and of S1 which is a sum of N local positive semi definite matrices:

S1 :“
N
ÿ

i“1

R̃T
i pC̃i ` B̃i pRiAR

T
i q´1 B̃T

i qR̃i ,

that is
MS :“ S0 ` S1 .

By Assumption 3.1, the operator MS is spectrally equivalent to PS which is also spectrally
equivalent to S. Note that we may assume that S1 is invertible whereas it does not make
sense for S0. Note that if it is not the case, since we build a preconditioner, S1 can be
regularized by a small diagonal term with little effect on the efficiency of the preconditioner.

We consider next the construction of a preconditioner M´1
S1

to S1 leveraging the fact
that S1 is a sum of symmetric semidefinite positive matrices. Let us stress that this property
stems from the domain decomposition structure of the preconditioner for matrix A which
apart from the coarse level is block diagonal.
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3.2 Preconditioning of S1

It is well known that one level domain decomposition methods are in most cases not scal-
able. Nevertheless, the study of a one-level method in § 3.2.1 enables the identification
of a suitable coarse space that will be efficiently embedded in a scalable two-level domain
decomposition method in § 3.2.2.

Our studies of the spectrum of the DD preconditioners are based on the Fictitious
Space lemma which is recalled here, see [35] for the original paper and [21] for a modern
presentation.

Lemma 3.2 (Fictitious Space Lemma, Nepomnyaschikh 1991) Let H and HD be
two Hilbert spaces, with the scalar products denoted by p¨, ¨q and p¨, ¨qD. Let the symmetric
positive bilinear forms a : H ˆ H Ñ R and b : HD ˆ HD Ñ R, generated by the s.p.d.
operators A : H Ñ H and B : HD Ñ HD, respectively (i.e. pAu, vq “ apu, vq for all
u, v P H and pBuD, vDqD “ bpuD, vDq for all uD, vD P HD). Suppose that there exists a
linear operator R : HD Ñ H that satisfies the following three assumptions:

(i) R is surjective.

(ii) Continuity of R: there exists a positive constant cR such that

apRuD,RuDq ď cR ¨ bpuD, uDq @uD P HD . (12)

(iii) Stable decomposition: there exists a positive constant cT such that for all u P H there
exists uD P HD with RuD “ u and

cT ¨ bpuD, uDq ď apRuD,RuDq “ apu, uq . (13)

We introduce the adjoint operator R˚ : H Ñ HD by pRuD, uq “ puD, R˚uqD for all
uD P HD and u P H.
Then, we have the following spectral estimate

cT ¨ apu, uq ď a
`

RB´1R˚Au, u
˘

ď cR ¨ apu, uq , @u P H , (14)

which proves that the eigenvalues of operator RB´1R˚A are bounded from below by cT and
from above by cR.

The Fictitious Space Lemma (FSL) can also conveniently be related to the book [42]: the
first assumption corresponds to equation (2.3), page 36 where the global Hilbert space is
assumed to satisfy a decomposition into subspaces, the second assumption is related to
Assumptions 2.3 and 2.4, page 40 and the third assumption corresponds to the Stable de-
composition Assumption 2.2 page 40.

3.2.1 One-level DD for S1

As in [12] chapter 7, we begin with a one-level Neumann-Neumann [7] type DD method
defined in terms of the Fictitious Space Lemma (FSL). This study will be the basis for
constructing a scalable two-level preconditioner in § 3.2.2. Recall the formula for the one-
level preconditioner M´1

S1,1
for S1:

M´1
S1,1

:“
N
ÿ

i“1

R̃T
i D̃i pC̃i ` B̃i pRiAR

T
i q´1 B̃T

i q: D̃iR̃i , (15)

where the superscript : denotes a pseudo inverse in case the operator in brackets is not
invertible. For sake of simplicity, we assume that they are invertible so that the following
framework enables the study of MS1,1 with the fictitious space lemma. Let

H :“ Rm

6



and let a be the following bilinear form:

a : H ˆ H Ñ R apP,Qq :“ pS1P,Qq .

Let
HD :“ ΠN

i“1RrankpB̃iq ,

and b be the following bilinear form:

b : HD ˆ HD Ñ R bppPiq1ďiďN , pQiq1ďiďN q :“
N
ÿ

i“1

p pC̃i ` B̃i pRiAR
T
i q´1 B̃T

i qPi , Qiq .

(16)
We define R:

R : HD Ñ H

pPiq1ďiďN ÞÑ
řN

i“1 R̃
T
i D̃iPi .

We now check the three assumptions of the FSL.

Surjectivity of R For any P P H, we have using the partition of unity that:

P “

N
ÿ

i“1

R̃T
i D̃iR̃iP ,

so that
P “ RppR̃iPq1ďiďN q . (17)

Continuity of R On one hand, we have using k0 the number of neighbours of a subdo-
main (including itself), k0 :“ max1ďiďN #Opiq where Opiq :“ t1 ď j ď N | R̃i D̃i S1 D̃j R̃

T
j ‰

0u:

apRpPq , RpPqq “ }p
řN

i“1 R̃
T
i D̃iPiq}2a ď k0

řN
i“1 }R̃T

i D̃iPi}
2
a

ď k0

´

p
ř

jPOpiq R̃
T
j pC̃j ` B̃j pRjAR

T
j q´1 B̃T

j qR̃jqR̃
T
i D̃iPi , R̃

T
i D̃iPi

¯

.

On the other hand, we have by definition:

bpP , Pq “

N
ÿ

i“1

p pC̃i ` B̃i pRiAR
T
i q´1 B̃T

i qPi , Piq .

We can take:

cR :“ max
1ďiďN

max
PiPRrankpB̃iq

p
ř

jPOpiq R̃i R̃
T
j pC̃j ` B̃j pRjAR

T
j q´1 B̃T

j q R̃j R̃
T
i D̃iPi , D̃iPiq

p pC̃i ` B̃i pRiART
i q´1 B̃T

i qPi , Piq
,

(18)
but we have no control on cR which may be large. This motivates the introduction of a
spectral coarse space in § 3.2.2 with the generalized eigenvalue problem (19) .

Stable decomposition Let P P H, we start from its decomposition (17) and estimate
its b-norm

bpP , Pq “
řN

i“1p pC̃i ` B̃i pRiAR
T
i q´1 B̃T

i q R̃iP , R̃iPq “ apP , Pq ,

so that we can take cT “ 1 which is an optimal value.
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3.2.2 Two-level DD for S1

In order to control the value of cR defined above, we introduce a two-level preconditioner
similarly to what is done for Schur complement methods in [12, § 7.8.3, page 197] or in
[41]. The generalized eigenvalue problem in each subdomain 1 ď i ď N to be solved to
build the coarse space is inferred from the definition of the constant cR in eq. (18):

D̃i R̃i

´

ř

jPOpiq R̃
T
j pC̃j ` B̃j pRjAR

T
j q´1 B̃T

j qR̃j

¯

R̃T
i D̃i Pi k

“ λi kpC̃i ` B̃i pRiAR
T
i q´1 B̃T

i q Pi k .
(19)

This generalized eigenvalue problem contains inverses of some local matrices on both
sides and in order to solve it via e.g. Arpack, we have to factorize one of them. This
difficulty can be overcome since the right matrix is the inverse of the Schur complement
of the extended sparse matrix (23). It is thus amenable to a factorization using only
sparse matrix factorizations. Note that matrix-vector products on the left hand side involve
neighbor to neighbor communications and thus synchronization points. Consequently, these
generalized eigenvalue problem solves are a little more involved to code than in the standard
GenEO.

The coarse space is defined as follows. Let τS1 be a user-defined threshold; for each
subdomain 1 ď i ď N , we introduce a subspace W̃i Ă RrankpB̃iq:

W̃i :“ SpantPi k | λi k ą τS1u . (20)

Then the coarse space W̃0 is defined (with some abuse of notation) as

W̃0 :“
à

1ďiďN

R̃T
i D̃iW̃i .

Let ZS1 be a rectangular matrix whose columns span the coarse space W̃0. Let P̃0 be the
S1 orthogonal projection from Rm on W̃0 whose formula is

P̃0 “ ZS1pZT
S1
S1ZS1q´1ZT

S1
S1 . (21)

In order to avoid a too cumbersome analysis, we make the following assumption:

Assumption 3.2 We assume that for all subdomains 1 ď i ď N , C̃i ` B̃i pRiAR
T
i q´1 B̃T

i

is invertible.

Finally, the preconditioner for S1 reads

M´1
S1

:“ ZS1 pZT
S1
S1ZS1q´1 ZT

S1
` pI ´ P̃0q

ˆ

´

řN
i“1 R̃

T
i D̃i pC̃i ` B̃i pRiAR

T
i q´1 B̃T

i q: D̃iR̃i

¯

pI ´ P̃ T
0 q .

(22)

If Assumption 3.2 is not satisfied for some subdomain i, we should incorporate the kernel
of C̃i ` B̃i pRiAR

T
i q´1 B̃T

i into the coarse space and make use of a pseudo inverse in the
definition of the preconditioner as it is done for the FETI method, see [15] or [12] § 7.8.2
and references therein. Recall that from [12] chapter 7, we have for α :“ maxp1, k0

τS1
q:

1

α
M´1

S1
ď S´1 ď M´1

S1
.

A careful implementation of (22) requires two coarse solves. Note that the application
of M´1

S1
can be done using only sparse solvers since solving a linear system with a local

Schur complement
pC̃i ` B̃i pRiAR

T
i q´1 B̃T

i qPi “ Gi ,

amounts to solving an augmented sparse system which has the form of a local saddle point
system:

´

ˆ

RiAR
T
i B̃T

i

B̃i ´C̃i

˙ ˆ

Ui

Pi

˙

“

ˆ

0
Gi

˙

. (23)
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3.3 Final Preconditioner for the Schur complement

From the spectrally equivalent preconditioner MS1 to S1, we define NS a spectrally equiv-
alent preconditioner to MS and thus to S as well:

NS :“ S0 ` MS1 . (24)

We now consider the application of the preconditioner NS , that is for some right hand side
G P Rm, the solving in P of the following system:

NS P “ G , (25)

by a Krylov solver with M´1
S1

as a preconditioner.

4 Recap

4.1 Setup for the Schur complement preconditioner

We have a setup phase which is composed of:

1. Build the two-level preconditioner M´1
A for A, see eq. (2),

2. Build the two-level preconditioner M´1
S1

for S1, see eq. (22).

Once the setup is complete, applying preconditioner N´1
S can be performed following

Algorithm 1

Algorithm 1 N´1
S matvec product

INPUT: G P Rm OUTPUT: P “ N´1
S G

1. Solve eq. (25) in P by a Krylov method with M´1
S as preconditioner.

4.2 DD solver for the saddle point system

Algorithm 2 DD saddle point solver

INPUT:
ˆ

FU

FP

˙

P Rn`m OUTPUT:
ˆ

U
P

˙

the solution to (26).

1. Solve AGU “ FU by a PCG with M´1
A as a preconditioner

2. Compute GP :“ FP ´ BGU

3. Solve pC ` BA´1BT qP “ ´GP by a PCG with N´1
S as a preconditioner, see Algo-

rithm 1
4. Compute GU :“ FU ´ BTP
5. Solve AU “ GU by a PCG with M´1

A as a preconditioner

The solution to the saddle point problem:
ˆ

A BT

B ´C

˙ ˆ

U
P

˙

“

ˆ

FU

FP

˙

(26)

is obtained by Algorithm 2. Note that Step 3 demands the matrix-vector product with
matrix C ` BA´1BT which is done by an iterative solve for matrix A´1.
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5 Numerical experiments

In this section, we perform 3D experiments to illustrate the theory and the performance
of the method. We are interested in a heterogeneous elasticity problem with nearly incom-
pressible material, typically rubber-steel structures. First, we recall the definition of the
coefficients and the corresponding variational formulation.

The mechanical properties of a solid are characterized by its Young modulus E and
Poisson ratio ν, or alternatively by its Lamé coefficients λ and µ. They verify the following
relations:

λ “
Eν

p1 ` νqp1 ´ 2νq
and µ “

E

2p1 ` νq
. (27)

For the discretization, we choose a continuous pressure space and take the lowest order
Taylor-Hood finite element C0P2 ´ C0P1 whose stability is proved, see e.g., [8]. The
domain Ω is a beam and the variational problem consists in finding puh, phq P Vh :“ P3

2 X

pH1
0 pΩqq3 ˆ P1 with Dirichlet boundary conditions on the four lateral faces and Neumann

boundary conditions on the other two faces such that for all pvh, qhq P Vh:
$

’

&

’

%

ş

Ω 2µεpuhq : εpvhqdx ´
ş

Ω phdiv pvhqdx “
ş

Ω fvhdx

´
ş

Ω div puhqqhdx ´
ş

Ω
1
λphqh “ 0.

(28)

Letting u denote the degrees of freedom of uh and p that of ph, the problem can be written
in matrix form as:

ˆ

A BT

B ´C

˙ ˆ

u
p

˙

“

ˆ

f
0

˙

. (29)

The matrix C is a mass matrix arising from the discretization of a variational form.
This enables us to satisfy Assumption 3.1 with C̃i the corresponding mass matrix but only
defined on subdomain Ω̃i which is the extension by a layer of direct neighbors of subdomain
Ωi.

In the following numerical experiments, we consider a heterogeneous beam composed
of 10 alternating layers of rubber material pE1, ν1q “ p1 ˆ 107, 0.4999q and steel material
pE2, ν2q “ p2 ˆ 109, 0.35q, see Fig. 1. Note that the discontinuities are not resolved by the
domain decomposition.

5.1 Software, hardware, implementation details

In the following numerical experiments, the iteration counts assess the control of the con-
dition number via the adaptive coarse spaces. We also report timings along with iteration
counts. We also showcase the fact that the size of the GenEO coarse space adapts automat-
ically to the difficulty of the problem at hand, for example when going from a homogeneous
to a heterogeneous problem. We illustrate the efficiency of the method by performing weak
and strong scalability tests, using the automatic graph partitioner Metis [30] for the sub-
domain partitioning.

The problem is discretized and solved with the open-source parallel finite element soft-
ware FreeFEM [24]. FreeFEM is a domain specific language (DSL) where the problem
to be solved is defined in terms of its variational formulation. Then the local matrices
pANeu

i q1ďiďN (see eq. (4)) and pC̃iq1ďiďN (see eq. (11)) are easily obtained by restricting
the corresponding variational formulations to adequate local subdomains. Note that these
matrices are different from the restriction of the global matrices A and C to the local degrees
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of freedom. The domain decomposition algorithm presented in this paper is implemented
on top of the ffddm framework, a set of parallel FreeFEM scripts implementing Schwarz
domain decomposition methods. ffddm already implements the GenEO method [40] for
SPD problems, and its building blocks are designed to simplify the implementation and
prototyping of new domain decomposition methods such as the saddle point solver pre-
sented in this paper. The ffddm documentation is available on the FreeFem.org web page,
see [43].

Numerical results are obtained on the french GENCI supercomputer Occigen, on the
Haswell partition composed of 50544 cores of Intel Xeon E5-2690V3 processors clocked
at 2.6GHz. The interconnect is an InfiniBand FDR 14 pruned fat tree. We use Intel
compilers, the Intel Math Kernel Library and Intel MPI.

As is usually done in domain decomposition methods, we assign one subdomain per
MPI process. Our implementation is pure MPI and no multithreading is done ; we assign
one MPI process per computing core. The mesh of the computational domain is partitioned
using the automatic graph partitioner Metis [30] (see Figure 1). Local subdomain matrices
are factorized by the sparse direct solver MUMPS [1]. Local eigenvalue problems are solved
with Arpack [32] ; both libraries are interfaced with FreeFEM. GenEO coarse space matrices
R0AR

T
0 in (2) and ZT

S1
S1ZS1 in (21) are assembled and factorized in a distributed manner

on a few cores (24 in most of the experiments) using the parallel solver MUMPS.

Figure 1: Heterogeneous beam composed of 10 alternating layers of rubber and steel.
Coefficient distribution (left) and mesh partitioning into 16 subdomains by the automatic
graph partitioner Metis (right).

For illustration purposes, we represent in Figure 2 (top) the eigenvalues of the local
GenEO eigenvalue problems for both coarse spaces, V0 for A and W̃0 for S1 (the former
corresponding to eq. (5) and the latter to eq. (19)), for the heterogeneous beam problem
with 16 million degrees of freedom, corresponding to the first row of Table 1. The figures
show the inverse of the first 40 largest eigenvalues for 10 of the subdomains for the ex-
periment corresponding to the first row of Table 1, so that the eigenvectors corresponding
to the smallest values on the graphs (below the dashed line) will be selected to enter the
coarse space. For comparison, we also solve the constant coefficient problem corresponding
to an homogeneous steel (and compressible) beam and show the eigenvalues in Figure 2
(bottom).

We can see the effect of heterogeneities on the spread of eigenvalues for different sub-
domains compared to the homogeneous case. In addition, we retrieve the 6 eigenvalues
corresponding to the rigid body modes for A in the homogeneous case, and we see that
we need a larger set of eigenvectors in order to build a robust coarse space in the hetero-
geneous case. Figure 2 also shows that there is no need for a coarse space for S1 in the
compressible homogeneous case. A strong feature of the GenEO method is that relevant
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Figure 2: Top: Heterogeneous steel and rubber beam. Bottom: Homogeneous steel only
beam. Inverse of the eigenvalues of the local GenEO eigenvalue problems for both coarse
spaces, V0 for A (left) and W̃0 for S1 (right), for 10 of the subdomains.

eigenvectors to enter the coarse space are selected automatically, adapting to the problem
at hand and its spatial heterogeneity. Moreover, the robustness of the preconditioner does
not rely on a specific partitioning, which allows the use of automatic graph partitioners
such as Metis [30] or Scotch [10].

5.2 Parameters of the method

The method has a few parameters in play:

• The number of layers of mesh elements in the overlap region between subdomains is
2 for the velocity blocks (corresponding to Ri in (2)) and 4 for the pressure blocks
(corresponding to R̃i in (10)). This corresponds to the minimum overlap that satisfies
relation (9) for a symmetric construction of the overlap between subdomains.

• For the heterogeneous beam problem, we set the threshold τA for selecting the local
eigenvectors entering the coarse space V0 to τA “ 10 (corresponding to 1{λ “ 0.1
on Figure 2, left). The threshold τS1 for selecting the local eigenvectors entering the
coarse space W̃0 is set to τS1 “ 3.33 (corresponding to 1{λ “ 0.3 on Figure 2, right).

The selection of these thresholds is based on the fact that the iteration counts are
very stable in both weak and strong scaling experiments. It means that for a given
physics the parameters τA and τS1 can be tuned for a small test case and then used
in large scale experiments.

5.3 Weak scalability test for heterogeneous steel and rubber beam

Here we present weak scalability results for the heterogeneous beam composed of 10 al-
ternating layers of rubber pE1, ν1q “ p1 ˆ 107, 0.4999q and steel pE2, ν2q “ p2 ˆ 109, 0.35q.
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Local problem size is kept roughly constant as N grows, and the total number of dofs n
goes from 16 million on 262 cores to 1 billion on 16800 cores.

We report in Table 1 the iteration counts and computing times for the DD saddle point
solver Algorithm 2. Note that in Algorithm 2 we replace PCG by right-preconditioned
GMRES for step 3. The stopping criterion is a tolerance smaller than 10´5. Moreover, we
use flexible GMRES, as we solve (25) inexactly using GMRES with a tolerance of 10´2 in
order to apply N´1

S . In order, columns correspond to: number of cores, number of dofs n,
size of the coarse space for A dimpV0q, size of the coarse space for S1 dimpW̃0q, setup time
corresponding to the assembly and factorization of the various local and coarse operators,
number of outer GMRES iterations, GMRES computing time, total computing time (setup
+ GMRES) and average number of inner GMRES iterations for each solution of (25). All
timings are reported in seconds.

#cores n dimpV0q dimpW̃0q setup(s) #It gmres(s) total(s) #It N´1
S

262 15 987 380 5 383 3 319 710.7 24 631.6 1342.3 11
525 27 545 495 9 959 2 669 526.6 21 519.5 1046.1 12

1 050 64 982 431 17 837 4 587 675.2 22 665.9 1341.1 11
2 100 126 569 042 32 361 7 995 689.2 25 733.8 1423.0 10
4 200 218 337 384 59 704 13 912 593.0 27 705.4 1298.4 10
8 400 515 921 881 141 421 25 949 735.8 32 1152.5 1888.3 10

16 800 1 006 250 208 260 348 41 341 819.2 29 1717.9 2537.1 12

Table 1: Weak scaling experiment for 3D heterogeneous elasticity: beam with 10 alternating
layers of steel and rubber. Reported iteration counts and timings for DD saddle point
algorithm 2.

Iteration counts. We first discuss iteration counts. We see that outer iteration count
remains stable, between 21 and 32. The inner iteration count is also stable and remains
around 11. We also observed (figures are not reported here) than the inner GMRES toler-
ance of 10´2 does not affect the outer iteration count compared to an accurate solution with
a stricter tolerance of 10´5, and allows a significant reduction in inner iteration count. For
example, 11 iterations on average instead of 28 on 1050 cores for the same outer iteration
count of 22, leading to a decrease from 1178.2 to 665.9 seconds in GMRES timing.

Timings. In terms of setup timings, the computing time remains relatively stable, with
roughly 15% increase for a factor of 64 in problem size. Around 60% of the setup time is
spent in the solution of the eigenvalue problems (19) for S1.

The solution time stays relatively stable up to 4200 cores, where it starts to degrade.
This can be related to the increased cost of the coarse space solves with matrices R0AR

T
0

and ZT
S1
S1ZS1 as their size increases: total time spent in coarse space solves is 14.7, 62.1

and 679.3 seconds on 262, 4200 and 16800 cores respectively. A possible improvement
would be to use a multi-level method to solve the coarse problems iteratively.

5.4 Strong scalability test for heterogeneous steel and rubber beam

Strong scalability results for the same test case as above consisting of an heterogeneous
beam composed of 10 alternating layers of rubber and steel are presented in Table 2. The
problem size is 27.5 million and the strong scaling test ranges from 525 to 4200 cores.
Iteration counts and computing times for the DD saddle point solver Algorithm 2 are
reported.

Iteration counts. Outer iteration count remains stable, with a slight increase from 21
to 23. Inner iteration counts remains also stable, even slightly decreasing from 12 to 9.
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#cores n dimpV0q dimpW̃0q setup(s) #It gmres(s) total(s) #It N´1
S

525 27 545 495 9 959 2 669 526.6 21 519.5 1046.1 12
1 050 27 545 495 15 078 4 082 265.7 21 224.7 490.4 11
2 100 27 545 495 23 172 6 453 168.8 23 131.1 299.9 10
4 200 27 545 495 37 768 11 152 103.8 23 91.3 195.1 9

Table 2: Strong scaling experiment for 3D heterogeneous elasticity: beam with 10 alternat-
ing layers of steel and rubber. Reported iteration counts and timings for DD saddle point
Algorithm 2.

Timings. We see that the setup timing decreases accordingly as the subdomains shrink in
size, from 526.6 seconds on 525 cores to 103.8 seconds on 4200 cores; the speedup efficiency
with respect to 525 cores ranges from 99% on 1050 cores to 63% on 4200 cores.

We see a similar trend for the solution time, ranging from 519.5 seconds on 525 cores to
91.3 seconds on 4200 cores ; the speedup efficiency with respect to 525 cores ranges from
116% on 1050 cores to 71% on 4200 cores. This decrease in efficiency can be explained by
the increased relative cost of coarse space solves as subdomains get smaller: from 3% on
525 cores to 30% on 4200 cores. The added overlap also plays a greater role in the loss of
efficiency as subdomains get smaller.

5.5 Comparison with other algorithms

5.5.1 Comparison with a direct solver

MUMPS DD saddle point solver
n #cores setup(s) solve(s) total(s) setup(s) #It gmres(s) total(s)

139 809 16 7.1 0.1 7.2 27.1 18 19.7 46.8

1 058 312 32 85.7 0.8 86.5 166.2 20 137.2 303.4
1 058 312 65 71.0 0.6 71.6 91.0 21 77.1 168.1
1 058 312 131 63.2 0.5 63.7 59.7 24 49.7 109.4

3 505 582 55 477.8 3.7 481.5 404.1 24 430.1 834.2
3 505 582 110 392.3 2.3 394.6 242.5 23 212.8 455.3
3 505 582 221 387.0 2.1 389.1 134.8 23 109.4 244.2
3 505 582 442 453.9 2.2 456.1 88.2 24 68.6 156.8

8 235 197 262 OOM / / 278.5 25 264.3 542.8
8 235 197 525 1622.1 6.1 1628.2 172.1 24 136.0 308.1
8 235 197 1050 1994.3 7.4 2001.7 136.5 25 99.7 236.2

Table 3: Comparison with the parallel sparse direct solver MUMPS for 3D heterogeneous
elasticity: beam with 10 alternating layers of steel and rubber. Reported timings for four
discretization levels while also varying the number of cores (OOM means the computation
ran out of available memory).

In Table 3, we compare the performance of the solver to the parallel sparse direct solver
MUMPS for the heterogeneous steel and rubber beam test case with four discretization
levels, while also varying the number of cores. As we can see, MUMPS is comparatively
more efficient for smaller problems, with for example a total time of 86.5 seconds compared
to 303.4 seconds for our saddle point solver for 1 million unknowns on 32 cores. However,
as expected, we see a large increase in memory and computational cost as the size of the
system gets larger: for 8.2 million unknowns, MUMPS runs out of memory on 262 cores
and solves the problem in 1628.2 seconds on 525 cores, compared to 308.1 seconds for the
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DD solver. Moreover, we can see from Table 3 that the DD saddle point solver offers much
better strong scalability.

5.5.2 Comparison with other Schwarz methods

In Figure 3, we plot the convergence history of GMRES for both compressible homogeneous
and heterogeneous steel-rubber cases with 27.5 million unknowns on 525 cores (left), with
a comparison to the standard one-level Additive Schwarz Method (ASM) from PETSc [4]
on the global problem (right), illustrating the difficulty of the test case at hand. Our saddle
point solver needs 15 and 21 iterations to converge for the homogeneous and heterogeneous
cases respectively, compared to 856 and 2880 for the one-level method, with significant
undesired plateaux.

Note also that for the same physical test case, iteration counts are better that in [23] but
timings are not as good. As mentioned in the introduction, our method has the advantage
of a provable convergence estimate and to not depend on the design of specific absorbing
conditions for the elasticity system.
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Figure 3: GMRES convergence history of the saddle point solver (left) compared to the one-
level Additive Schwarz Method (right) for the homogeneous steel beam and heterogeneous
rubber/steel beam problems discretized with 27.5 million unknowns (corresponding to the
first row of Table 2), on 525 cores.

5.5.3 Comparison with algebraic multigrid method

We also performed comparisons with the Geometric Algebraic Multigrid (GAMG) precon-
ditioner from PETSc. We were not able to find a suitable tuning of parameters for GAMG
for the saddle point formulation. However, we performed comparisons between GAMG
and standard GenEO for the velocity formulation on the homogeneous beam, varying the
Poisson ratio ν from 0.48 to 0.499. The near kernel of the problem which corresponds to
rigid body modes is provided to the multigrid method. The GenEO threshold τ is set to
3.33, and we select at most 80 eigenvectors in each subdomain. Even though GAMG is
faster for ν ď 0.49, we can see that GenEO is more robust as ν increases. In particular,
GAMG fails to converge in 2000 iterations for ν ě 0.495.
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131 cores GAMG GenEO
ν #It total(s) dimpV0q setup(s) #It gmres(s) total(s)

0.48 60 67.1 10 480 200.7 24 11.2 212.0

0.485 109 89.0 10 480 199.5 27 12.7 212.2

0.49 210 137.0 10 480 202.0 32 15.0 217.0

0.495 >2000 / 10 480 199.9 43 20.2 220.1

0.499 >2000 / 10 480 199.2 99 48.6 247.7

525 cores GAMG GenEO
ν #It total(s) dimpV0q setup(s) #It gmres(s) total(s)

0.48 56 25.5 41 766 60.4 18 5.0 65.4

0.485 60 26.1 41 984 60.9 20 5.3 66.2

0.49 116 33.3 42 000 60.4 23 5.9 66.3

0.495 >2000 / 42 000 60.4 32 7.6 68.1

0.499 >2000 / 42 000 60.6 95 20.3 81.0

Table 4: GAMG versus standard GenEO for the velocity formulation on the homogeneous
beam discretized with 7.9 million unknowns, using 131 and 525 cores. Reported iteration
counts and timings for different values of the Poisson ratio ν ranging from 0.48 to 0.499.

6 Conclusion and outlook

Under the assumption that the diagonal block matrices of a saddle point problem are
spectrally equivalent to a sum of positive semi definite matrices, we have introduced an
adaptive domain decomposition (DD) method. The key ingredients of the algorithm are a
two level Schwarz method for the primal unknowns block and a two-level Neumann-Neuman
for the Schur complement problem on the dual unknowns.

Two coarse spaces are built by solving generalized eigenvalue problems, one for the
primal unknowns and the second one for the dual unknowns. The robustness of the method
was assessed on a notoriously difficult three dimensional elasticity problem for a steel-rubber
structure discretized with continuous pressure.

Several issues deserve further investigations. First a multilevel method with more than
two levels would enable even larger and possibly faster simulations. Also, the tests were
performed with FreeFEM scripts using the standalone ffddm [43] framework written in the
FreeFEM language. The integration of the method in the C++/MPI library hpddm [28],
which already implements the GenEO methods [40, 22], could lead to faster codes and a
more general diffusion of the saddle point preconditioner since hpddm is callable [29] from
the PETSc library [3]. In a different setting, the design of adaptive coarse space is strongly
connected to multiscale finite element (MFE) methods (see e.g., [14, 27, 33] and references
therein) and this work could be used in designing MFE methods for saddle point problems.
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