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Abstract

Using an exact Green function method, we calculate analjtithe substrate deformations near straight contacsline
on a soft, incompressible solid, having a uniform surfacesitnys. This generalized Flamant-Cerruti problem of a
single contact line is regularized by introducing a finitelthi2a for the contact line. We then explore the dependance
of the substrate deformations upon the softness tgti wherels = ys/(2u) is the elastocapillary length built upon
vs and on the elastic shear modujusWe discuss the force transmission problem from the liquiage tension to
the bulk and surface of the solid, and show that Neuman dondif surface tension balance at the contact line is only
satisfied in the asymptotic limét/ls — 0, Young condition holding in the opposite limit. We then skt the problem

of two parallel contact lines separated from a distarReahd we recover analytically the "double transition” upon
the ratiosls/a and R/l identified recently by Karpitschka et al, when one incredBessubstrate deformability. We
also establish a simple analytic law ruling the contact asglection upoi/ls in the limita/ls <« 1, that is the most
common situation encountered in problems of wetting onmsafterials.

Keywords: Contact line, Wetting, Flamant-Cerruti

1. Introduction

Statics and dynamics of wetting of soft solids, that can ts#lyedeformed by liquid surface tension, are presently
motivating a renewed interest, via both experiments [1] an8 modeling [4, 5, 6, 7]. This interest is partly motivated
by the huge number of applications of this field (soft condem®r desiccating coatings, artificial tissues, culture
media, etc), but also by several underlying fundamentdlaiges that are still pending. As well known from ancient
works [8, 9, 10, 11], a ridge is formed on the solid surfacehatdontact line and the interaction between the liquid
surface and this ridge governs the selection of appareniacbangle [12], the possible hysteresis of this angle [13],
and can also lead to very complex phenomena with unusuahdipige laws [14], unstationary behaviors of contact
lines [15, 3, 16, 17] or even instabilities with spatial patt formation [18]. However, the precise structure of this
ridge is still under debate [19], and for instance, it is ogently that the surface tension of these materials has bee
included in the modeling[5, 7, 4] in a way that could allow sodirect comparisons with the more well known case
of liquid/liquid wetting. The dificulties to reach a full theory are still numerous: how to th@lreasonably simple
formalism combining two dferent substrate surface tensions (for the wet and dry patieoburface [20]), finite
deformations, substrate rheology and more generally dicsmfects?

In the present paper we focus on a simple case that allows psrform analytical calculations of reasonable
complexity. We consider statics with a simple liquid of sud tensiory deposited on a purely elastic, incompressible
solid of infinite depth and of uniform elastic shear modylug he substrate surface tensipnis supposed to be large
compared to that of the liquid, which, as we shall see, witivas$ us to work in the small slope limit of the solid surface,
i.e. in the limit of linear deformations of the bulk of the stitate. We will also simplify even more by neglecting any
subtlety around the possiblefidirence between substrate surface stress and substraieesemniergy [21, 22], which
seems to be a reasonable approximation in the case of inegsiple media [23], and we will assume that the surface
energy is the same for both the wet and dry parts of the substra
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This set of approximation may seem very reductive, but it i&ct the situation addressed by most recent available
theoretical papers, and even this simple situation is ifepty solved, as very often these approaches considerleamp
axisymmetric geometries involving numerical calculasiori-or instance Style and Dufresne [7] showed that in the
large softness limit of sessile circular drops, of radiishere are two dferent limits: wherR is much larger than the
elastocapillary lengtlhs = vs/(2u), the situation at the contact line is very close to that dfjaidl, with a Neumann
condition of balance of surface tension at the contact liméhe opposite limit, one recovers rather the Young coaditi
defining the equilibrium contact angle from a balance ofdsrin the horizontal direction. Very recently, Lubbers et
al considered one or two contact lines of finite width a, anugd that this rigid to soft transition was in fact more
complex, with two distinct transitions involving the twanagnsionless parametaasls andR/lg, R being the radius of
a drop or the half distance between two parallel contact|j@é].

In a previous paper [4] one of us developed a strategy to génethe Green function used long ago by Shanahan et
al [8, 9, 10], to a solid having a non-zero surface tensiod,iavestigated the deformation field for one or two straight
contact lines by using a simplified version of this Green fiamg while focusing mainly on the limiR/ls > 1 of large
softness. In the present paper, we reconsider this applyacking the exact Green function, and apply it to a single
contact line of finite width, and also to two parallel contizms of finite width for any values of the ratibga andR/Is.

We discuss the complexity of force transmission betweeligh@ surface tension and both the bulk and surface of the
solid, and we derive analytical results for the slope of thle&lsand the selection of the liquid apparent contact angles
In particular, we show that the double transition found bypitaha et al can be in fact exactly calculated for any value
of the contact angle. We then show that the selection of tipargnt contact angles is dependent on geometrically
nonlinear ects involving finite value of the substrate slope, whichusaf reach of available analytical approaches.
However, we give a simple analytical formula that shoule thie selection of the contact angle for laltge andls/R
ratios. Again in the limit of largés/a ratio, an additional hypothesis motivated by the result#aioed in this paper
allows us to suggest a more general formula for the seleofitime contact angle faarbitrary Is/R ratio.

In section 2, we first recall the limiting case of the Neumand &oung-Dupe relationships. In section 3 we
remind the Green function approach developed in [4] for aonmpressible solid, on the basis of an analogy with
Stokes flows in hydrodynamics of viscous flows. We then sdieecaise of a single contact line of finite widta 2Ve
provide an exact solution and extend the approximate soluteveloped in reference [4]. We show that, although not
exact, it also leads to reasonable approximations for tluelkeded quantities in the present article. We then cateula
the total elastic force beneath the contact line and we @l@rimacroscopic force balance at the contact line that reduce
to the Neumann and Young-Duwpmodels in the appropriate limits. In section 4, we addressase of two parallel
contact lines and explore in details the double transitigrajn for the exact and approximate Green function solstion
We derive several simple scaling laws for the substrateesiophe various regimes of interest. Because these results
are valid for all contact angles, they can be used to destnidsubstrate deformations induced by a pinned drop in
which the contact angle can take arbitrary values betweeritmits. We then address in section 5 the selection of the
macroscopic drop contact angle when the contact line is imotep. We show that energy minimization can predict
this angle for large dropk/R <« 1 on hard substratdg/a < 1. In the limit of soft substratelg/a > 1, nonlinear
effects comes into play for contact angles close/t®. We then show that thesé&ect can be taken into account in the
asymptotic limit of small dropss/R — ~ on soft substrate where we recover the Neumann construdtiandrops
of arbitrary sizes on soft substrates, we propose an aoaitempt to solve the apparent contact angle selection that
avoids to use a complex minimization of free energy. We psepm simple formula linking the contact angle to the
slope of the substrate deformation that should hold in thé vherels/a > 1.

2. General setting and the limiting cases of Young-Dupgr and Neumann

Let us first consider a two-dimensional rivulet lying at thieface of an infinite, incompressible and linearly elastic
half-space as illustrated in figure 5. The substrate is cieriaed by a Young modulus noted As the problem is
invariant along thez-coordinate, we shall assume that this surface loadingeseastate of plane strain within the
substrate. In response to the applied distribution of botimal and tangential surface forcEs= {FX, Fy, O}, elastic
stresses build up within the solid and, if the free surface d@on-zero surface tension, surface forces also oppose
the deformation. At the mechanical equilibrium, the defation of the substrate at the contact line therefore results
from the balance between loading, surface tension anda@fgstin the case of a liquid drop, the loading force is
related to the surface tensiony at the liquid-vapor interface and to the apparent contagteah\, by the relation
F= {yLv cosLy, yLv SinfLy, 0}. This force balance can be projected onto the x and y axieldgi
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Figure 1: (color online). Schematic representation of thelet case. A 2D rivulet is lying on top of a linearly elast@alhspace with surface tension
vs. The half-space is therefore subjected to two line forcélseatorner of the rivulet and to a Laplace pressure beneattirtp.

YLv COSOLy = s COSOsL — ysyCOSOsy + f><e| (1)

ywsinfy = —VSLSiHHSL—stSiHQSVJrffI (2)

wheref)faI andfyel are respectively theandy component of the elastic restoring forces (per unit of Iepgt the corners

of the drop. The set of equations has two well-known and widsekd simplifications. In the particular case of a hard
substrate, the typical size of the substrate deformatiansfahe order of\ /u (~ 10712 m for water on glass) which is
much smaller than the typical siiof droplets. Consequently, elastic deformations are icégdieat large scale and the
angleYs| andds | are set to zero. In addition, elastic forces are also negfddobm the horizontal force balance above
and, in this approximation, the contact angle¢ is a solution of the simplified equationy cosf.yv + ys. — ysv = O.

This balance of surface tensions at the triple line is knosvtha Young-Dup equation and states that elastic stresses
do not contribute to the selection of the contact angle. Beeshe contact angle, which is often the quantity of interes
in wetting problems, is fully determined by this equatiome tvertical force balance between surface tractions and
elastic stresses is typically left unsolved. In the opdsinit of an infinitely soft substrate (a liquid at rest), thlastic
stresses are set to zert;f?I = fyel = 0 and equantions (1)-(2) reduce to those considered by Neuarad followers
[25, 26, 27]

Table 1: Summary of the force balance in the Young-[@ugnd Neumann limit for arbitrary deformations.

Horizontal force balance \ertical force balance
YLv COSHLy = YLv SinfLy =
hard substrate (Young-Dugpy Ysv—YsL fyel (typically not solved)
soft substrate (Neumann) ¥sLCOSOs | — YsvCOSHsy —ysLSiNfs | — ysySindsy

As can be seen in the table above, both theories lead to siampleslegant predictions as elastic stresses need
not be calculated. Despite their ever-increasing appdioat the wetting of gels is not covered by any of these two



theories as the capillary length, defined hereag2of gels can approach the typical siZR®f liquid drops. With
this consideration in mind, this paper makes no assumptiothe ratio of the capillary length over the siReof the
droplets. Furthermore, we do not postulatpriori any "macroscopic force balance” such as (1)-(1). Insteadergl
boundary conditions are applied all over the free surfacenamwill derive this force balance by integrating the elasti
stresses over the width of the contact line. We will then shoalytically that the elastic stresses indeed vanish from
these force balance in some limiting cases. For the sakengisity, we will consider from now on that the surface
tensionsys| andysy are equal and we writgs| = ysy = vs.

3. The single 2D contact line

3.1. Notations and general equations

Within this framework, the mechanical equilibrium in thdlbaf the incompressible half-space is described by the
Navier equations:

v-u (3)
puad—VP =0 (4)

whered is the displacement field ard is the pressure field. This field is introduced as a Lagrangkipter to
enforce the incompressibility constraint. This set of aumes is completed by the condition of stress continuityhat t
boundary:

o-ni="t (5)

wherefi andt’are the unit normal vector to the surface and traction foezested at the substrate boundary, respectively.
In component form, the stress tengois given by:

ou; 0
Tij :lu(a—X;+6—X:)—P§u (6)

whereyd; ; is the Kronecker delta symbol.

3.2. The Green function

Let us first consider the problem introduced and solved byattif#], of a line forcef = (fx6(x¥)s(y), fyo(x)s(y), 0)
applied at the free boundary of a solid with surface tensi@nin order for the linear elastic theory to be valid, the
slope of the surface profilg(x) must be small everywhere, iZ&xX) < 1 where the prime denotes the derivative with
respect tox. Within this approximation, the boundary condition (5)eakhe form:

du d?

oy = 2 6_;_P: y5(x)+75w (7)
ou ou

o = u(a—xha—;): () (®)

This problem can be solved by using a potential functiontierdisplacement field and working in Fourier space.
The solution is given by:

fy [ coskx
sixy=0=a0 = gL [ A ©
niey=0) = & [ X (10

whereA is a macroscopic cutfblength (we will come back to this point later on). Performthg integrals yields the
following expression for the displacement field:
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Figure 2: (color online). Schematic representation of thebj@m. A linearly elastic half space is subjected to a lineddrat the origin of the free
surface.

29 :% {—Ci% + cos%Ci (% + %) + sin% (Si(% + 'I—)j) - g)} (11)
Ux(x,y =0) = 2::” {—Ci%} (12)

andls = ys/2u is the capillary length of the solid. Up to a constant andfamfthe cut-é length k < A), the solution
above can be slightly simplified to:

_k Ix] x| ..IX XX\
g(X) __lu {—lOgX + COSECIE +y+ S|nE (SIE - z) = —271_# H(X) (13)
fx X fx
Ux(X,y =0) = i —log—= 1 = eruG(X) (14)

wherey ~ 0.577 is the Euler-Mascheroni constant. Note that the norreap( horizontal) component of the displace-
ment field depend only on the normal (resp. horizontal) camepo of the applied surface force. As a consequence,
only the deflectiory of the surface depends on the surface tension of the soli@ abBence of coupling between
horizontal displacement and vertical loading is a charistie feature of a linear incompressible half-space. k& th
limit Is — 0O, we recover the solution of the Flamant-Cerruti probleB) PB]. Note that these expressions diverge both
at large and smaklt. The divergence of the displacement field at large distarare the drop is solely a consequence
of the 2D character of the problem (similar to the logaritbivergence of the flow field past a cylinder in 2D hydro-
dynamics) and can be regularized, for example, by forrmgdatie problem in 3D. The divergence of the displacement
nearx = 0 on the other hand, follows from the localized nature of thpliad force. While this solution might be a
reasonable description at some distance (to be specifie) fedm the contact line, this description must break down
at smaller scales. At the lengthscale of the gel correldtingth (typically 1 nm), the structure becomes heterogaeseo
and the continuous model indeed does not hold. Irregudantiay also arise from the roughness of the free surface at a
larger scale, as sen on figure 3. Because of these defedtspngact lines have some "thickness” in the sense that the
triple line is pinned to the defects and oscillates withiraarow band of width 8. Before applying this regularization

at small scales, let us first note that the Green function@bamn also be reasonably approximated by another simpler
function.



Figure 3: (color online). Detail of a triple line at the bowmg of a water drop on a soft agar gel3% agarose). The boundary is highlighted by a
green line and the inset shows the oscillation of the trijple tesulting from the heterogeneities at the surface of#ieThe contact line oscillate
within a narrow band whose width is of order of a micrometer.

3.3. A simplified Green function

In the limitls — O (with x < Is), the solution/(x) above and its first derivativé(x) = ¢’(x) has the following
asymptotic form:

fy X fy 1
= —— | —_— = - 1
o9 = 52 (v +10g ¥ ) andoty = -5 15)
Ux(x,y=0) = — fx Iogm (16)
X 9 271_/1 A
while in the limitx — 0 (and under the assumption that« A) the solution converges toward:
(x) = LAE ande(x) = b (17)
€W =-5,109% TR
P X|
U(x,y=0) = 2 log (18)
In order to make further analytical progress, Limat [4] dntuced the approximate solutigindy:
s fy IX| + 2/
{0 =5y +10g === (19)
- P X
U(x,y=0) = 2 log (20)

While the solution above is not exact, it is an interpolatietween the limiting cases of the first derivative of the
exact Green function. It also describes the far fisdd« |s) behavior of the displacement field but fail to accurately
predict the value of the deflection beneath the line load. Asshall see below by comparing the results obtained
with this interpolation and the exact solution, it essdlytigaptures the physics of the wetting on a soft substratiéewh
greatly simplifying the calculations. In a previous paghts solution was used: 1) to derive approximate solutions
for the single and double (rivulet) contact line problemt®yive analytical predictions for the contact angles nbar t
contact line as well as 3) for the amplitude of the substnatiaé limiting caseR > |5 and 4) to build approximate
methods for the experimentally-relevant casg # ys .



3.4. Finite width of the contact line

In order to regularize the Flamant-Cerruti problem [28, &8h surface tension formulated above, we now assume
that the force acting on the substrate is spread out on ao$tnifuith 2a. The resulting displacement field on the surface
(£2(X), U(x,y = 0)) can be readily obtained by usirig = I1,dy and fyx = II,dy and by integrating the previous result.
Since we are mostly interested by the angles at the contegtie only present here the analytical result for the slope
02(X) = ’3(x) of the surface deflection:

2 = [ v (= y) = — 2 Hix— a)
P00 = 5o | YH(-y) =5 L (H(x-2) - Hix+ a) (21)

whereH(x) was introduced in equation (13). The analytical solution/f(x) itself is given in appendix and plotted
in figure 4, along with the solutiofi(x) (i.e. in the limita — 0) as well as the correspond solutions obtained with the
simplified Green function/{(x) andZ?(x), which expression can be found in section V). As expectezlstope of the
surface deflection does not depend on the macroscopicficattpmore. Evaluating this expression on either side of
the contact strip we find the contact angi¢-a) = —6%(a):

I1
(-a) = 22 {log(22) + 5 - CiZ2 cos?2 + 2 (- 2522 sin 22 (22)
2nu Is ls Is 2 ls ls

It is instructive to compare this behavior with known resdtir hard i > y,v/a,ys/a) and soft substrates («
YLv/a,ys/@). Writing the normal forcdly = (yLy sinfv)/(2a), the contact angle has the following simple asymptotic
behaviors in these limits:

1 2a 2a
siné = (1 + —log —) soft substrate
g(~a) ~ LTV )2 | | als 3
—r —log — hard substrate
2ar g ls

Oret

On a soft substrate, the contact angle, at leading orderiependent of the substrateffstess and we recover the
value given by the Neumann triangle construction for a ticglrioplet on a liquid substrate (in the limit of small angle,
as linear elasticity is only valid for small slopes). When shdstrate becomes f§r, the contact angle decreases and
behaves as log(u)/u at largeu. In the limit of an infinitely stff substrate, the angle goes to zero and we recover
the Young’s model in which the substrate remains flat. Thégljmtion is in sharp contrast with the result of Style and
Dufresnes [7], where the substrate angle is always givendynnn’s law close to the ridge and by the Young’s law
far from the ridge. Within our framework, there is no "ligtli#te” behavior near the ridge and the value of the substrate
angle at the contact line depends essentially on the ratilbeoélastocapillary length to the width of the contact line

Is/a.

3.5. Force balance at the contact line

We now take advantage of our analytical solution to invegédhe force balance at the contact line. In the elastic
substrate subject to a line force, the normal componenteotitess tensor on the upper surface Q) is given by:

f < coskx
Xy =0)= fm Fe ik (24)
m

In the case of a force applied on a strip with a finite width,gtresso$,(x) at the surface is given by:

a Hy a Hy
o309 = | dyomplx—3) = 2 130 2) - Ix+ ) (25)
y -a
where
39 = - {cos*siX —sinXci™ & rsin X gin X (26)
ls s Is s 2 2l

Integrating the stress over the width of the strip, we findtdtal line forceff' in the substrate below the contact
line:
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a 21411 2 2 2a\ . 2 2
fel = f dxog(x) = — {Cl—a cos=2 — (7—r - Sl—a) sinZ2 4 T8 _jog 22 _ y} (27)
_a b s ls \2 ls ls s ls
Using expression (22) as well as the expressiofliprone may recognize:
£ = yLv sinfLy — 2ys07(-a) (28)

This relation is the macroscopic force balance (2) in thé ldfismall substrate deformation and symmetric surface
tension. It can also be obtained by direct integration ofatxendary condition (8). The first term is the integral of the
normal traction applied at the surface and the second tetine imtegral of the Laplace pressure in the solid due to the
curved interface. In the case of a single contact line withrsgtric surface energies (i.e, on both sides of the contact
line), the tangential component of the stress tensor iategrover the width of the leading strip, not&lis given by:

a
fel = f dxo3y(X) = yLv COSOLY (29)
-a

At the "macroscopic level” because the same line tensiofiepio both sides of the contact line the projection of
the forcey,y is only balanced by elastic stresses that develop in thersisind the Neumann or Young-Dégdaw
are only recovered in the limét,y — 7/2. If the contact line is pinned to the surface however, thgé¢atial elastic
stress does not vanish and the contact angle can deviaterftfdrthat is the "normal” value foys, = ysv = vs.
Looking at the asymptotic value é6f(a) presented above, one may notice that :

2a 2a
- I T soft substrate
f;l ~ YLV SinfLy d ﬁs Sza (30)
1+ —=log— hard substrate
ma Is
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Figure 5: (color online). Substrate slope at the contaet (#) and total elastic force under the contact line (B) asrecfion of the dimensionless
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equation (22) as well as the approximate solution given byagaoui (43). The Young-Dugrand Neumann theories are recovered in the limits of
hard (s/(2a) — 0) and softls/(2a) — o) substrate, respectively

On a soft substrate, the total normal stress at the surfdoevlibe triple line goes to zero in the limit where
2a/ls — 0 and therefore elastic stress do not contribute to the lmemhanical equilibrium at the contact line. The
normal traction is balanced solely by interfacial stressgd we recover the small angle limit of the "macroscopic”
force balance (shown in Table 1) as written by Neumann:

. 2a
yLv SinfLy = 2ys63(-a) when T~ 0 (31
S
On a hard substrate on the other hand, the substrate slope@aero. As a consequence, the surface cannot
deform enough to allow the previous force balance (31) toabsfied and the contribution of the normal projection
of the substrate surface tension becomes negligible.ddstbe traction exerted on the substrate at the contadisline
only balanced by the elastic stresses that develop in thedftihe substrate.

. 2a
£ = yLv sindLy when o (32)
S
To leading order the equation above is the normal force loalanthe Young-Dug limit. This equation is typically
left aside and only the horizontal force balance is writtestandard theories of wetting on hard substrates.

4. The 2D rivulet

4.1. Contact angles

We now consider a liquid rivulet on an infinite, linearly alashalf-space, as illustrated in figure 5. The rivulet
has width 2R and deforms the substrate because of 1) thtraett the two contact lines and 2) the Laplace pressure
beneath the drop. Mechanical equilibrium in the drop respithe pressure P to be a constant given by Laplace law
P = yLvsindy/R. The two contact lines are located-aR andR and the surface slope is given by the following
integral:

2D _&{ —R+a , ~ R+a , ~ }_i R , ~
20 = 5 [ ey [ o eenf- o [ oy (33
= —L {H(x+ R+a) + H(x- R+ a) - H(x + R— a) - H(x— R— a)}
2np
P
—@{H(X+R)—H(X—R)} (34)

Note that in the case of a 2D rivulet (or an axisymmetric drtipg total force exerted on the substrate is zero. As
a consequence, the surface of the substrate becomes fladrfattfe drop (see figure 6) and there is no divergence of



the deflection at infinity as it is the case for a single conliaet In the case of finite droplet size and finite width of
the contact line, the Cerruti-Flamant problem is thus fodlgularized. From the expression for the displacement field
£%P(x) (given in appendix), we can therefore now plot the maximwight (at the corner of the drop, &P (R)) and
maximum depth (at the center of the drop /2P (0)) of the substrate deformation in figure 6-B. While the tiegftof

the deformation increase monotonously with increasintnsss of the substrate, the height of the substrate deframat
exhibits a non-monotonous behavior. When the capillarytleisggoelow the width of the drop, the maximum height of
the drop first increases and reaches a maximum when theacgpéhgth is of order of the drop size~ R. For even
softer substrate (or, equivalently, smaller droplets)tiaimum height then decreases. Combined with the increase i
depth of the substrate deformation, this indicates thatltbp "sinks” within the substrate. Ultimately, both the tlep
and and height of the substrate saturate at finite values.

4.2. Double transition
The values of the contact angles on the Ggtand the drydsy side of the triple line are defined as:

OsL = 6*°(R-a) (35)
Osv = —62P(R+ a) (36)

Note that with this definition, both the wét_and the dry anglésy are positive. These angles can be written
in a more compact form as a function of the geomeftiec a/R and elasticB = |s/R parameters (expression are
given in annex). Their variations are shown in figure 6. Inliimiting case of a very large dro@(R, |s/R < 1), we
recover the limiting case of a single contact line descripeViously: i) on a hard substrate/R < a/R) the drop
sits on the surface without deforming it and both angles,andésy, are equal to zero while ii) on a soft substrate
(a/R < Is/R <« 1) both angles are equal 4@y sinf v /2ys. In this case, the ridge is symmetric and the deformation is
dominated by the traction exerted at the corners of theatvul

In the case of a smaller drop on the other hand, the capilErgth is not negligible anymore compared to the
radius of the drop (i.¢s > R) and a third regime appears in which the dry angle goes to while the wet angle
increases tg v Sind v /ys. The ridge rotates towards the interior of the drop and tlog dsinks” inside the gel. in
this case the deformation is strongly influence by the Lapfaessure in the drop acting on the substrate. These two
transitions between the three regimes can also be made s by plotting the sum andfiérence between the
dry and wet angles. In the experimentally relevant case evhet a/R < 1, the following analytical expression for
the sum and dierence:

7(@sL+0sv)ys B 2A 2A 2A 2A\ . 2A
— 2 =—2|log—= - 2Ci— — - 2Si— — 37
iv SinfLy oA og B +7y IB cosB + |7 IB sin B (37)
ﬂ(OSL_QSV)VS .2 2 2 2 2 2
—————— "2 =-5sin=1{2Ci= + 2BSi= - 7B} - —<2BCi= - 2Si=
iv SinfLy sin 5 IB + IB b cosB IB IB +7
2
+ 2B(y + log E) (38)

In this limit, the sum of the angles is the signature betwesittiag to a pulling mode. This transition essentially
depends on the ratiB/A = |s/a. When the elastocapillary length (i.e the characteristierbof the elastic deformation
of the substrate) is smaller that the typical width of thpl&iline (hard sustrate), there are virtually no defornratd
the surface and the drop sits on a flat interface. When tifaestis of the underlying substrate decreases, it is deformed
by the normal projection of the liquid-vapor interfaciadtion. Becausk is still much smaller than the radius of the
drop in this regime, the two triple lines are essentially4mmracting and the angle sum is just twice the single line
valuey,y sinf v /2ys. This sitting-to-pulling transition can also be approxtethby two simple scaling laws that may
be easier to manipulate than the expressions above:

I 2a
- —log—  hard substrate
YLv SNy ra g
OsL+Osy~ —— %22  °2a . (39)
Vs 1+ _ log T medium substrate
Ttls s
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Figure 6: A) Deformation of the substrate for increasing defability. The surface displacement field is given by equaBth The amplitude is
arbitrarily large for the purpose of illustration. B) Maximuheight (given by?2P(R)) and depth (given by??P(0)) of the substrate deformation.

C) Dry (9sv) and wet @s|) angles at the contact line. D) Sum anéfelience of the substrate contact angles scaled bging, v /vys.

When the sfiness of the substrate underneath the drop further decréssleis the limit whereA is small), the

capillary length becomes of a size of the order of the drojusad’he two contact lines start interacting and the Laplace

pressure breaks the vty symmetry of the ridge. As seen on figure 6, the ridges béhaacontact lines rotate until
the dry interface becomes flat. Thefdrence between the angles is now the key parameter comgytiie transition
from pulling to sinking mode and essentially depend®onls/R, i.e the ratio of the elastocapillary lendthover the
radius of the drop. The pulling-to-sinking transition cdsosbe approximated by two simple scaling laws:

03, -3, ~
sL~0sv e

2I5

ywsinfy | 7R

2R

log R medium substrate
S
2R
1- —  soft substrate
nlg

11

(40)



4.3. Force balance at the contact line

By direct integration of the boundary condition (8), we fihdtthe total restoring elastic stress (a force per unit of
length after integration) beneath the contact linex(atR) is given by:

f3" = yLv sinfLy — ys(Bs L+ sv) (41)

Again, this is the macroscopic vertical force balance (Zhatcontact lines in the limit of small substrate deflec-
tions. Following a calculation similar to that used to obtaguation (41), we can obtain the total elastic stresséforc
per unit length) integrated over the width of the drop:

ffmp = 2ysfsL— 2yLv SiNfLy = 2ys (93 L= 6’ref) (42)

Looking at formula (39), it can be seen that the elastic resjdorce f;i”e beneath the contact line undergoes a
transition for a ratids/a ~ 1. In the limit of an infinitely rigid substratd{/a — O, i.e the sitting mode), the force
below the ridge is non-zero and givenfay, sind,y. This is the Young’s limit. When the substrateistess decreases,
the elastocapillary length becomes larger than the widthe€ontact line, the elastic force decreases and dropsdo ze
whenlg/a > 1. In this pulling regime, we recover a Neumann-like forcaikorium in which the pulling force exerted
at the contact lines is fully balanced by the substrate sarfansion. As a consequence, when this regime is reached,
further decrease in the substratéfaéss does not increase the height of the substrate defomatihe contact lines,
as elastic stresses do not enter the force balance at ther ajriine drop. On the other hand, as the substrataass
decreases, the depth of the deformation beneath the drityefuncreases and thus the wet angle increases and the
ridge rotates. Equation (42) shows that the when the wetcobahgle reaches the valag;, the total elastic force
beneath the drop vanishes identically. Therefore, in thidsg regime, the forces exerted by the drop on the sulestrat
(by tractions at the contact lines and by the Laplace predsemeath the drop) are completely balanced solely by the
surface tension of the solid substrate.

Elastic restoring forces

1072 10° a/R 103 1 102 10°
Is/R

Figure 7: Total elastic force under the contact Iirﬁ},@“t) and under the dropff"’p) as a function of the dimensionless paramégR. The elastic
restoring forces are scaled byy sind,y. The Neumann model is recovered in the lilgfR — oo .

4.4. The approximate Green function (slight return)

We now summarize the results for the single and double colit@s using the simplified Green’s function intro-
duced previously. In the case of a single contact line withigefividth, the approximate slopB(x) is given by:

~ I1 a  signx—y) Is IXx—a + 2s/7
P3(x) = ——2L dy—=—* 27 9 .— log——M >~ 43
W= ) Yoyt agr - " 2ar Y ks a v 2u/n (43)
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And the approximate slope at the contact #ge-a) is thus:

~ I ra+ |
B(-a) = bref— | & 44
o ( a) erefZaﬂ 0og |s ( )
which has the following limits:
. % (1 - %) soft substrate
93(_3) ~ Bret | 5, (45)

2a
—_log== hard substrate
2ar 9 Is

Note that we recover the Neumann regime §fe-a) — 6,e1/2 whena/ls — 0) and Young regime (i.é%(-a) — 0
whena/ls — o0). To first order ina/ls however, the approximate solution (45)fdrs from the exact solution (23)

for the soft substrate. Using the same procedure as for thet eplution, one may compute the slagi3é(x) for a
two-dimensional rivulet:

~ I1 Rra  signx—y) Rra  sign(x—y)
a2Dy _ _ Aly
= o {fR Yix=vi+2/r " fR Vix—yi+ ZIs/n} (40)

R i —
PP [May Sty

2mu J_g CIX=yl+2/m
_ g I—Slo (|X+R—a|+2ls/7r)(|x—R—a|+2ls/7r)_9 I_SIO IX- R+ 2lg/m
e et V9 (x+ R+ a+ A/n)(X—R+a + 257 R " x+ R+ 2o/n

which lead to the following dr@isy = —6%2P(R + a) and wetds| = 6°2°(R — &) approximate contact angles:

~ Is (a+ 2¢/7)(2R+ 2a+ 2g/n) Is 2R+a+2g/n
by = brer == I0 o =2 log o 8F A/ 47
SV = el S 09 T @A/ (2R+ 2o/ e Re 09 At 2lo/x (47
i ls . (2a+2/m)2R-2a+ 2lg/n) Is a+2yn
— o= o =S log TSI 4
Os1= bret 5oz 109 I /m) @R+ 21o/n) bret Re °Y 3R —ax 2oy (48)

For the purpose of comparison with the exact solution giveove, it is instructive to extract the asymptotic
behaviors of the approximate solution and we find:

2R2
T
. . Ly sing 1- 32 soft substrate
O —bsy ~ 2l 3R (49)
Vs s ;
— log— medium substrate
7R Is
na .
. 1- — medium substrate
a a YLv sing 2|3
Vs —log— hard substrate
na Is

Although the curves are very similar to the exact ones, thegeslight discrepancies in the pulling (medium sub-
strate) and sinking (soft substrate) regime between thet exal approximates solution. Because of their simplicity

however, these expressions, as well as the full formula(48), can be very valuable for the purpose of comparison
with experimental data.

5. Selection of the contact angle and conclusion

In this paper, we have first studied the deformation of anrmm@ssible linear elastic substrate by a single contact
line. This problem is an extension of the classical probldérRlamant-Cerruti in elasticity [28, 29] but the singular
nature of its solution was regularized by the introductiém dinite width 2a for the contact line. Depending on the
ratio of the elastocapillary length = ys/(2u) over the width of the contact line, two qualitatively drstt regimes have
been identified analytically. Fdg/a < 1, we recover the force balance first described by Young foop glitting on a
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Figure 8: Asymptotic formulas for the substrate deformatidris@contact line as a function of the dimensionless rdtjiR andls/a. The region
of the phase diagram wheae> Ris unphysical.

hard substrate while fdg/a > 1, we recover a Neumann-like force balance where studiesitbstrate surface tension
balance the pulling force exerted by the contact line. Weslthgn investigated the deformation of an elastic substrate
with surface tension by a two-dimensional rivulet of widtR. 2In addition to the forces exerted at the two contact
lines, there is additional force on the substrate origintafrom the Laplace pressure in the rivulet. By analytically
solving the equations of equilibrium, we have identifiecethgualitatively distinct regimes. The transitions betwee
these three regimes are controlled by two dimensionlessyeters|s/a andls/R. For large dropsR/ls > 1) resting

on hard substrate$s(a <« 1), the deformation of the the substrate asymptoticallyistegs. In this "sitting” mode,
elastic stresses in the substrate balance the tensioreéxsrtthe drop at the two contact lines and by the Laplace
pressure beneath the drop. For large diRfi{> 1) on soft substratd{/a > 1), the substrate is strongly deformed
below the contact line. Because the surface of the substrdeformed, the normal projection of the substrate surface
tension is non-zero and exactly balance the vertical taaixerted at the liqujslapor interface on the solid. In this
"pulling” regime, the ridge at the contact line is symmetitd elastic stresses vanish below the contact line. Because
elasticity does not contribute to the "macroscopic” fore¢alnce at the contact line in this regime, a further decrease
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in the substrate gthess (or if the drop size decrease) does not change the loéitiie ridge. But since elastic stress
must still balance the Laplace pressure below the drop, ¢pehdof the deformation further increase and the ridges
below the contact lines "rotate” to accommodate this ingeeim depth. Finally, in this last regime of small drops
(R/ls < 1) on soft substrategs{a > 1), the ridges therefore become asymmetric and the totslielstress below
the drop asymptotically vanishes when the normal projactibthe substrate surface tension balances the Laplace
pressure in the drop. At this point the total normal eladtiess at the surface of the substrate is zero and the drop is
"macroscopically” supported by the surface tension of @ nly. Figure 8 summarizes the formula for the dry and
wet angles of the substrate at the contact lines in all tregiemres. We now discuss the selection of the contact angle.
In our paper, we have assumed that the contact angle wasipezsand we have calculated the substrate deforma-
tions that are induced by a given value of the contact andies dpproach is particularly suited for systems that show
an important degree of hysteresis as it is typically the casdeformable substrates [13]. In that situation, thecstati
contact angle is comprised between two values that mustieriexentally determined and the substrate deformation
can be easily calculated using the results presented inaparpHowever, an interesting question arises when one con-
siders a very smooth substrate on which pinning cannot oticthat case, the contact line will move until it reaches
an equilibrium value where the total energy of the systemirsmized. In absence of hysteresis, it could be possible,
in principle, to predict the value of the contact angle atildgium by minimizing the total energy of the system, under
the constraint of fixed volume. In our system, the total epélg; is given by the sum of the substrate elastic energy
as well as the substrgt@por, substratiquid and liquigvapor interfacial energies or by the following integral:

00 R 2 00
a2D \ 2 f.d
Stot = Vs \{1+(ag )dx +yLv 1+ X dx+ ——dx (51)
—00 6X —R R2 + Re - X2 —00 2
—— e

tan(?LVZ

solid-vapour+ solid-liquid elastic energy

liquid-vapour
where we have used the fact that the liquid-vapour interfg@eportion of spherical cap. The surface displacement
field isd = {u2P(x, y = 0),£%2°(x)} (given in appendix) and = {f,, f,} is the surface traction distribution given by:

_ ywvSinfLy (x+ R) yLv SinfLy (x - R) Y sindy (i)
=% M =m)*—®r M= R 2R (52)
_ YLv COSOLy (x + R) Y COSOLy (x - R)
fy = 22 W 2a R N\ 2 (53)
where
nw={ 1 M<3 (54)
0 IX>53

This integral was then numerically minimized under the t@mst of constant volume and we found an equilibrium
angle ofz/2 for all values of the parameters. From the viewpoint of azegfenergies only, and in the limit of small
substrate deformations, the valjg = /2 is indeed already a minimum. Therefore, the contact aragiealy depart
from /2 if the increase in surface energies can be compensateddogea Hecrease in elastic energy. The numerical
minimization reveals that this in fact never happens ancetastic energy is also minimized for vanishing transverse
displacements (i.8 v = n/2), for all values ofs/Randls/a.

While this result is in agreement with the Young-Dé@pnodel for uniform substrate surface tension, it seemsgrath
surprising that it would also applies in the Neumann limit.islin fact in contradiction with previous work where
it was predicted that the liquid-vapour contact angle should deviate from the value/2 in the Neumann limit
[7, 24]. This discrepancy in fact stems from the failure & timear elastic model in the limit where the contact angle
Oy — m/2. Writing 6y = /2 — €, one may notice that whenis of ordery,y/ys (which is a small parameter), the
vertical displacement, which scalesyag/ys sind, vy, is therefore of ordey,y/ys. On the other hand, the tangential
displacement, which scales fas,/ys cosd,v, is therefore of ordery(v/ys)?. Because of this separation of scales,
higher order (nonlinear) terms cannot be neglected in thgetatial stress tensor and the slope of the interface must
also be taken into account in the boundary conditions. Itiquaar, because the Laplace pressure acts in the direction

2
normal to the interface, there is an additional te{m%‘() X (ys%) on the right hand-side of equation (8). Integrating
the tangential stress over the width of the contact line tbas finds the following total stresig"®
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fe"® = yLv cosoLy - %S(%v - 63) (55)
Because the vertical boundary condition (81) is Hfi#@ed by nonlinearféects at leading order, we still have:
£)"® = yLv SinBLy — ys(@sL + Osv) (56)

as well as the total vertical stress beneath the drop:
" = 2y5 (051~ brer) (57)

In the Neumann limit of an infinitely soft substrate (i.e wHegfR — oo andls/a — ), the elastic stresseig"®,
fy" and £2°P must vanish and in term ef equations (55), (56) and (57) now read:

Yiv = ys(fsL+ Osv), yLve = %(é’é_— 03\) andfs = éﬂ (58)
S
which can be combined to give:
s = 2V 6y = 0 ande = 2V (59)
Vs 2ys

This result implies that the cusp rotates at the contacttbrgatisfy the macroscopic Neumann force balance, as
described in [24]. In the opposite limit of an infinitely rijsubstrate (i.e whelg/R — 0 andls/a — 0), the substrate
surface remains flat and the restyl, = 7/2 should still hold as nonlineaffect will be negligible. In the intermediate
regime of a large drod{/R — 0) on a soft substratés{a — o), the dfect of the Laplace pressure on the shape of the
ridge is negligible and we expect the ridge to remain symiméte 6s, = 6sy such that equations (55), (56) and (57)
reduce to the case studied previously where we faugd= /2.

I: Sitting II: Pulling II: Sinking

eLV

vapour eLV vapour vapour ;
liquid

/
eSL
solid solid solid

Figure 9: Schematic representations of the substrate defiomet the contact line (far from the microscopic lengjh Between the pulling and
sinking regimes, the apparent contact angle depends ontibésy&R via

In order to go a step further, one may postulate, as in Lubbesd [24] and in agreement with the numerical
calculation performed here to first ordenjin, /ys, that the total elastic stresses below the contact linéh(tastgential
and transverse) always vanish at the surface, providedgtaat> 1. This directly leads to the relationiy cost vy =
%(03,,— 63,). By combining this equation with the first equation in (5&)e may derive the following relation:

x 1
Oy = 5" E(QSL_ Osv) (60)

Using the analytical solutions fdlsy andds_ presented in figure 8, the three angles of interest{y andés))
can be fully determined for all the values of the physicabpaeterds/R (in the asymptotic limits/a — oo) without
the need to minimize the total energy of the system. The spamding predictions for the values of the drop contact
angles are shown in figure 9. Alternatively, one may derivingke expression fof v by using the approximate
solution fordsy andés, and we find:

7 v [2s 7R ls
=——-—{"log|l+—]|- 61
Ov 2 2y {7TR Og( * |5) s+ 7R (61)
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While this appears to be a reasonable assumption on a pgi$embloth surface when the contact line can slide and
does not transmit tangential stresses, it will nonethelegsire a proper derivation using an asymptotic expansion o
the displacement field in powers gfy /ys to infirm or confirm this hypothesis. This is however outside $cope of
this paper and will be the subject of future work. On the otteand, most results presented in this paper are directly
applicable to the case of strongly hysteretic surfaces fachvtangential displacements cannot be neglected, as can
indeed be seen in several experimental studies [13, 3].
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6. Appendix
6.1. Expression of the displacement field for a single cdtitae
We give below the analytical expression for the surfaceldegment field of a substrate loaded by a single contact
line
1L a IL
209 = Zﬂ—y | arHx- - —yKa(x) (62)
By =0)= 2 [~ ayex-y = 5109 (63)

where the function&?(x) andL?(x) are written as:

K&, L&: IX>a
Ka X), La X) = ext —ext 64
CIRCEI o (e bt (64)
with the following definitions:
X2 — a2 IX+a . IX+a _|IxX-a _. |X-a
KEu(X) = 2a(1 - —arctanh—) 2alog ——— +15|Ci sin - Ci sin
A, Is Is IS IS
X +a X+a _.|x-a x| —
Sl| L+ cos| L+ +S|| | cos| | rsin— smu (65)
|5 |S IS IS IS IS
X a+|x a2 — x2 |x|+a X +a
=2a —lo —2alog——— +1 sin
KX = [ T2 as |x|] IO N
a-I1x . Xx-a _IX+a X+a _.|x-a X —a
- Ci | |smI | —Sl| L+ cos| L+ +S|| | cos| | +m—msin— smu (66)
Is |S |S |S IS IS IS |s
a X a X2 —a?
La(X) = 2a(1 - aarctanh)z) — 2alog —x (67)
a a2 — X2
L2 (x) = 2a|1+ U log +' 41 - 2alog Y& =X (68)
—1X Y
6.2. Expression of the displacement field for the 2D rivulet
Using the notations above, the displacement field for a 20letwon a deformable substrate is given by:
720(x) = MKa(X R+ M K3(x + R) — MKR(X) (69)
; Zaﬂ")/s 287'[)/ Rﬂ?’s
22D yLv CosOuyls YLv CoSOiyls| yLv COSOLvls| g
u =0)= ———L*(x-R+ ———L*(x+ R+ —————L"(x 70
P00y = 0) = PR X - Ry SRR LA Ry + T S LR (70)
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