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Using an exact Green function method, we calculate
analytically the substrate deformations near straight
contact lines on a soft, linearly elastic incompressible
solid, having a uniform surface tension γs. This
generalized Flamant–Cerruti problem of a single
contact line is regularized by introducing a finite
width 2a for the contact line. We then explore
the dependence of the substrate deformations upon
the softness ratio ls/a, where ls = γs/(2μ) is the
elastocapillary length built upon γs and on the elastic
shear modulus μ. We discuss the force transmission
problem from the liquid surface tension to the bulk
and surface of the solid and show that the Neuman
condition of surface tension balance at the contact
line is only satisfied in the asymptotic limit a/ls → 0,
the Young condition holding in the opposite limit.
We then address the problem of two parallel contact
lines separated from a distance 2R, and we recover
analytically the ‘double transition’ upon the ratios ls/a
and R/ls identified recently by Lubbers et al. (2014 J.
Fluid Mech. 747, R1. (doi:10.1017/jfm.2014.152)), when
one increases the substrate deformability. We also
establish a simple analytic law ruling the contact angle
selection upon R/ls in the limit a/ls � 1, that is the
most common situation encountered in problems of
wetting on soft materials.
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1. Introduction
Statics and dynamics of wetting of soft solids, which can be easily deformed by liquid
surface tension, are currently motivating renewed interest, via both experiments [1–3] and
modelling [4–7]. This interest is partly motivated by the huge number of applications of this
field (soft condensing or desiccating coatings, artificial tissues, culture media, etc.), but also by
several underlying fundamental challenges that are still pending. As is well known from ancient
works [8–11], a ridge is formed on the solid surface at the contact line and the interaction between
the liquid surface and this ridge governs the selection of the apparent contact angle [12], the
possible hysteresis of this angle [13] and can also lead to very complex phenomena with unusual
spreading laws [14], unstationary behaviours of contact lines [3,15–17] or even instabilities
with spatial pattern formation [18]. However, the precise structure of this ridge is still under
debate [19], and, for instance, it is only recently that the surface tension of these materials has
been included in modelling [4,5,7] in a way that could allow some direct comparisons with the
more well-known case of liquid–liquid wetting. The difficulties of reaching a full theory are still
numerous: how to build a reasonably simple formalism combining two different substrate surface
tensions (for the wet and dry part of the surface [20]), finite deformations, substrate rheology and
more generally dynamical effects?

In this paper, we focus on a simple case that allows us to perform analytical calculations of
reasonable complexity. We consider statics with a simple liquid of surface tension γ deposited on
a purely elastic, incompressible solid of infinite depth and of uniform elastic shear modulus μ.
The substrate surface tension γs is supposed to be large compared with that of the liquid, which,
as we shall see, will allows us to work in the small slope limit of the solid surface, i.e. in the limit
of linear deformations of the bulk of the substrate. We will also simplify even more by neglecting
any subtlety around the possible difference between substrate surface stress and substrate surface
energy [21,22], which seems to be a reasonable approximation for incompressible media [23], and
we will assume that the surface energy is the same for both wet and dry parts of the substrate.

This set of approximations may seem very reductive, but it is in fact the situation addressed
by most recent available theoretical papers, and even this simple situation is imperfectly solved,
as very often these approaches consider complex axisymmetric geometries involving numerical
calculations. For instance, Style & Dufresne [7] showed that in the large softness limit of sessile
circular drops, of radius R, there are two different limits: when R is much larger than the
elastocapillary length ls = γs/(2μ), the situation at the contact line is very close to that of a liquid,
with a Neumann condition of balance of surface tension at the contact line. In the opposite limit,
one recovers rather the Young condition defining the equilibrium contact angle from a balance
of forces in the horizontal direction. Very recently, Hui & Jagota [24], and Lubbers et al. [25],
considered respectively one or two contact lines of finite width and showed that this rigid to soft
transition was in fact more complex than expected. For a single contact line, the transition from
Young to Neumann was found to depend on the parameter a/ls [24] while, in the case of two
contact lines there were two distinct transitions involving the two dimensionless parameters a/ls
and R/ls, R being the radius of a drop or the half distance between two parallel contact lines [25].

In a previous paper [4], one of us developed a strategy to generalize the Green function used
long ago by Shanahan among others [8–10] to a solid having a non-zero surface tension and
investigated the deformation field for one or two straight contact lines by using a simplified
version of this Green function, while focusing mainly on the limit R/ls � 1 of large softness. In
this paper, we reconsider this approach by using the exact Green function and apply it to a single
contact line of finite width, and also to two parallel contact lines of finite width for any values of
the ratios ls/a and R/ls. We discuss the complexity of force transmission between the liquid surface
tension and both the bulk and surface of the solid, and we derive analytical results for the slope
of the solid and the selection of the liquid apparent contact angles. In particular, we show that the
double transition found by Lubbers et al. [25] can be in fact exactly calculated for any value of the
contact angle. We then show that the selection of the apparent contact angle and substrate slope
near the contact line is dependent on geometrically nonlinear effects involving a finite value of
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the substrate slope, which is out of reach of available analytical approaches. However, we give a
simple analytical formula that should govern the selection of the contact angle for large ls/a and
ls/R ratios. Again in the limit of large ls/a ratio, an additional hypothesis motivated by the results
contained in this paper allows us to suggest a more general formula for the selection of the contact
angle for arbitrary ls/R ratio.

In §2, we first recall the limiting case of the Neumann and Young–Dupré relationships. In
§3, we remember the Green function approach developed in [4] for an incompressible solid, on
the basis of an analogy with Stokes flows in hydrodynamics of viscous flows. We then solve
the case of a single contact line of finite width 2a. We provide an exact solution and extend the
approximate solution developed in reference [4]. We show that, although not exact, it also leads to
reasonable approximations for the calculated quantities in this article. We then calculate the total
elastic force beneath the contact line, and we derive a macroscopic force balance at the contact
line that reduces to the Neumann and Young–Dupré models in the appropriate limits. In §4, we
address the case of two parallel contact lines and explore in details the double transition, again
for the exact and approximate Green function solutions. We derive several simple scaling laws
for the substrate slope in the various regimes of interest. Because these results are valid for all
contact angles, they can be used to describe the substrate deformations induced by a pinned drop
in which the contact angle can take arbitrary values between two limits. We then address in §5 the
selection of the macroscopic drop contact angle when the contact line is not pinned. We show that
energy minimization can predict this angle for large drops ls/R � 1 on hard substrates ls/a � 1.
In the limit of soft substrates ls/a � 1, nonlinear effects comes into play for contact angles close
to π/2. We then show that these effects can be taken into account in the asymptotic limit of small
drops ls/R → ∞ on soft substrate where we recover the Neumann construction. For drops of
arbitrary sizes on soft substrates, we propose an analytic attempt to solve the apparent contact
angle selection that avoids using a complex minimization of free energy. We propose a simple
formula linking the contact angle to the slope of the substrate deformation that should hold in the
limit where ls/a � 1.

2. General setting and the limits of Young–Dupré and Neumann
Let us first consider a two-dimensional rivulet lying at the surface of an infinite, incompressible
and linearly elastic half-space as illustrated in figure 1. The substrate is characterized by its elastic
shear modulus μ. As the problem is invariant along the z-coordinate, we shall assume that this
surface loading creates a state of plane strain within the substrate. In response to the applied
distribution of both normal and tangential surface forces F = {Fx, Fy, 0}, elastic stresses build up
within the solid and, if the free surface has a non-zero surface tension, surface forces also oppose
the deformation. At the mechanical equilibrium, the deformation of the substrate at the contact
line therefore results from the balance between loading, surface tension and elasticity. In the case
of a liquid rivulet, the loading force is related to the surface tension γLV at the liquid–vapour
interface and to the apparent contact angle θLV by the relation F = {γLV cos θLV, γLV sin θLV, 0}. This
force balance can be projected onto the x- and y-axes to yield

γLV cos θLV = γSV cos θSV − γSL cos θSL + f el
x (2.1)

and
γLV sin θLV = γSL sin θSL + γSV sin θSV + f el

y , (2.2)

where f el
x and f el

y are, respectively, the x- and y-components of the possible elastic restoring forces
(per unit of length) at the corners of the rivulet. The set of equations has two well-known and
widely used simplifications. In the particular case of a hard substrate, the typical size of the
substrate deformations are of the order of γLV/μ (approx. 10−12 m for water on glass) which is
much smaller than the typical size R of droplets. Consequently, elastic deformations are neglected
at large scales and the angles θSL and θSL are set to zero. In addition, elastic forces are also
neglected from the horizontal force balance above and, in this approximation, the contact angle
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Figure 1. (a) Schematic of the rivulet case. A two-dimensional rivulet is lying on top of a linearly elastic half space with surface
tensionγs. The half-space is therefore subjected to two line forces at the corner of the rivulet and to a Laplace pressure beneath
the rivulet. (b) Pressures applied by the drop at the surface of the substrate in the case of a distributed line traction at the triple
line. (Online version in colour.)

Table 1. Summary of the force balance in the Young–Dupré and Neumann limit for arbitrary deformations.

horizontal force balance vertical force balance

γLV cos θLV = γLV sin θLV =
hard substrate (Young–Dupré) γSV − γSL f ely (typically not solved). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

soft substrate (Neumann) γSV cos θSV − γSL cos θSL γSL sin θSL + γSV sin θSV
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θLV is a solution of the simplified equation γLV cos θLV + γSL − γSV = 0. This balance of surface
tensions at the triple line is known as the Young–Dupré equation and states that elastic stresses
do not contribute to the selection of the contact angle. This mechanical interpretation, however,
must be taken with caution as we identify here surface energies with surface tensions. A more
general interpretation, based on thermodynamics arguments, can be found in Hui & Jagota [24].
Because the contact angle, which is often the quantity of interest in wetting problems, is fully
determined by this equation, the vertical force balance between surface tractions and elastic
stresses is typically left unsolved. In the opposite limit of an infinitely soft substrate (a liquid
at rest), the elastic stresses are set to zero: f el

x = f el
y = 0 and equations (2.1) and (2.2) reduce to those

considered by Neumann and followers [26–28].
As can be seen in table 1, both theories lead to simple and elegant predictions as elastic

stresses need not be calculated. Despite their ever-increasing applications, the wetting of gels
is not covered by either of these two theories as the capillary length, defined here as 2γs/μ, of gels
can approach the typical sizes R of liquid drops. With this consideration in mind, this paper makes
no assumption on the ratio of the capillary length over the size R of the droplets. Furthermore, we
do not postulate a priori any ‘macroscopic force balance’ such as (2.1) and (2.2). Instead, general
boundary conditions are applied all over the free surface, and we will derive this force balance by
integrating the elastic stresses over the width of the contact line. We will then show analytically
that the elastic stresses indeed vanish from these force balance in some limiting cases. For the sake
of simplicity, we will consider from now on that the surface tensions γSL and γSV are equal and
we write γSL = γSV = γS.

3. The single two-dimensional contact line

(a) Notations and general equations
Within this framework, the mechanical equilibrium in the bulk of the incompressible half-space
is described by the Navier equations

∇ · u = 0 and μ�u − VP = 0, (3.1)



5

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140813

...................................................

where u is the displacement field and P is the pressure field. This field is introduced as a Lagrange
multiplier to enforce the incompressibility constraint. This set of equations is completed by the
condition of stress continuity at the boundary

σ · n = t, (3.2)

where n and t are the unit normal vector to the surface and traction forces exerted at the substrate
boundary, respectively. In component form, the stress tensor σ is given by

σij = μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
− Pδi,j, (3.3)

where δi,j is the Kronecker delta symbol.

(b) The Green function
Let us first consider the problem introduced and solved by Limat [4], of a line force f =
( fxδ(x)δ(y), fyδ(x)δ(y), 0) applied at the free boundary of a solid with surface tension γS (figure 2).
In order for the linear elastic theory to be valid, the slope of the surface profile ζ (x) must be small
everywhere, i.e ζ ′(x) � 1, where the prime denotes the derivative with respect to x. Within this
approximation, the boundary condition (3.2) takes the form

σyy = 2μ
∂uy

∂y
− P = fyδ(x) + γS

d2ζ

dx2 (3.4)

and

σxy = μ

(
∂uy

∂x
+ ∂ux

∂y

)
= fxδ(x). (3.5)

This problem can be solved by using a potential function for the displacement field and
working in Fourier space. The solution (the Green function of the problem) is given by

uy(x, y = 0) = ζ (x) = fy
2πμ

∫∞

1/	

cos kx
k + γS

2μ
k2 dk (3.6)

and

ux(x, y = 0) = fx
2πμ

∫∞

1/	

cos kx
k

dk, (3.7)

where 	 is a macroscopic cut-off length due to the two-dimensional nature of the problem. Note
that while the introduction of a macroscopic cut-off regularizes the surface displacement field, it
does introduce a global force onto the solid. While it affects the absolute value of the displacement
field, the slope of the deformation is not affected by this cut-off in the vicinity of the contact
line and the analytical results can be confronted to experimental data. As we shall see in the
next section, however, this global force will be clarified and removed in the case of a rivulet.
Performing the integrals yields the following expressions:

ζ (x) = fy
2πμ

{
−Ci

|x|
	

+ cos
|x|
ls

Ci
( |x|

	
+ |x|

ls

)
+ sin

|x|
ls

(
Si
( |x|

	
+ |x|

ls

)
− π

2

)}
(3.8)

and

ux(x, y = 0) = fx
2πμ

{
−Ci

|x|
	

}
, (3.9)

where ls = γs/2μ is the capillary length of the solid and Ci and Si are, respectively, the cosine and
sine integral functions defined as

Ci(x) = −
∫∞

x

cos t
t

dt and Si(x) =
∫ x

0

sin t
t

dt. (3.10)
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Figure 2. Schematic of the problem. A linearly elastic half space is subjected to a line force f at the origin of the free surface.
(Online version in colour.)

Up to a constant and far from the cut-off length (x � 	), the solution above can be simplified
as follows:

ζ (x) = fy
2πμ

{
− log

|x|
	

+ cos
|x|
ls

Ci
|x|
ls

+ γ + sin
|x|
ls

(
Si

|x|
ls

− π

2

)}
≡ fy

2πμ
H(x) (3.11)

and

ux(x, y = 0) = fx
2πμ

{
− log

|x|
	

}
≡ fx

2πμ
G(x), (3.12)

where γ ≈ 0.577 is the Euler–Mascheroni constant. Note that the normal (respectively, horizontal)
component of the displacement field depend only on the normal (respectively, horizontal)
component of the applied surface force. As a consequence, only the deflection ζ of the surface
depends on the surface tension of the solid. The absence of coupling between horizontal
displacement and vertical loading is a characteristic feature of a linear incompressible half-space.
In the limit ls → 0, we recover the solution of the Flamant–Cerruti problem [29,30]. Note that
these expressions diverge both at large and small x. The divergence of the displacement field
at large distance from the contact line is solely a consequence of the two-dimensional character
of the problem (similar to the logarithmic divergence of the flow field past a cylinder in two-
dimensional hydrodynamics) and can be regularized, for example, by formulating the problem
in three dimensions, such as in [31] for the case of a concentrated normal force. The divergence of
the displacement near x = 0, on the other hand, follows from the localized nature of the applied
force. While this solution might be a reasonable description at some distance (to be specified
later) from the contact line, this description must break down at smaller scales. At the length
scale of the gel correlation length (typically 1 nm), the structure becomes heterogeneous and the
continuous model indeed does not hold. Irregularities may also arise from the roughness of the
free surface at a larger scale, as shown in figure 3. Because of these defects, real contact lines have
some ‘thickness’ in the sense that the triple line is pinned to the defects and oscillates within a
narrow band of width 2a. Before applying this regularization at small scales, let us first note that
the Green function above can also be reasonably approximated by another simpler function.

(c) A simplified Green function
In the limit ls → 0 (with x � ls and x � 	), the solution ζ (x) above and its first derivative
θ (x) = ζ ′(x) has the following asymptotic form (Shanahan limit [12]):

ζ (x) = − fy
2πμ

(
γ + log

|x|
	

)
, θ (x) = − fy

2πμ

1
x

and ux(x, y = 0) = − fx
2πμ

log
|x|
	

, (3.13)
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10 mm

liquid
drop
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2a

Figure 3. Detail of a triple line at the boundary of a water drop on a soft agar gel (1.5% agarose). The boundary is highlighted
by a solid line and the inset shows the oscillation of the triple line resulting from the heterogeneities at the surface of the gel.
The contact line oscillate within a narrow band whose width is of order of a micrometre. (Online version in colour.)

while in the limit x → 0 (and under the assumption that ls � 	) the solution converges towards

ζ (x) = − fy
2πμ

log
ls
	

, θ (x) = − fy
2πμ

π

2ls
Sign(x) and ux(x, y = 0) = − fx

2πμ
. log

|x|
	

. (3.14)

In order to make further analytical progress, Limat [4] introduced the approximate solution
ζ̃ , ũx:

ζ̃ (x) = − fy
2πμ

(
γ + log

|x| + 2ls/π
	

)
and ũx(x, y = 0) = − fx

2πμ
log

|x|
	

. (3.15)

While the solution above is not exact, it is an interpolation between the limiting cases of the
first derivative of the exact Green function. It also describes the far field (x � ls) behaviour of the
displacement field but fail to accurately predict the value of the deflection beneath the line load.
As we shall see below by comparing the results obtained with this interpolation and the exact
solution, it essentially captures the physics of wetting on a soft substrate while greatly simplifying
the calculations. In a previous paper, this solution was used (1) to derive approximate solutions
for the single and double (rivulet) contact line problem, (2) to give analytical predictions for the
contact angles near the contact line as well as (3) for the amplitude of the substrate deformations
in the limiting case R � ls and (4) to build approximate methods for the experimentally relevant
case γSV �= γSL.

(d) Finite width of the contact line
In order to regularize the Flamant–Cerruti problem [29,30] with surface tension formulated above,
we now assume that the force acting on the substrate is spread out on a strip of width 2a,
as in [24,25]. The resulting displacement field on the surface (ζ a(x), ua

x(x, y = 0)) can be readily
obtained by using fy = Πydy and fx = Πxdy and by integrating the previous result. Since we are
mostly interested in the angles at the contact line, we present here only the analytical result for
the slope θa(x) = ζ ′a(x) of the surface deflection

θa(x) = Πy

2πμ

∫ a

−a
dyH′(x − y) = − Πy

2πμ
{H(x − a) − H(x + a)}, (3.16)

where H(x) was introduced in equation (3.11). The analytical solution for ζ a(x) itself is given
in appendix A and plotted in figure 4, along with the solution ζ (x) (i.e. in the limit a → 0) as
well as the corresponding solutions obtained with the simplified Green function (ζ̃ (x) and ζ̃ a(x),
which expression can be found in section V). As expected, the slope of the surface deflection does
not depend on the macroscopic cut-off anymore. Evaluating this expression on either side of the
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contact strip, we find the contact angle θa(−a) = −θa(a):

θa(−a) = Πy

2πμ

{
log
(

2a
ls

)
+ γ − Ci

2a
ls

cos
2a
ls

+ 1
2

(
π − 2Si

2a
ls

)
sin

2a
ls

}
. (3.17)

It is instructive to compare this behaviour with known results for hard (μ � γLV/a, γs/a)
and soft substrates (μ � γLV/a, γs/a). Writing the normal force Πy = (γLV sin θLV)/(2a), the contact
angle has the following simple asymptotic behaviours in these limits:

θa(−a) ∼ γLV sin θLV

γs︸ ︷︷ ︸
θref

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

(
1 + 2a

lsπ
log

2a
ls

)
soft substrate

ls
2aπ

log
2a
ls

hard substrate.

(3.18)

On a soft substrate, the contact angle, at leading order, is independent of the substrate stiffness
and we recover the value given by the Neumann triangle construction for a liquid droplet on a
liquid substrate (in the limit of small angle, as linear elasticity is only valid for small slopes). When
the substrate becomes stiffer, the contact angle decreases and behaves as approximately log(μ)/μ
at large μ (which is a bulk property, by contrast with the width of the contact line, which is a
surface property). In the limit of an infinitely stiff substrate, the angle goes to zero and we recover
the Young model in which the substrate remains flat. This prediction is in sharp contrast with the
result of Style & Dufresnes [7], where the substrate angle is always given by Neumann’s Law close
to the ridge and by Young’s Law far from the ridge. Within our framework, there is no ‘liquid-
like’ behaviour near the ridge and the value of the substrate angle at the contact line, for which we
provide an exact analytical solution, depends essentially on the ratio of the elastocapillary length
to the width of the contact line ls/a. This conclusion was also reached by Hui & Jagota [24] using
different mathematical techniques. However, our Green function approach allows us in particular
to provide analytical expressions for the stress and displacement fields, for arbitrary ratios ls/a.
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(e) Force balance at the contact line
We now take advantage of our analytical solution to investigate the force balance at the contact
line. In the elastic substrate subject to a line force, the normal component of the stress tensor on
the upper surface (y = 0) is given by

σyy(x, y = 0) = fy
π

∫∞

1/	

cos kx
1 + (γS/2μk)

dk. (3.19)

In the case of a force applied on a strip with a finite width, the stress σ a
yy(x) at the surface is

given by

σ a
yy(x) = Πy

fy

∫ a

−a
dyσyy(x − y) = Πy

π
{J(x − a) − J(x + a)}, (3.20)

where

J(x) = −
{

cos
x
ls

Si
x
ls

− sin
x
ls

Ci
|x|
ls

+ π sin
|x|
2ls

sin
x

2ls

}
. (3.21)

Integrating the stress over the width of the strip, we find the total line force f el
y in the substrate

below the contact line

f el
y =

∫ a

−a
dxσ a

yy(x) = 2lsΠy

π

{
Ci

2a
ls

cos
2a
ls

−
(

π

2
− Si

2a
ls

)
sin

2a
ls

+ πa
ls

− log
2a
ls

− γ

}
. (3.22)

Using expression (3.17) as well as the expression for Πy, one may recognize

f el
y = γLV sin θLV − 2γsθ

a(−a). (3.23)

This relation is the macroscopic force balance (2.2) in the limit of small substrate deformation
and symmetric surface tension. It can also be obtained by direct integration of the boundary
condition (3.4). The first term is the integral of the normal traction applied at the surface, and
the second term is the integral of the Laplace pressure in the solid due to the curved interface. In
the case of a single contact line with symmetric surface energies (i.e. on both sides of the contact
line), the tangential component of the stress tensor integrated over the width of the leading strip,
noted f el

x is given by

f el
x =

∫ a

−a
dxσ a

xy(x) = γLV cos θLV. (3.24)

At the ‘macroscopic level’ because the same line tension applies to both sides of the contact
line the projection of the force γLV is only balanced by elastic stresses that develop in the substrate
and the Neumann or the Young–Dupré Law are only recovered in the limit θLV → π/2. If the
contact line is pinned to the surface, however, the tangential elastic stress does not vanish and the
contact angle can deviate from π/2, that is the ‘normal’ value for γSL = γSV = γs. Looking at the
asymptotic value of θa(−a) presented above, one may note that

f el
y ∼ γLV sin θLV

⎧⎪⎪⎨
⎪⎪⎩

− 2a
π ls

log
2a
ls

soft substrate

1 − ls
πa

log
2a
ls

hard substrate.
(3.25)

On a soft substrate, the total normal stress at the surface below the triple line goes to zero in
the limit where 2a/ls → 0, and therefore elastic stress does not contribute to the local mechanical
equilibrium at the contact line. The normal traction is balanced solely by interfacial stresses and
we recover the small angle limit of the ‘macroscopic’ force balance (shown in table 1) as written
by Neumann

γLV sin θLV = 2γSθ
a(−a) when

2a
ls

→ 0. (3.26)

On a hard substrate on the other hand, the substrate slope goes to zero. As a consequence, the
surface cannot deform enough to allow the previous force balance (3.26) to be satisfied and
the contribution of the normal projection of the substrate surface tension becomes negligible
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and Neumann theories are recovered in the limits of hard (ls/(2a)→ 0) and soft (ls/(2a)→ ∞) substrate, respectively.
(Online version in colour.)

(figure 5). Instead, the traction exerted on the substrate at the contact line is only balanced by
the elastic stresses that develop in the bulk of the substrate

f el
y = γLV sin θLV when

2a
ls

→ ∞. (3.27)

To leading order, the equation above is the normal force balance in the Young–Dupré limit.
This equation is typically left aside and only the horizontal force balance is written in standard
theories of wetting on hard substrates.

4. The two-dimensional rivulet

(a) Contact angles
We now consider the case, not considered in [24], of a liquid rivulet on an infinite, linearly elastic,
half-space, as illustrated in figure 1. The rivulet has width 2R and deforms the substrate because
of (1) the tractions at the two contact lines and (2) the Laplace pressure beneath the rivulet.
Mechanical equilibrium in the rivulet requires the pressure P to be a constant given by the Laplace
Law P = γLV sin θLV/R. The two contact lines are located at −R and R and the surface slope is given
by the following integral:

θa2D(x) = Πy

2πμ

{∫−R+a

−R−a
dyH′(x − y) +

∫R+a

R−a
dyH′(x − y)

}
− P

2πμ

∫R

−R
dyH′(x − y) (4.1)

= Πy

2πμ
{H(x + R + a) + H(x − R + a) − H(x + R − a) − H(x − R − a)}

− P
2πμ

{H(x + R) − H(x − R)}. (4.2)

Note that in the case of a two-dimensional rivulet (or an axisymmetric drop), the total force
exerted on the substrate is zero. As a consequence, the surface of the substrate becomes flat far
from the rivulet (figure 6), and there is no divergence of the deflection at infinity as it is the case
for a single contact line. In the case of finite rivulet and contact line width, the Cerruti–Flamant
problem is thus fully regularized, without the need for an additional macroscopic cut-off. From
the expression for the displacement field ζ a2D(x) (given in appendix A), we can therefore now
plot the maximum height (at the corner of the rivulet, i.e ζ a2D(R)) and maximum depth (at the
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depth (given by ζ a2D(0)) of the substrate deformation. (c) Dry (θSV) and wet (θSL) angles at the contact line. (d) Sum and
difference of the substrate contact angles scaled by γLV sin θLV/γs. (Online version in colour.)

centre of the rivulet, i.e ζ a2D(0)) of the substrate deformation in figure 6b. While the depth of
the deformation increase monotonously with increasing softness of the substrate, the height of
the substrate deformation exhibits a non-monotonous behaviour. When the capillary length is
below the width of the rivulet, the maximum height of the rivulet first increases and reaches a
maximum when the capillary length is of the order of the rivulet size ls ∼ R. For an even softer
substrate (or, equivalently, smaller rivulets) the maximum height then decreases. Combined with
the increase in depth of the substrate deformation, this indicates that the rivulet ‘sinks’ within the
substrate. Ultimately, both the depth and height of the substrate saturate at finite values.

(b) Double transition
The values of the contact angles on the wet θSL and the dry θSV side of the triple line are defined as

θSL ≡ θa2D(R − a) and θSV ≡ −θa2D(R + a). (4.3)

Note that with this definition, both the wet θSL and the dry angle θSV are positive. These angles
can be written in a more compact form as a function of the geometric A = a/R and elastic B = ls/R
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parameters (expression are given in annex). Their variations are shown in figure 6. Note that our
exact analytical solution shows variations that are similar to the numerical results of Lubbers
et al. [25]. By contrast, however, the contact angle is fixed in our calculations and only linear
effects are considered. In the limiting case of a very large rivulet (a/R, ls/R � 1), we recover the
limiting case of a single contact line described previously: (i) on a hard substrate (ls/R � a/R)
the rivulet sits on the surface without deforming it and both angles, θSL and θSV, are equal to
zero while (ii) on a soft substrate (a/R � ls/R � 1) both angles are equal to γLV sin θLV/2γs. In
this case, the ridge is symmetric and the deformation is dominated by the traction exerted at the
corners of the rivulet. In the case of a smaller rivulet, on the other hand, the capillary length is not
negligible anymore compared with the width of the rivulet (i.e ls � R) and a third regime appears
in which the dry angle goes to zero while the wet angle increases to γLV sin θLV/γs. The ridge
rotates towards the interior of the rivulet and the rivulet ‘sinks’ inside the gel. In this case the
deformation is strongly influenced by the Laplace pressure in the rivulet acting on the substrate.
These two transitions between the three regimes can also be made more obvious by plotting the
sum and difference between the dry and wet angles. In the experimentally relevant case where
A = a/R � 1, the following analytical expression is for the sum and difference:

π (θSL + θSV)γs

γLV sin θLV
= B

2A

{
2
(

log
2A
B

+ γ

)
− 2Ci

2A
B

cos
2A
B

+
(

π − 2Si
2A
B

)
sin

2A
B

}
(4.4)

and

π (θSL − θSV)γs

γLV sin θLV
= − sin

2
B

{
2Ci

2
B

+ 2BSi
2
B

− πB
}

− cos
2
B

{
2BCi

2
B

− 2Si
2
B

+ π

}

+ 2B
(

γ + log
2
B

)
. (4.5)

In this limit, the sum of the angles is the signature from a sitting to a pulling mode. This
transition essentially depends on the ratio B/A = ls/a. When the elastocapillary length (i.e the
characteristic extent of the elastic deformation of the substrate) is smaller than the typical width
of the triple line (hard substrate), there are virtually no deformation of the surface and the rivulet
sits on a flat interface. When the stiffness of the underlying substrate decreases, it is deformed
by the normal projection of the liquid–vapour interfacial traction. Because ls is still much smaller
than the width of the rivulet in this regime, the two triple lines are essentially non-interacting and
the angle sum is just twice the single line value γLV sin θLV/2γs. This sitting-to-pulling transition
can also be approximated by two simple scaling laws that may be easier to manipulate than the
expressions above

θSL + θSV ∼ γLV sin θLV

γs

⎧⎪⎪⎨
⎪⎪⎩

ls
πa

log
2a
ls

hard substrate

1 + 2a
π ls

log
2a
ls

medium substrate.
(4.6)

When the stiffness of the substrate underneath the rivulet further decreases (still in the limit
where A is small), the capillary length becomes of a size of the order of the rivulet width.
The two contact lines start interacting and the Laplace pressure breaks the wet/dry symmetry
of the ridge. As shown in figure 6, the ridges below the contact lines rotate until the dry
interface becomes flat. The difference between the angles is now the key parameter controlling
the transition from pulling to sinking mode and essentially depends on B = ls/R, i.e the ratio of
the elastocapillary length ls over the half-width of the rivulet. The pulling-to-sinking transition
can also be approximated by two simple scaling laws

θa
SL − θa

SV ∼ γLV sin θLV

γs

⎧⎪⎪⎨
⎪⎪⎩

2ls
πR

log
2R
ls

medium substrate

1 − 2R
π ls

soft substrate.
(4.7)
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(c) Force balance at the contact line
By direct integration of the boundary condition (3.4), we find that the total restoring elastic stress
(a force per unit of length after integration) beneath the contact line (at x = R) is given by

f line
y = γLV sin θLV − γs(θSL + θSV). (4.8)

Again, this is the macroscopic vertical force balance (2.2) at the contact lines in the limit of
small substrate deflections. Following a calculation similar to that used to obtain equation (4.8),
we can obtain the total elastic stress (force per unit length) integrated over the width of the rivulet

f drop
y = 2γsθSL − 2γLV sin θLV = 2γs(θSL − θref). (4.9)

Looking at formula (4.6), it can be seen that the elastic restoring force f line
y beneath the contact

line undergoes a transition for a ratio ls/a ∼ 1. In the limit of an infinitely rigid substrate (ls/a → 0,
i.e. the sitting mode), the force below the ridge is non-zero and given by γLV sin θLV. This is the
Young limit. When the substrate stiffness decreases, the elastocapillary length becomes larger than
the width of the contact line, the elastic force decreases and drops to zero when ls/a � 1. In this
pulling regime, we recover a Neumann-like force equilibrium in which the pulling force exerted
at the contact lines is fully balanced by the substrate surface tension (figure 7). As a consequence,
when this regime is reached, further decrease in the substrate stiffness does not increase the height
of the substrate deformation at the contact lines, as elastic stresses do not enter the force balance
at the corner of the rivulet. On the other hand, as the substrate stiffness decreases, the depth of the
deformation beneath the rivulet further increases and thus the wet angle increases and the ridge
rotates. Equation (4.9) shows that the when the wet contact angle reaches the value θref, the total
elastic force beneath the rivulet vanishes identically. Therefore, in this sinking regime, the forces
exerted by the rivulet on the substrate (by tractions at the contact lines and by the Laplace pressure
beneath the rivulet) are completely balanced solely by the surface tension of the solid substrate.

(d) The approximate Green function
We now summarize the results for the single and double contact lines using the simplified
Green function introduced previously. In the case of a single contact line with a finite width,
the approximate slope θ̃a(x) is given by

θ̃a(x) = − Πy

2πμ

∫ a

−a
dy

sign(x − y)
|x − y| + 2ls/π

= θref
ls

2aπ
log

|x − a| + 2ls/π
|x + a| + 2ls/π

. (4.10)
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And the approximate slope at the contact line θ̃a(−a) is thus

θ̃a(−a) = θref
ls

2aπ
log

πa + ls
ls

, (4.11)

which has the following limits:

θ̃a(−a) ∼ θref

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
1 − aπ

2ls

)
soft substrate

ls
2aπ

log
πa
ls

hard substrate.
(4.12)

Note that we recover the Neumann regime (i.e. θ̃a(−a) → θref/2 when a/ls → 0) and Young
regime (i.e θ̃a(−a) → 0 when a/ls → ∞). To first order in a/ls, however, the approximate
solution (4.12) differs from the exact solution (3.18) for the soft substrate. Using the same
procedure as for the exact solution, one may compute the slope θ̃a2D(x) for a two-dimensional
rivulet

θ̃a2D(x) = − Πy

2πμ

{∫−R+a

−R−a
dy

sign(x − y)
|x − y| + 2ls/π

+
∫R+a

R−a
dy

sign(x − y)
|x − y| + 2ls/π

}
(4.13)

+ P
2πμ

∫R

−R
dy

sign(x − y)
|x − y| + 2ls/π

= θref
ls

2aπ
log

(|x + R − a| + 2ls/π )(|x − R − a| + 2ls/π )
(|x + R + a| + 2ls/π )(|x − R + a| + 2ls/π )

− θref
ls

Rπ
log

|x − R| + 2ls/π
|x + R| + 2ls/π

, (4.14)

which lead to the following dry θ̃SV ≡ −θ̃a2D(R + a) and wet θ̃SL ≡ θ̃a2D(R − a) approximate
contact angles:

θ̃SV = θref
ls

2aπ
log

(2a + 2ls/π )(2R + 2a + 2ls/π )
(2ls/π )(2R + 2ls/π )

− θref
ls

Rπ
log

2R + a + 2ls/π
a + 2ls/π

(4.15)

and

θ̃SL = θref
ls

2aπ
log

(2a + 2ls/π )(2R − 2a + 2ls/π )
(2ls/π )(2R + 2ls/π )

− θref
ls

Rπ
log

a + 2ls/π
2R − a + 2ls/π

. (4.16)

For the purpose of comparison with the exact solution given above, it is instructive to extract
the asymptotic behaviours of the approximate solution and we find

θa
SL − θa

SV ∼ γLV sin θ

γs

⎧⎪⎪⎨
⎪⎪⎩

1 − π2R2

3l2s
soft substrate

2ls
πR

log
2R
ls

medium substrate
(4.17)

and

θa
SL + θa

SV ∼ γLV sin θ

γs

⎧⎪⎨
⎪⎩

1 − πa
2ls

medium substrate

ls
πa

log
a
ls

hard substrate.
(4.18)

Although the curves are very similar to the exact ones, there are slight discrepancies in
the pulling (medium substrate) and sinking (soft substrate) regime between the exact and
approximates solution. Because of their simplicity, however, these expressions, as well as
the full formula (4.15) and (4.16), can be very valuable for the purpose of comparison with
experimental data.
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5. Selection of the contact angle
In our paper, we have assumed that the contact angle was prescribed and we have calculated
the substrate deformations that are induced by a given value of the contact angle. This approach
is particularly suited for systems that show an important degree of hysteresis as it is typically
the case on deformable substrates [13]. In that situation, the static contact angle lies between
two values that must be experimentally determined and the substrate deformation can be easily
calculated using the results presented in our paper. However, an interesting question arises when
one considers a very smooth substrate on which pinning cannot occur. In that case, the contact line
will move until it reaches an equilibrium value where the total energy of the system is minimized.
In the absence of hysteresis, it could be possible, in principle, to predict the value of the contact
angle at equilibrium by minimizing the total energy of the system, under the constraint of fixed
volume. In our system, the total energy Etot is given by the sum of the substrate elastic energy as
well as the substrate–vapour, substrate–liquid and liquid–vapour interfacial energies:

Etot = γs

∫∞

−∞

√
1 +

(
∂ζ a2D

∂x

)2

dx︸ ︷︷ ︸
solid−vapour + solid−liquid

+ γLV

∫R

−R

√√√√√√1 +
⎛
⎝ x√

R2 + R2/tan θLV
2 − x2

⎞
⎠2

dx

︸ ︷︷ ︸
liquid−vapour

+
∫∞

−∞
f · u

2
dx︸ ︷︷ ︸

elastic energy

, (5.1)

where we have used the fact that the liquid–vapour interface is a portion of the spherical cap. The
surface displacement field is u = {ua2D

x (x, y = 0), ζ a2D(x)} (given in appendix A) and f = { fx, fy} is
the surface traction distribution given by

fx = γLV cos θLV

2a
Π

(
x + R

2a

)
− γLV cos θLV

R
Π

(
x − R

2a

)
(5.2)

and

fy = γLV sin θLV

2a
Π

(
x + R

2a

)
+ γLV sin θLV

R
Π

(
x − R

2a

)
− γLV sin θLV

R
Π
( x

2R

)
, (5.3)

where

Π (x) =
{

1 |x| < 1
2

0 |x| > 1
2 .

(5.4)

This integral was then numerically minimized under the constraint of constant volume, and
we found an equilibrium angle of π/2 for all values of the parameters. From the viewpoint of
surface energies only, and in the limit of small substrate deformations, the value θLV = π/2 is
indeed already a minimum. Therefore, the contact angle can only depart from π/2 if the increase
in surface energies can be compensated by a larger decrease in elastic energy. The numerical
minimization reveals that this in fact never happens and the elastic energy is also minimized for
vanishing transverse displacements (i.e. θLV = π/2), for all values of ls/R and ls/a.

While this result is in agreement with the Young–Dupré model for uniform substrate surface
tension, it seems rather surprising that it would also apply in the Neumann limit. It is in fact in
contradiction with previous work where it was predicted that the liquid–vapour contact angle
θLV should deviate from the value π/2 in the Neumann limit [7,25]. This discrepancy in fact stems
from the failure of the linear elastic model in the limit where the contact angle θLV → π/2. Writing
θLV = π/2 − ε, one may note that when ε is of order γLV/γS (which is a small parameter), the
vertical displacement, which scales as γLV/γS sin θLV, is therefore of order γLV/γS. On the other
hand, the tangential displacement, which scales as γLV/γS cos θLV, is therefore of order (γLV/γS)2.
Because of this separation of scales, higher order (nonlinear) terms cannot be neglected in the
tangential stress tensor and the slope of the interface must also be taken into account in the



16

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140813

...................................................

boundary conditions. In particular, because the Laplace pressure acts in the direction normal
to the interface, there is an additional term (−dζ/dx) × (γS(d2ζ/dx2)) on the right-hand side of
equation (3.5). Integrating the tangential stress over the width of the contact line, one thus finds
the following total stress f line

x :

f line
x = γLV cos θLV − γs

2
(θ2

SL − θ2
SV). (5.5)

Because the vertical boundary condition (3.51) is not affected by nonlinear effects at leading
order, we still have

f line
y = γLV sin θLV − γs(θSL + θSV) (5.6)

as well as the total vertical stress beneath the rivulet

f drop
y = 2γs(θSL − θref). (5.7)

In the Neumann limit of an infinitely soft substrate (i.e. when ls/R → ∞ and ls/a → ∞ ), the

elastic stresses f line
x , f line

y and f drop
y must vanish and in term of ε, equations (5.5), (5.6) and (5.7)

now read, respectively, as follows:

γLV = γs(θSL + θSV), γLVε = γs

2
(θ2

SL − θ2
SV) and θSL = γLV

γs
, (5.8)

which can be combined to give

θSL = γLV

γs
, θSV = 0 and ε = γLV

2γs
. (5.9)

This result implies that the cusp rotates at the contact line to satisfy the macroscopic Neumann
force balance, as described in [25]. In the opposite limit of an infinitely rigid substrate (i.e. when
ls/R → 0 and ls/a → 0 ), the substrate surface remains flat and the result θLV = π/2 should still hold
as the nonlinear effect will be negligible. In the intermediate regime of a large rivulet (ls/R → 0) on
a soft substrate (ls/a → ∞), the effect of the Laplace pressure on the shape of the ridge is negligible
and we expect the ridge to remain symmetric, i.e. θSL = θSV such that equations (5.5)–(5.7) reduce
to the case studied previously where we found θLV = π/2.

In order to go a step further, one may postulate, as in Lubbers et al. [25] and in agreement with
the numerical calculation performed here to first order in γLV/γS, that the total elastic stresses
below the contact line (both tangential and transverse) always vanish at the surface, provided that
ls/a � 1. This directly leads to the relation γLV cos θLV = γs

2 (θ2
SL − θ2

SV). By combining this equation
with the first equation in (5.8), one may derive the following relation:

θLV = π

2
− 1

2
(θSL − θSV). (5.10)

Using the analytical solutions for θSV and θSL presented in figure 8, the three angles of interest
(ε, θSV and θSL) can be fully determined for all the values of the physical parameters ls/R (in
the asymptotic limit ls/a → ∞) without the need to minimize the total energy of the system.
The corresponding predictions for the values of the rivulet contact angles are shown in figure 8.
Alternatively, one may derive a simple expression for θLV by using the approximate solution for
θ̃SV and θ̃SL and we find

θLV = π

2
− γLV

2γs

{
2ls
πR

log
(

1 + πR
ls

)
− ls

ls + πR

}
. (5.11)

While this appears to be a reasonable assumption on a perfectly smooth surface when the
contact line can slide and does not transmit tangential stresses, it will nonetheless require a proper
derivation using an asymptotic expansion of the displacement field in powers of γLV/γS to reject
or confirm this hypothesis. This is however outside the scope of this paper and will be the subject
of future work. On the other hand, most results presented in this paper are directly applicable to
the case of strongly hysteretic surfaces for which tangential displacements cannot be neglected,
as can indeed be seen in several experimental studies [3,13].
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Figure 8. Schematic of the substrate deformation at the contact line (far from the microscopic length a). Between the pulling
and sinking regimes, the apparent contact angle depends on the ratio ls/R via.

6. Conclusion
In this paper, we have first studied the deformation of an incompressible linear elastic substrate
with surface tension by a single contact line. This problem is an extension of the classical problem
of Flamant–Cerruti in elasticity [29,30]. The singular nature of its solution was regularized by
the introduction of a macroscopic cut-off for the vertical component of the displacement field,
by surface tension for the slope of the deformation and by a contact line of finite width 2a for
its curvature. This finite width also regularizes the horizontal component of the displacement
field which cannot be regularized by either the macroscopic cut-off or surface tension. Depending
on the ratio of the elastocapillary length ls = γs/(2μ) over the width of the contact line, two
qualitatively distinct regimes have been identified analytically. For ls/a � 1, we recover the force
balance first described by Young for a rivulet sitting on a hard substrate, while for ls/a � 1 we
recover a Neumann-like force balance where the substrate surface tension balances the pulling
force exerted by the contact line. Note that while the assumption of a finite width for the contact
line regularizes the problem at small scales, it would be very interesting to provide a proper
derivation of the deformations induced by an undulating contact line from three-dimensional
elasticity. This calculation is however outside the scope of this paper. We have then investigated
the deformation of an elastic substrate with surface tension by a two-dimensional rivulet of
width 2R. In addition to the forces exerted at the two contact lines, there is additional force on
the substrate originating from the Laplace pressure in the rivulet. By analytically solving the
equations of equilibrium, we have identified three qualitatively distinct regimes for the shape of
the substrate deformation as first found numerically in [25]. In addition, we have also provided
analytical results for the elastic stresses below the rivulet in all three regimes. The transitions
between these three regimes are controlled by two dimensionless parameters, ls/a and ls/R. For
large rivulets (R/ls � 1) resting on hard substrates (ls/a � 1), the deformation of the substrate
asymptotically vanishes. In this ‘sitting’ mode, elastic stresses in the substrate balance the tension
exerted by the rivulet at the two contact lines and by the Laplace pressure beneath the rivulet.
For large rivulet (R/ls � 1) on soft substrate (ls/a � 1), the substrate is strongly deformed below
the contact line. Because the surface of the substrate is deformed, the normal projection of the
substrate surface tension is non-zero and exactly balances the vertical traction exerted at the
liquid/vapour interface on the solid. In this ‘pulling’ regime, the ridge at the contact line is
symmetric and elastic stresses vanish below the contact line. Because elasticity does not contribute
to the ‘macroscopic’ force balance at the contact line in this regime, a further decrease in the
substrate stiffness (or if the rivulet size decreases) does not change the height of the ridge. But
since elastic stress must still balance the Laplace pressure below the rivulet, the depth of the
deformation further increases and the ridges below the contact lines ‘rotate’ to accommodate
this increase in depth. Finally, in this last regime of small rivulets (R/ls � 1) on soft substrates
(ls/a � 1), the ridges therefore become asymmetric and the total elastic stress below the rivulet
asymptotically vanishes when the normal projection of the substrate surface tension balances the
Laplace pressure in the rivulet. At this point, the total normal elastic stress at the surface of the
substrate is zero and the rivulet is ‘macroscopically’ supported by the surface tension of the solid
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Figure 9. Asymptotic formulae for the substrate deformations at the contact line as a function of the dimensionless ratios ls/R
and ls/a. The region of the phase diagram where a� R is unphysical. (Online version in colour.)

only. Figure 9 summarizes the formula for the dry and wet angles of the substrate at the contact
lines in all three regimes. Finally, we have investigated the selection of the contact angle when
the contact line is not pinned. By numerically minimizing the energy of the system, we show that
geometrically nonlinear effects must be taken into account in order to find a rotation of the rivulet
contact angle that satisfy the horizontal Neumann force balance, as found in [25]. By imposing an
additional hypothesis for this nonlinear regime, we propose an analytical formula for the selection
of the contact angle.

Appendix A

(a) Expression of the displacement field for a single contact line
We give below the analytical expression for the surface displacement field of a substrate loaded
by a single contact line

ζ a(x) = Πy

2πμ

∫ a

−a
dyH(|x − y|) = Πy

2πμ
Ka(x)

ua
x(x, y = 0) = Πx

2πμ

∫ a

−a
dyG(|x − y|) = Πx

2πμ
La(x),



19

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140813

...................................................

where the functions Ka(x) and La(x) are written as

Ka(x), La(x) =
{

Ka
ext, La

ext |x| ≥ a

Ka
int, La

int |x| ≤ a
(A 1)

with the following definitions:

Ka
ext(x) = 2a

(
1 − x

a
arctanh

a
x

)
− 2a log

√
x2 − a2

	′

+ ls

(
Ci

|x| + a
ls

sin
|x| + a

ls
− Ci

|x| − a
ls

sin
|x| − a

ls
− Si

|x| + a
ls

cos
|x| + a

ls

+Si
|x| − a

ls
cos

|x| − a
ls

− π sin
a
ls

sin
|x|
ls

)

and Ka
int(x) = 2a

(
1 + |x|

a
log

√
a + |x|
a − |x|

)
− 2a log

√
a2 − x2

	′

+ ls

(
Ci

|x| + a
ls

sin
|x| + a

ls
− Ci

a − |x|
ls

sin
|x| − a

ls
− Si

|x| + a
ls

cos
|x| + a

ls

+ Si
|x| − a

ls
cos

|x| − a
ls

+ π − π sin
a
ls

sin
|x|
ls

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 2)

La
ext(x) = 2a

(
1 − x

a
arctanh

a
x

)
− 2a log

√
x2 − a2

	′ (A 3)

and La
int(x) = 2a

(
1 + |x|

a
log

√
a + |x|
a − |x|

)
− 2a log

√
a2 − x2

	′ . (A 4)

(b) Expression of the displacement field for the two-dimensional rivulet
Using the notations above, the displacement field for a two-dimensional rivulet on a deformable
substrate is given by

ζ a2D(x) = γLV sin θLVls
2aπγs

Ka(x − R) + γLV sin θLVls
2aπγs

Ka(x + R) − γLV sin θLVls
Rπγs

KR(x) (A 5)

and

ua2D
x (x, y = 0) = γLV cos θLVls

2aπγs
La(x − R) + γLV cos θLVls

2aπγs
La(x + R) + γLV cos θLVls

Rπγs
LR(x)
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