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Abstract

We study the effects of inertia on the shape and stability of dry patches using liquids of decreasing

viscosities. These dry patches are formed when a liquid film flows down along a substrate under

partial wetting conditions. They become stationary and exhibit an “arch” shape well described by

a simple viscous model developed long ago by Podgorski. Surprisingly, this “arch” shape appears to

be robust when one decreases the fluid viscosity which increases inertial effects, but the evolution of

the apex curvature upon flow rate is strongly affected. We here proposed an improved description

of the dry patch evolution taking into account several physical effect as the hydrostatic pressure

in the liquid film, the curvature of the contact line, and these inertial effects. These ones affect

both the mechanical equilibrium of the rim surrounding the dry patch and the flow inside the rim.

This model allows us to show that the dry patch shape remains extremely close to the viscous

-Podgorski- prediction but with a rescaling of the apex curvature. It also allows us to get a better

prediction of the apex curvature dependance upon flow rate and a prediction of the rewetting

threshold above which dry patches are swept away by the film flow. This critical flow rate Γc is in

good agreement with our experiments performed in the range of of viscosity from 5 to 20 cP with

silicon oils.

PACS numbers:
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I. INTRODUCTION

A. History of the problem

Wetting and dewetting phenomena have been intensively studied these least decades [1–

6] but the complete description of these processes is still a challenge because of the subtle

hydrodynamics in the vicinity of the contact line [7]. One challenging problem in this field

is the stability of dry patches that can open spontaneously when a liquid film flows down

an incline under partial wetting conditions. Such dry patches appear in numerous industrial

situations where a liquid film flows on a poorly wettable surface ( coating, spreading, heat

exchangers, desalination devices... ...), and have thus motivated several studies [12–15, 17–

22]. By analogy with the stability of a single hole in a static horizontal liquid film [4, 8–11]

that closes when a critical thickness is exceeded, one could expect that the flow rate per unit

length Γ controls the stability of the dry zone and that above a critical flow rate Γc the film

will cover all the incline. As the dry patch is surrounded by a rim whose thickness must be

of order of the capillary length lc = (γ/ρg)1/2, where γ is the surface tension, ρ the density

and g the gravitational constant, and as the typical velocity of the advancing contact line

must be of order the capillary velocity Uc = γ/η, where η is the dynamic viscosity, one can

expect this critical flow rate to be of order Γc ∼ Uclc. Nevertheless this simple approach was

not used in the first studies on the subject [12, 20].

Initially, Hartley et al. [12] proposed a prediction for the critical flow rate based on a balance

between capillary forces and the downward momentum at the dry patch apex which yields:

Γc =
1

3

(
15

2

) 3
5
[
γ(1− cos θ)

ρ

] 3
5
[

η

ρg sinα

] 1
5

(1)

in which we have corrected a 1/2 erroneous factor and included the dependance upon α that

was missing in [12]. In this model, the authors did not realize the existence of a rim sur-

rounding the dry patch in which the liquid is collected. Their prediction is at least one order

of magnitude higher than the first reproducible experiments performed only recently [13].

Later, S.D.R Wilson [20] investigated theoretically the flow near the apex by considering

the balance (normally to the contact line) between capillary forces, downward momentum

carried by the film, weight of the rim and contact line curvature effect on the capillary forces.

Assuming a parabolic shape of the dry patch near apex and estimating the fluid velocity

in the rim, this author has calculated numerically the apex curvature evolution and the
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critical film thickness above which a dry patch becomes unstable. This pioneering approach,

unfortunately predicts a radius of curvature at the apex that increases with the flow rate

whereas, experimentally, this radius decreases [13–15]. As we shall see here, this unphysical

behavior might be linked to the erroneous choice of an unstable branch of the curvature

apex evolution.

More recently Podgorski et al. [13–15] performed the first reproducible experiments. They

also developed models for the dry patch shape and the critical flow rate Γc. First, they

investigated the dry patch shape and proposed a simple description in good agreement with

their experiments [13]. This first model is based on a balance between capillary effects

and the weight of the rim. They assumed that the cross section of the rim was an arc of

circle and that the contact angle was uniform all along the contact line and equal to the

static advancing contact angle. These assumption have been confirmed by optical measure-

ments [17, 18] on dry patches studied for successive quasi static increases of the flow rate. A

different approach has been developed by Wilson et al. [21] who studied similarity solutions

of a slender dry patch in both weak and strong surface tension regimes. Their model, based

on the lubrication approximation, allowed them to recover analytically the existence of the

rim (in the strong surface tension case) but predicts a solution with an infinite slope at the

contact line which is not relevant as lubrication approximation is used. In addition, the

approximation ψ << 1 (see fig. 1) is not valid near the apex which makes questionable any

prediction on the evolution of the radius of curvature at the apex. More recently Yatim

et al. [22] have extended this approach to the case of steadily translating dry patches with

negligible surface tension effects. Their similarity solutions present several physical features

in common with dry patches studied experimentally as for example the existence of several

possible dry patch width for a given imposed parameter here the speed of the dry patch.

Nevertheless a precise comparison with experiments appears to be difficult as surface tension

is neglected in this approach. Coming back to Podgorski description, assuming a Stokes flow

in the rim and combining this flow with the mass conservation and the balance of forces

normally to the contact line leads to a very simple prediction of the shape:

x = R
cosψ

sin2 ψ
(2a)

y =
R

3

(
1− 3 cos2 ψ

sin3 ψ
− 1

)
(2b)
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where ψ is the angle between the tangent to the contact line and the direction of highest

slope (see notations on fig. 1), and R is the radius of curvature at the apex. The evolution

FIG. 1: Photo of a dry “arch” where some notations has been added.

of R with the flow rate Γ is given by:

R = mf2(θ)
l2c

sinα

Uc
Γ

(3a)

f2(θ) =
(1− cos θ)4

(θ − sin θ cos θ)
(3b)

where m is a numerical factor taking into account the detail of the flow inside the rim. This

parameter m is not known exactly but a reasonable estimate (m = 0.23) can be obtained by

identifying the flow inside the rim to something similar to the one inside a rivulet flowing

along an incline in the lubrication approximation. This shape prediction is in very good

agreement with experiments [13] but this model fails to reproduce all observed physical

behaviors [15]. First, it predicts a stable solution for the radius of curvature R at the apex ,

whatever could be the flow rate value, and thus completely misses the existence of a critical

flow rate above which dry patches are not stable anymore. Also, the dependance of R

versus plate slope presents increasing discrepancies to the expected scaling R ∼ (Γ sinα)−1,

when one looks to moderately inclined plates. To correct these issues, Podgorski et al. [15]

proposed an improved model taking into account capillary effects linked to the contact line

curvature that were missing in the balance of forces acting on the rim. This new model

better predicts the dependance of R with the plate slope and introduces a critical flow rate

Γc given by:

Γc =
6
√

3

25
√

5
mH(θ)

lcUc√
sinα

(4)
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where H(θ) is a function of the contact angle given by:

H(θ) =
(1− cos θ)9/2

(θ − sin θ)(θ − sin θ cos θ)1/2
(5)

This prediction had the right order of magnitude but was not perfect: the predicted critical

flow rate was two time larger than the experimental one in the case of a vertical wall and

presented an unphysical divergence in the small slope limit.

B. Outline of the paper

In this paper, we present experiments performed with silicon oils of decreasing viscosities

(η = 2 10−2 Pa.s, η = 10−2 Pa.s and η = 5 10−3 Pa.s). These experiments are compared

with a more complete model addressing both the shape and the stability of a dry patch.

In this model, we first improve the balance of forces acting on the rim by taking into ac-

count capillary effects linked to the contact line curvature, hydrostatic pressure in the film,

and inertial effects linked to momentum exchange between the film and the rim. This new

balance of forces generalizes previous attempts [15], in which both the momentum and hy-

drostatic terms were missing. It leads to a prediction of the critical flow rate Γc in good

agreement with experiments [19] for sufficiently high viscosity (typically η ∼ 2.10−2 Pa.s).

In a second step, as the agreement becomes not so good for less viscous oil, we consider

also inertial effects in the flow inside the rim. Combining this improved estimation of the

velocity in the rim with the new balance of force leads to an more complete description that

is in good agreement with our experiments. This new model provides, for the first time to

our knowledge, a reasonable prediction of the critical flow rate at moderate contact angle

for any value of viscosity and surface tension.

We will first describe, in section 2, the experimental apparatus and report general observa-

tions. In section 3, we will present the first step of our modeling which consists in improving

the balance of force acting on the rim. This leads to a theoretical prediction of the apex

curvature evolution and of the critical flow rate that is compared to our experiments. In

section 4, we improve the modeling of the flow inside the rim by considering inertial effects.

Combining this improved model of the flow inside the rim with the more complete balance

of force acting on the rim provides a more complete prediction that is compared to our

experimental results. Finally, in section 5, we will give our conclusions and perspectives.
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FIG. 2: (a): sketch of the experimental setup: the flow rate is measured by a flow meter (1) before

the liquid reaches the slot injector (2). Then an homogenous liquid film flows down the inclined

substrate which has been coated on its lower part (3). The liquid is then collected (4) and pumped

again (5). (b): detailed sketch of the injector: this injector has been carefully design to ensure an

homogenous liquid film flow on the incline.

II. EXPERIMENTS AND GENERAL OBSERVATIONS

A. Experimental apparatus

The experimental setup is described in fig. 2 (a). A uniform film flow of silicon oil is

imposed on a glass plate (of size 40 cm x 40 cm), which lower part exhibits partial wetting

conditions (the details of the coating procedure are given below). The film is supplied by

an injector, suggested on fig. 2 (b), across a thin slot of 40 cm length and of adjustable gap

(gap height about ' 0.5 mm ). This injector was carefully designed to ensure a uniform

flow all along the slot. The flow uniformity has been checked by measuring the liquid

film thickness with a needle first put in contact with the substrate and then with the free

surface, the observed discrepancies were smaller than 2%. The oil flows from the injector

down the glass plate (and so flows over the partial wetting area) to a collector where it is

pumped by a gear pump (Ismatec MC-Z). The flow rate is measured by a digital flow meter

(Mc Millan 111 Flo-Meter). Three silicon oils (poly-dimethyl-siloxane PDMS) of different
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Rhodorsil 47V20 HUBER M40.165.10 Rhodorsil 47V5

kinematic viscosity ν (mm2/s) 18.5 11.33 5.19

specific mass ρ (g/cm3) 0.95 1.05 0.922

surface tension γ (mN/m) 20.6 20.5 20.5

dynamic viscosity η = ρν (Pa.s) 1.76 10−2 1.155 10−2 4.6 10−2

TABLE I: Physical properties of the silicon oils used in our experiments

dynamic viscosities have been used: Rhodorsil 47V20 of viscosity close to 20 cP, HUBER

M40.165.10 of viscosity close to 10 cP and Rhordorsil 47V25 of viscosity close to 5 cP. Their

physical properties are given in Table I. In these conditions the total flow rate that can

be supplied to the plate ranges between 0 and 100 cm3.s−1, which implies a typical flow

rate per unit length Γ ranging between 0 and 2.5 cm2.s−1. To obtain reproducible wetting

conditions, the plate is first cleaned with sulfochromic acid and acetone. The upper part

is left untreated to keep total wettability for silicon oils and a rectangular zone (about 20

cm x 20 cm) in the lower part is coated with a fluoropolymer (3M Fluorad FC725). This

polymer ensures a partial wettability for silicon oils [16]. This treatment is different than the

one (Steadlter lumocolor ink) used in [13]. It provides a higher contact angle and a smaller

wetting hysteresis. A lot of care has to be taken during the coating to avoid inhomogeneities.

Though rudimentary, our method gives satisfactory results even if this coating is fragile and

has to be regularly renewed. The advancing and receding static contact angles are measured

from drops deposited on the partial wetting area, the plate being kept horizontal. The

volume of the drop is increased until the contact line begins to move, which gives us an

estimate of the advancing contact angle. We found θa ' 52o for Rhodorsil 47V20, HUBER

and Rhodorsil 47V5 oils. A similar method, reducing now the volume, gives also the receding

contact angle: θr ' 45o for HUBER oil and θr ' 40o for both Rhodorsil 47V20 and 47V5

oils.

B. Qualitative observation of dry patches

When the flow starts over the glass plate, the classical fingering instability occurs [23–25],

and can lead to complex invasion scenarios of the partial wetting area. To avoid this
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FIG. 3: Evolution of a “dry arch” observed for increasing values of the flow rate per unit length

(oil HUBER M40.165.10), α = 85o). On the right part of the figure, the shape is fitted by eq.(2)

phenomenon, a sufficiently large flow rate is first applied to cover the full plate with liquid.

Then, the flow rate is decreased and one obtains a metastable film on the partial wetting

area. Finally, a dry zone (see fig. 3) is initiated in the center of the coated area by a brief

and localized air blow. When the final shape of “arch” is established, its evolution upon

flow rate is studied as follows: the flow rate is slowly stepwise increased and the shape is

recorded at each step. A typical evolution of the dry patch shape with the flow rate is

reproduced on fig. 3. This isolated patch has the form of an arch and is edged by a rim

which collects the liquid that would otherwise cover the dry surface. Therefore, the liquid

film can be separated in two distinct regions: an upstream film of uniform thickness and

uniform mean velocity, and a rim in which the flow is parallel to the contact line on the

scale of the capillary length. We have tried to fit the contact line shape with Podgorski et

al. model (eq. (2)) and found in all the case a nearly perfect fit. We have then used this fit

yo extract the radius of curvature at the dry patch apex R. One can clearly see in both

fig. 3 and 4 the dry zone tends to close when the flow rate is increased, and so the radius

of curvature at the apex R decreases with flow rate. This result is in contradiction with
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FIG. 4: Typical evolution of the radius of curvature at the apex versus the flow rate for the 47V20

Rhodorsil 47V20 oil. The radius of curvature at the apex R has been measured by fitting the

contact line with eq. (2).

S.D.R Wilson [20] modeling which predicts an increase of this radius of curvature when the

flow rate increases. As said above, this unphysical behavior might be linked to an erroneous

choice of an unstable branch of the radius of curvature at the apex in S.D.R Wilson

modeling. The typical evolution of R upon flow rate per unit length Γ is reproduced on

fig. 4 for several plate slopes α. One can distinguish two successive stages in these curves.

First, the radius R remains constant, and then it decreases. As in previous papers on the

subject, we attribute the first of these two regimes to the wetting hysteresis of the substrate.

In the first stage, the contact angle evolves between θr and θa while the contact line remains

pinned. In the second stage, the contact line evolves while keeping the contact angle

uniform and nearly equal to θa. This interpretation has been explicitly validated by Rio et

al. [17, 18] with accurate optical contact angle measurements. The experiment stops when

the critical flow rate is reached: when one reaches this upper limit, the contact line begins

to slide down to produce a fully wet glass plate. Although this method allows to follow the

evolution of the shape with the flow rate, it only gives an estimate of the critical flow rate Γc

because of eventual pinning of the contact line on defects of the partial wetting coated area.

To obtain a more precise measurement of the critical flow rate, we try to open dry patches

of various sizes and in different places at flow rate close to this upper limit. We record

9



as the critical flow rate, the flow rate where all formed dry patches are unstable. These

measurements have been performed for each oil and for different plate slopes α and will

be discussed in the next sections (fig. 6, 15 and 23) with the modeling of the critical flow rate.

C. Comparison with previous models

As told above, equations (2) found by Podgorski et al. [13] always provide an excellent

fit of the observed patch shape. This is a strong result that suggests that this modeling

is in some sense very ”robust” and has captured essential features of the solution, but as

we mentioned too, the question of the curvature radius selection at the apex is more puz-

zling. As we shall see, Podgorski modeling does not always give the right answer, which

will impose to consider models of increasing complexity when both the plate inclination or

the fluid viscosity are progressively decreased. The dependance of the radius of curvature

at the apex R upon 1/(Γ sinα) observed in our experiments is given on fig 5 for the three

used silicon oils, and compared to the prediction (3), that appears as a bold line on these

figures (a linear law is expected with this set of variables). As one can see, the agreement

is very good (with no adjustable parameter, since m is fixed at the value deduced from

lubrication model) for both Rhodorsil 47V20 and Huber oil in the limit of a vertical plate,

and for the points obtained in the limit of a contact angle saturating to the static advancing

angle (as explained previously, the contact angle varies for the other points, on the ”plateau”

observed on the right). When the plate inclination is progressively reduced, the agreement

still remains good but the expected straight line is slightly shift of a constant value that

depends on the plate inclination. This effect has been explained and calculated in the second

paper from Podgorski et al. [15], in which curvature effects of the contact line were added to

the initial modeling. When one further reduces the plate inclination, even the slope of the

expected line changes, and the agreement with both models from Podgorski become thus

very poor. In the case of an even smaller viscosity (Rhodorsil 47V5), the agreement is very

bad even for a vertical plate. Clearly, if one considers the three used oils, a decrease of the

liquid viscosity introduces more and more discrepancies between experiment and Podgorski

modeling.

Another quantity to consider is now the critical flow rate above which any dry patch becomes
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FIG. 5: Evolution of the radius of curvature at the apex with the flow rate. The dark line is the

prediction (3) where we have taken m = 0.23 and θ = θa = 52o.

unstable. Qualitatively, we observed experimentally that this critical flow rate was approx-

imately reached when the curvature at the apex was of order of three capillary lengths, i.e

R ' 3lc. This is clearly visible on fig. 5, where all the curves are interrupted before to reach

zero for a value of R of this order of magnitude. This finding is consistent with a qualitative

idea proposed in the first paper from Podgorski [13], that this critical flow rate was reached

when the contact line curvature was of order of the rim width (that is indeed of order of the

capillary length). This means that curvature effects of the contact lines are essential ingre-

dients that one has to take into account for calculating the critical flow rate, as attempted

in the paper from S.D.R. Wilson [20] and in the second paper from Podgorski [15]. For a

more quantitative comparison, and considering the fact that the model from S.D.R. Wilson

fails to predict the evolution of the radius of curvature at the apex with the flow rate, we

have compared on fig. 6 only the predictions of the second model from Podgorski, and also
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FIG. 6: Comparison of the measured critical flow rate with the theoretical predictions (1) and (4)

the initial guess from Hartley and Murgatroyd [12]. This one only considers a balance of

inertia and capillarity, but has been a reference for many authors during a long time. As one

can see on fig. 6, both curves fail to describe our data, with even a unphysical divergence

of Podgorski modeling at low plate inclination. In addition Hartley and Murgatroyd gives a

prediction that is more than ten times too large, while that of the second model of Podgorski

has the right order of magnitude, but remains two or three times too large. Considering

this preliminary comparison, it appears that the question of the shape and stability of dry

patches is still an opened issue. Strictly speaking, the shape itself is well captured but the

first model from Podgorski [13], but the length that scales this shape is not so well described.

Only the case of a quasi-vertical plate, with a rather high fluid viscosity is well recovered

by this simple modeling. The second modeling [15] is indeed a good improvement, as it

allows one to understand the shift of the law governing the apex curvature with flow rate

and the appearance of a critical flow rate, but the precise value of this critical flow rate, as
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well as the curvature behavior observed for weak plate inclination or low viscosities remain

unsolved. These are the issues that we try to solve in the next sections by considering a

more and more complex modeling.

III. FIRST STEP : IMPROVING THE MECHANICAL EQUILIBRIUM OF THE

RIM (MODEL 1)

As said above, previous theories [15, 20] have shown qualitatively that the effect of the

contact line curvature on the balance of forces acting on the rim is a necessary ingredient

to predict the critical flow rate. As they however fail to predict quantitatively the apex

curvature and the critical flow rate, we propose an improved balance of forces taking into

account several effects neglected in these approaches: hydrostatic pressure in the liquid film

and momentum exchange between the film and the rim. As we shall see, the hydrostatic

pressure term will allow us at least to suppress the unphysical divergence when the plate

slope become small.

A. Order of magnitude

As mentioned above, we distinguish two parts in the flow : the uniform film and the

rim surrounding the dry area. The film flow is supposed to be homogenous and the liquid

within the rim is assumed to flow in a direction parallel to the contact line. The cross

section of rim free surface is supposed to be an arc of circle of radius r enclosing an area

S (see fig. 7). Typical orders of magnitude for the flow rate per unit length Γ, thickness

of the film h and height of the rim H have been measured on the experiment. From the

value of Γ and of h, one can easily derive the order of magnitude of the mean velocity of

the fluid in the film V = Γ/h. The typical values of these quantities are given in table II.

With these quantities, one can estimate typical dimensionless numbers for this problem,

given in table III . These dimensionless numbers show that the flow in the film reduces to a

Stokes flow driven by gravity and that the normal equilibrium of the contact line is mainly

a balance between surface tension and the weight of the rim to which the others effects will

be added as perturbations.
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Flow property typical value

flow rate Γ ∼ 0-0.05 (cm2.s−1)

film thickness h ∼ 0.2 (mm)

fluid velocity in the film V ∼0–2 (cm.s−1)

rim height H ∼ 1(mm)

TABLE II: Typical scales of the flow in our experiments

Dimensionless number typical value

Reynolds number Re = Γ/ν Re ∼ 0− 0.5

Capillary number Ca = ηV/γ Ca ∼ 10−3

Bond number Bo = ρgH2/γ Bo ∼ 0.5

Weber number We = ρV 2h/γ We < 0.06

Froude number Fr = V 2h/gH2 Fr < 0.06

Morton number M = ργ3/η4g 104

TABLE III: Typical dimensionless numbers

B. Mass conservation and flow inside the rim

Using the notations shown in fig. 7, the mass conservation imposes:

Γ(x+ L(ψ) cosψ) = S(ψ)U(ψ) (6)

where L(ψ) is the width of the rim, S(ψ) is the section of the rim and U(ψ) is the mean

velocity in the rim at a position along the contact line labelled by the angle ψ (see fig. 7).

As the width of the rim is of order of the capillary length it can be neglected with respect

to x far from the apex. Near the apex ψ is close to π/2 making L cosψ close to zero. Then,

it appears to be reasonable to use a simplified form of the mass conservation:

Γx = S(ψ)U(ψ) (7)
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FIG. 7: Notations used in our models. (a): schematic of the flow, ( b): section of the liquid rim

surrounding the dry patch and (c): sketch detailing the mass conservation for the rim.

Assuming a Stokes flow driven by gravity in the rim [13] gives the following expression for

the mean liquid velocity U(ψ):

U(ψ) = mf1(θ)
UcS(ψ)

l2c
sinα cosψ (8a)

f1(θ) =
(1− cos θ)2

θ − sin θ cos θ
(8b)

where Uc = γ/η and lc = (γ/ρg)1/2 are respectively the capillary velocity and the capillary

length and m is a numerical factor taking into account the detail of the flow inside the rim.

The exact value of m depends on the shape of the rim and in particular on the contact angle

θ. Podgorski et al. [13] found a good estimate of m by assuming the flow in the rim to be

close to the lubrication flow inside a rivulet which gives m =0.23 for θa = 52o. This estimate

of m varies very slowly with the contact angle and remains always between 0.23 and 0.24 in

our experimental conditions. In the following, we will consider that m is known and equal

to m = 0.23.
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C. Balance of forces acting on the rim normally to the contact line

In comparison to [13], we improve the description of the mechanical equilibrium of the

rim by taking into account capillary effects linked to the radius of curvature R, hydrostatic

pressure and momentum carried by the film. Let us first see in details the physical effects

taken into account. We consider a small part of the rim (see fig. 8). Its volume is S(ψ)(ds+

ds′)/2 = S(ψ)ds(1−L(ψ)/(2R(ψ)). Its weight projected perpendicularly to the contact line

reads:

dW = ρg sinα sinψds

(
1− L(ψ)

2R(ψ)

)
(9)

where L(ψ) is the width of the rim. This term contains a correction linked to the contact

line curvature in comparison to previous initial modeling [13]. This correction comes directly

from choosing the contact line as reference instead of using the rim central line. Using the

relations L(ψ) = 2r(ψ) sin θ and S(ψ) = r(ψ)2(θ − sin θ cos θ), one obtains:

dW = ρg sinα sinψds

(
1− S(ψ)1/2 sin θ

R(ψ)(θ − sin θ cos θ)1/2

)
(10)

We consider now the capillary effects more directly linked to contact line curvature R. Theses

ones can be reduced to an effective line tension that contains three contributions suggested

on fig. 8. First (see fig. 8(a)) the element ds is larger than ds′ resulting in a force which

tends to “open” the dry zone :

dF1 = γ(ds− ds′ cos θ) (11)

Also, surface tension “pulls” along the contact line at the two segments boundaries

(fig. 8(b)). Projection of these two forces of intensity γr(ψ)θ on the normal at the con-

tact line results in a force directed downwards :

dF2 = 2γr(ψ)θdψ (12)

where r(ψ) is the curvature at the rim cross section. Finally, the strong curvature of the

rim cross section is associated to a capillary pressure p ∼ γ/r inside the rim. This change of

pressure integrated on the rim cross section reduces the line tension (fig. 8(c)) and induces

a third contribution acting in the opposite direction :

dF3 =
γ

r(ψ)
Sdψ = γr(ψ)(θ − sin θ cos θ)dψ (13)
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FIG. 8: Capillary effects and their resulting forces dF1, dF2 et dF3 on a segment of the rim.

Using the relation ds = R(ψ)dψ, one can write the capillary effects as

dFc = −dF1 + dF2 − dF3 = −γds(1− cosθ) + γ
S(ψ)1/2

R(ψ)
(θ − sin θ cos θ)1/2ds (14)

As one can see, for both the weight and the capillary effects, the curvature of the contact line

R(ψ) induces corrections proportional to S(ψ)1/2/R(ψ). As S(ψ)1/2 ' lc these terms will

induce a change in the shape only for value of R(ψ) of order of lc which corresponds to the

experimental loss of stability Rc ' 3lc. It is therefore expected that such effects should play

a specific role in the stability issue. Podgorski et al.[15] took into account these corrective

terms in their model, which leads to their prediction of the critical flow rate (4) but we here

add more contributions that they have neglected.

First the hydrostatic pressure in the film results in a downwards force dFh acting on a

segment ds of the rim:

dFh = ρg cosα

(
h2

2

)
ds (15)

which can be rewritten using the relationship Γ = ρg sin(α)h3/(3η)

dFh =
ρg

2
cosα

(
3ηΓ

ρg sinα

)2/3

ds (16)

This term is negligible for large plate slope α but becomes dominant at small α. If one looks

to orders of magnitude, the rim weight and the hydrostatic pressure will be of the same

order when:

ρgS sinα ' ρg cosα
h2

2
ds (17)

which leads to a value of α of order of 2o. Although this term is almost always negligible, it

will prevent the divergence for small plate slope when α < 2o where it will become dominant
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with respect to dW.

The momentum carried by the film leads to another effective force dFi. According to [20]

this force can be written as :

dFi = ρ
2

15

g2 sin2(α) h5

ν2
sin2 ψds (18)

which can be written as

dFi =
2

15

ρ3g2 sin2 α sin2 ψ

η2

(
3ηΓ

ρg sinα

)5/3

ds (19)

As these additional terms are only first (or larger) order corrections, they have only a small

influence on the shape of the dry patch. But they can clearly have an influence on its

stability. Using these additional terms the mechanical equilibrium is now given by:

dW + dFc + dFh + dFi = 0 (20)

which leads to

γ(1− cos θ) = ρgS(ψ) sinα sinψ

(
1− S1/2

R(ψ)

sin θ

(θ − sin θ cos θ)1/2

)
+ γ

S1/2

R(ψ)
(θ − sin θ cos θ)1/2 +

ρg

2
cosα

(
3ηΓ

ρg sinα

)2/3

(21)

+
2

15

ρ3g2 sin2 α sin2 ψ

η2

(
3ηΓ

ρg sinα

)5/3

D. Evolution of the radius of curvature at the apex

Combining eq. (7) and eq. (8) near the apex (ψ ' π/2, cosψ ' x/R and sinψ ' 1), one

can find an expression for the section S(ψ):

S(ψ) =

(
l2cΓR(ψ)

Ucmf1(θ) sinα

)1/2

(ψ ' π

2
) (22)

Using the dimensionless radius of curvature at the apex R∗ = R/lc and flow rate Γ∗ =

Γ/(Uclc), (21) becomes now:

1 = f3(θ)R∗1/2(Γ∗ sinα)1/2 − sin θ(1− cos θ)1/2

(θ − sin θ cos θ)1/2
f3(θ)3/2Γ∗3/4R∗−1/4 sin1/4 α

+
(θ − sin θ cos θ)1/2

sin1/4 α(1− cos θ)1/2
f3(θ)1/2R∗−3/4Γ∗1/4 (23)

+
32/3

1− cos θ

(
cosα

2

(
Γ∗

sinα

)2/3

+
2

5

ρ1/2γ3/2

η2g1/2

(
Γ∗

sinα

)5/3
)
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FIG. 9: Improved model 1 for the evolution of the radius of curvature at the apex with the flow

rate (m = 0.23 and θ = 52o).

where f3(θ) is the function

f3(θ) =
(θ − sin θ cos θ)1/2

m1/2(1− cos θ)2
. (24)

This equation gives an implicit relation between R∗ and Γ∗ and its numerical resolution

can be seen on fig. 9. As one can see, this model predicts two possible solutions at the

same flow rate Γ∗. One of these solutions (lower branch) only exists for radius of curvature

smaller than the critical value observed experimentally (R∗ < R∗c ' 3). A linear stability

analysis presented thereafter will show that this branch is unstable with respect to small

perturbation in R. The other (upper branch) appears to be almost linear (with (Γ sinα)−1)

for sufficiently high value of R∗. The observed slope is the same as the one obtained

by Podgorski et al. [13] but combined with a vertical shift of the curve that depends on

plate slope. All these features are consistent with [15] and with what we have seen on the

experiment.

A quantitative comparison between this improved model and our experimental data is

presented in figs. 10, 11 and 12 for the evolution of the radius of curvature at different plate

slopes. As one can see a quite good agreement for high plate inclination is found for 47V20

oil and for α > 45o. For Huber oil the agreement is only good for an inclination angle higher
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FIG. 10: Theory (model 1) and experiments for the Rhodorsil 47V20 oil (m = 0.23, η = 1.76.10−2

Pa.s and θ = 52o). This model is in good agreement for high plate slope (α > 45o) but presents

discrepancies for low plate slope.

than 65o. One can also remark that the prediction of the shift between the curves is quite

good for the 20 cP oil (Rhodorsil 47V20) and of the good order of magnitude for the 10 cP oil

(HUBER). For the 5 cP oil (Rhodorsil 47V5), the agreement is only qualitative for a vertical

plate and becomes worse and worse as the plate slope decreases. As one can see, all oils

exhibit discrepancies for small inclination angle. These discrepancies might be linked to the

modeling of the flow inside the rim, which is assumed to be a Stokes flow driven by gravity.

This assumption becomes worse and worse as the inclination angle becomes small (for small

inclination angle one can expect the flow to be driven by hydrostatic pressure). One can

also observe than discrepancies also appear for larger inclination angle when one decreases

the liquid viscosity. These discrepancies are certainly linked to inertial effect in the flow in-
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FIG. 11: Theory (model 1) and experiments for Huber oil (m = 0.23, η = 1.155.10−2 Pa.s and θ =

52o). This model is in good agreement for plate slope α > 65o but the agreement becomes worse

and worse as the plate slope decreases.

side the rim. The effect of inertia in the flow inside the rim will be studied in the next section.

E. Stability of the two branches

One can remark on fig. 9 that the solutions provided by this approach are reminiscent

of a saddle-node bifurcation. In analogy with this situation, and as the lower branch of the

solution is never observed experimentally, we can expect the dry patch to become unstable

for sufficiently low radius of curvature i.e. for this lower branch. To check this, we now

study the stability of the improved model solution with respect to a small variation of

the radius of curvature with constant flow rate and plate slope (procedure illustrated on
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FIG. 12: Theory (model 1) and experiments for the Rhodorsil 47V5 oil (m = 0.23, η = 4.6.10−2

Pa.s and θ = 52o). This model presents only qualitative agreement for almost vertical plate and

becomes worse and worse as the plate slope decreases.

fig. 13). Let us consider an out of equilibrium dry patch shape. Equation(23) must then

be rewritten in terms of a non-dimensional force F̃ that tends to open the dry zone when

positive, or to close it when negative:

F̃ = 1− f3(θ)R∗1/2(Γ∗ sinα)1/2 +
sin θ

(1− cos θ)1/2
(θ − sin θ cos θ)1/2f3(θ)3/2Γ∗3/4R∗−1/4 sin1/4(α)

− (θ − sin θ cos θ)1/2

sin1/4(α)(1− cos θ)1/2
f3(θ)1/2R∗−3/4Γ∗1/4 (25)

− 32/3

1− cos θ

(
cosα

(
Γ∗

sinα

)2/3

+
2

5

ρ1/2γ3/2

η2g1/2

(
Γ∗

sinα

)5/3
)
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FIG. 13: Illustration of the procedure used for the linear stability analysis

and its variation upon the radius of curvature reads:

dF̃

dR∗
= −1

2
f3(θ)R∗−1/2(Γ∗ sinα)1/2 − 1

4

sin θ(1− cos θ)1/2

(θ − sin θ cos θ)1/2
f3(θ)3/2Γ∗3/4R∗−5/4 sin1/4(α)

+
3

4

(θ − sin θ cos θ)1/2

sin1/4(α)(1− cos θ)1/2
f3(θ)1/2R∗−7/4Γ∗1/4 (26)

A small increase of the radius of curvature dR∗ corresponds to a slight opening of the dry

patch, which leads to a non compensated force dF̃ . Hence, the dry patch will be stable if

the force dF̃ tends to close it up. This gives the following condition of stability:

dF̃

dR∗
< 0 (27)

If one looks to the sign of the different contributions, one can conclude that the rim weight

is stabilizing and the capillary effects linked to the curvature of the contact line are on the

contrary destabilizing. As one can remark, the condition of stability is independent of both

the hydrostatic pressure term and of the film momentum contribution, that do not depend

on R∗. The implicit equation dF̃ /dR∗ = 0 gives the limit of stability of the improved model

solution and can be solved numerically for each plate slope α. An example is presented in

fig. 14. As expected, the solution corresponding to the lower branch is unstable which could

explain the fact we never observe it in experiments.

F. Predicting rewetting: the critical flow rate

We now focus on the question of the critical flow rate above which the dry patch disap-

pears. As one can see on fig. 9, for each plate slope α, this model predicts the existence of a

critical flow rate Γc above which there is no solution for the dry patch shape. This was yet
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FIG. 14: Improved model 1 and limit of stability when α = 90o for Rhodorsil 47V20 oil (m=0.23

and θ = 52o)

obtained in the simplified approach of Podgorski et al. [15] and comes mainly from the fact

that we have taken into account curvature terms of the contact line. This very general idea

goes back to S.D.R Wilson [20], who however did not realize the existence of two branches,

as evidenced by figs. 9 and 18. Another important point, evidenced by these figures, is that

these curvature terms lead to a critical flow rate reached when the curvature at the apex is

close to three times the capillary length, an observation yet used by Rio et al. [18] to build

approximates of Γc. The present modeling allows us to get a much better prediction for Γc

by identifying its value to the one of the “turning point” in fig. 9, where the two branches

are meeting. No dry patch can survive above this value that is given by the equations:

F̃ = 0 (28a)

dF̃

dR∗
= 0 (28b)

in which F̃ and dF̃ /dR∗ are given respectively by eq. (25) and eq. (26). We have solved

numerically this system of equations which has allowed us to obtained the plots of Γc(α)

(given in fig. 15) expected for the three oils used in this study.

A more realistic prediction of Γc than in [15] appears on these graphs. Instead of an un-
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physical divergence in the limit α = 0, one obtains a vanishing Γc that corresponds to the

small slope limit discussed in the first paper from Podgorski [13]. As in this reference, this

behavior is linked to the hydrostatic pressure term taken into account in the flowing film.

At large plate slope, a decrease of Γc is observed, in qualitative agreement with our data

plotted in fig. 15. The crossover between these two regimes (small and large plate slope)

leads to a maximum for Γc that seems to depend only weakly on the viscosity and is close to

α = 10o for the three oils. This plate inclination corresponds to the most difficult situation

for plate wetting, the best situations being obtained in the limits α = 0o and α = 90o.

The comparison with our data is satisfactory for the 20 cP oil, but not so much for the two

other oils, though the model indicates the right tendencies and the right order of magnitude.

If we consider the values observed for α = 90o, Γc is overestimated of nearly 50% for the 5

cP oil, 25% for the 10 cP oil and only 5-10% for the 20 cP oil. These results are not so bad

considering the difficulty of the problem and the fact that our model does not contain any

adjustable parameter, except perhaps the value of the parameter m that does not however

vary a lot here (m is fixed to the lubrication limit here m = 0.23). These discrepancies are

however sufficient to motivate the next part of this paper, where we try to refine the descrip-

tion of the flow inside the rim, using the ideas previously imagined by S.D.R Wilson [20]

but slightly modified with respect to boundary layer effects. We also improve his approach

by calculating explicitly the shape of the dry patch while in [20] it was approximated by a

parabola.
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FIG. 15: Comparisons of the measured critical flow rate to the predictions of eq. (28).

IV. SECOND STEP : IMPROVING THE DESCRIPTION OF THE FLOW INSIDE

THE RIM (MODEL 2)

As the momentum carried by the film appears to have a non negligible effect on the

prediction of the critical flow rate, one can expect that inertia should also modify the flow

structure inside the rim. In order to take into account such an effect, we consider a segment

of rim of length ds as illustrated on fig.16:

• at the coordinate s, the momentum flux entering the rim segment is [ρS(ψ)U
2
]s

• at the coordinate s+ds, the momentum fluw leaving the rim segment is [ρS(ψ)U
2
]s+ds

• All along ds, the film provides the rim with a momentum flux ρ(hV 2) cosψdx

This variation of the momentum flux must be balanced by the gravity acceleration

ρgS(ψ) sinα cosψds and by the viscous friction in the boundary layer formed near the glass
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FIG. 16: Notations used in our analysis of the flow inside the rim

plate. If we assumed a fully developed boundary layer, this viscous friction is given by

βηUL/H where β is a form factor. Using dx = ds sinψ, we obtain:

− d

ds
[ρS(ψ)U

2
] + ρ(hV 2) cosψ sinψ + ρgS(ψ) sinα cosψ − βηUL

H
= 0 (29)

This relation can be rewritten in the form :

dU

ds
(S(ψ)U) +

d(S(ψ)U)

ds
U + βν

UL

H
= (hV 2) cosψ sinψ + gS(ψ) sinα cosψ (30)

The derivation of (7) with respect to s yields to:

d(S(ψ)U)

ds
= Γ sinψ (31)

As we work near the apex of the dry patch, one can expect the variation of the section to

be negligible with respect to the variation of the mean velocity [20] which leads to:

1

S(ψ)

dS(ψ)

ds
<<

1

U

dU

ds
(32)

And then one can find
dU

ds
=

Γ sinψ

S(ψ)
(33)

One can now easily rewrite eq. (30) as:

2Γ sin(ψ)U + βν
UL

H
= (hV 2) cosψ sinψ + gS(ψ) sinα cosψ. (34)

The form factor β is determined in the limit of a pure Stokes flow inside the rim where the

velocity is given by eq. (8) :

β =
H

mf1(θ)L
(35)
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Oil Γt Γc

Rhodorsil 47V20 1.11 cm2.s−1 0.05 cm2.s−1

Huber 0.5 cm2.s−1 0.05 cm2.s−1

Rhodorsil 47V5 0.3 cm2.s−1 0.1 cm2.s−1

TABLE IV: Estimates of the flow rate Γt where inertial effects are of the same order of magnitude

than the viscous friction and comparison with the critical flow rate.

As the Froude Number is small (Fr ' 10−2), we neglect the momentum carried by the film

with respect to the rim weight and finally find:

U =
mf1(θ)UcgS(ψ) sinα

l2c

cosψ

1 + 2mf1(θ)Γ
ν

sinψ
(36)

This expression is similar to eq. (8) moderated by a factor depending on the Reynolds

number of the film Γ/ν. To estimate the effect of inertia on the flow inside the rim, one

can compute a typical flow rate Γt for which viscous friction and inertia are equal. This is

simply done by equating the two terms in the left part of eq. (34) and leads to:

Γt '
ν sinψ

2mf1(θ)
(37)

The corresponding flow rate Γt for the three oils used in our study are given in Tab. IV. One

can remark than this flow rate is quite higher than the critical flow rate for the Rhodorsil

47V20 oil but of the same order of magnitude for the Huber and Rhodorsil 47V5 oil. One

can then expect these inertial effects to play a non negligible role on stability for these two

last oils and be negligible for the first one, in agreement with what we found in fig. 15.

A. Implication for the shape a dry patch

To evaluate the effect on the shape prediction we first combine this improved description

of the flow in the rim with the simple mechanical equilibrium of the rim used in Podgorski

et al [13]. This simple form of the mechanical equilibrium will be used here to avoid too

much algebra and will allow us to explain simply why the arch shape appears insensitive

to inertial effects if one rescales the apex curvature in an appropriate way. Nevertheless in

the following subsections where the evolution of the radius and curvature and the critical

28



flow rate are more precisely modeled, we will use the improved version of the mechanical

equilibrium i.e. eq. (21). Combining eqs. (7) and (36) with the first order balance of force

at the contact line given by:

γ (1− cos θ) = ρgS(ψ) sinα sinψ (38)

yields a new prediction for the dry patch shape that generalizes that of Podgorki et al [13]

to flows having both inertial and viscous effect incluced:

x = Rv
1

1 + g(θ)Γ sinψ

cosψ

sin2 ψ

y = Rv

(
1

3

(
1− 3 cos2 ψ

sin3 ψ
− 1

)
+
g(θ)Γ

2

(
1

sin2 ψ
− 1

))
(39)

+ Rv

(
g3(θ)Γ3ln

(
(1 + g(θ)Γ sinψ

1 + g(θ)Γ sinψ

)
+ (g(θ)Γ− 1)

(
1 + g(θ)Γ

1 + g(θ)Γ sinψ
− 1

))
where

Rv = mf2(θ)
l2c

sin(α)

Uc
Γ

(40a)

g(θ) =
2mf1(θ)

ν
. (40b)

Comparison between the shape predictions eqs. (2) and (39) are given in fig. 17 for the three

oils at a flow rate close to the critical flow rate Γc. As one can see, even at these large flow

rates, these inertial effects do not affect the shape of the dry patch. This very important

finding explains why the shape of dry patches is so robust and -though calculated initially

in the viscous limit- works even when viscous and inertial effects are combined.

B. Evolution of the radius of curvature at the apex

We explore now the evolution of the radius of curvature, with the completed, improved

balance of forces at the contact line (21) combined with the mass conservation (7) and with

the flow inside the rim calculated in (36). Using the dimensionless radius of curvature R∗
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FIG. 17: Comparison between shape predictions eq. (2) in plain line and eq. (39) in dashed line

for a flow rate Γ = 0.05 cm2.s−1 and a plate slope α = 90o.

and flow rate Γ∗, (21) becomes near the apex :

1 = f3(θ)R∗1/2(Γ∗ sinα)1/2(1 + g∗(θ)Γ∗)1/2

− sin θ(1− cos θ)1/2

(θ − sin θ cos θ)1/2
f3(θ)3/2Γ∗3/4R∗−1/4(1 + g∗(θ)Γ∗)3/4 sin1/4(α)

+
(θ − sin θ cos θ)1/2

(1− cos θ)1/2 sin1/4(α)
f3(θ)1/2R∗−3/4Γ∗1/4(1 + g∗(θ)Γ∗)1/4 (41)

+
32/3

1− cos θ

(
cosα

2

(
Γ∗

sinα

)2/3

+
2

5

ρ1/2γ3/2

η2g1/2
Γ∗5/3 sin1/3(α)

)
where

g∗(θ) =
2mf1(θ)Uclc

ν
(42)

Resolutions of (41) are given in fig. 18. As one can see, the solutions are of similar structure

to those of (23) and a similar analysis of stability confirms that the lower branch is unstable.
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FIG. 18: Improved predictions of model 2 for the evolution of the radius of curvature at the apex

with flow rate (m = 0.23 and θ = 52o) and stability limit.

Comparisons of this new prediction with the experiments are given fig. 19, 20 and 21 for

respectively the Rhodorsil 47V20, Huber and Rhodorsil 47V5 oils. It appears that, as

expected, inertial effects inside the rim do not change significantly the prediction for the

most viscous oils (Rhodorsil 47V20 and Huber oils), but improve clearly the prediction for

the less viscous oil. As previously, the agreement is quite good for the Rhodorsil 47V20

oil for plate slope larger than 45o. The agreement is only good for the Huber oil for plate

slope larger than 65o and is just qualitative for the Rhodorsil 47V5 oil for vertical plate.

As in the previous section, the discrepancies observed for small inclination angles might be

linked to the modeling of the viscous part of the flow, which is supposed to be driven by

gravity. For high inclination angles and for the less viscous oils (Huber and Rhodorsil 47V5

oils), the discrepancies between the model and the experiment are probably linked to the

apparition of long (Kapitza) waves on the liquid film (see fig. 22). Using the famous Benjamin

criterion [26] one can easily compute the flow rate Γw corresponding to the appereance of

these long waves:

Γw =
5ν cosα

6
(43)

Typical values of the flow rate Γw and of the corresponding non dimensional parameter

(Γ∗w sinα)−1 are given in Table V. As one can see these flow rate are in the typical range of
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FIG. 19: Theory and experiments for the Rhodorsil 47V20 oil (m = 0.23 and θ = 52o). As expected,

the inertial effects do not play a significant role and both model 1 and model 2 give very similar

predictions. These models provide a good agreement for high plate slope α > 45o and discrepancies

for small plate slope.

experimental flow rate for both Huber and Rhodorsil 47V5 oils. Then, long waves should

appear in the liquid film surrounding the dry patch and can introduce time modulation of

the contact angle of the rim with a non zero mean value which will result in a change the

evolution of the curvature radius at the apex with flow rate.

C. Predicting rewetting

As in the previous section, one can rewrite (41) with a dimensionless force F̃i that tends

to open the dry patch if positive and consider its derivative with respect to the radius of
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FIG. 20: Theory and experiments for Huber oil (m = 0.23 and θ = 52o). For this oil the inertial

effects change the prediction, which results in a model 2 slightly closer to experiments than model

1, but this effect seems negligible.The agreement is good for high plate slope (α > 65o) but becomes

worse and worse when the plate slope decreases.

curvature at the apex dF̃i/dR∗. Then the limit of existence of the dry patch is given by :

F̃i = 0 (44a)

dF̃i
dR∗

= 0 (44b)

The comparison between this prediction and our experimental results is given fig 23 where

the previous prediction (28) is also recalled. As one can see, these effects of inertia on the

flow inside the rim do not change significantly the prediction for the Rhodorsil 47V20 oil
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FIG. 21: Theory and experiments for the Rhodorsil 47V5 oil (m = 0.23 and θ = 52o). In this case

the inertial effects play a significant role and a large difference between model 1 and model 2 is

observed. Model 2 clearly improves the prediction even if the agreement is good only for almost

vertical plate.

where the agreement is good. For the Huber and Rhodorsil 47V5 oils, these inertial effects

clearly greatly improve the prediction of the critical flow rate Γc, even if our prediction is

still higher than the experimental value.
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FIG. 22: Capillary waves in the liquid film around the dry patch (Rhodorsil 47V5 oil)
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FIG. 23: Comparisons of the measured critical flow rate to the predictions of eqs. (28) and (44).

35



Oil Wave apparition α = 15o α = 30o α = 45o α = 60o α = 75o

Rhodorsil 47V20 Γw (cm2.s−1) 3.45 1.6 0.925 0.53 0.25

Rhodorsil 47V20 (Γ∗w sinα)−1 117.02 130.5 159.9 226.1 436.7

Huber Γw (cm2.s−1) 2.11 0.98 0.57 0.33 0.15

Huber (Γ∗w sinα)−1 266.6 297.3 364.1 514.9 994.8

Rhodorsil 47V5 Γw (cm2.s−1) 0.97 0.45 0.26 0.15 0.07

Rhodorsil 47V5 (Γ∗w sinα)−1 1543.8 1721.9 2108.9 2982.5 5761.7

TABLE V: Values of the flow rate Γw and of the non dimensional parameter (Γ∗w sinα)−1 above

which long waves appear in the flow.

V. CONCLUSION

In summary, we have reconsidered the problem of dry patch shape and stability when

the flow inertia becomes non negligible. Several key results have been obtained:

1. Though the prediction was established in a highly viscous limit, the shape of a dry

patch is well described by the solution introduced by Podogorski et al. [13], even when

the fluid viscosity is reduced to a few cP.

2. This result is issued from experiment, but has also been proved by taking into account

explicitly the dry patch shape when inertia is taken into account in both the film and

the rim (Section IV).

3. On the other hand, the radius of curvature at the apex of the dry patch, as well as

the critical flow rate Γc above which the dry patch disappears (rewetting transition),

depend appreciably on inertia when the viscosity is reduced to a few cP.

4. The prediction of these two quantities requires to take into account the curvature of

the contact line at the apex R−1, as first realized by S.D.R Wilson [20]. However, in

contrast with this reference, the complete treatment leads to two branches of solution,

one stable ( Podgorski branch), the other unstable, the critical flow rate being reached

when these two branches are merging.
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5. We have proposed two different calculation of R(Γ, α) and of Γc. The first one (Section

III) takes into account only the inertia carried by the flowing film, while the second

(Section IV) also treats the inertial effects in the rim. The first is sufficient in the 20

cP case investigated long ago by Podgorski but the second is necessary for the two

other oils.

6. Despite these efforts, the prediction is not perfect, especially for the R(Γ, α) behavior.

However, for the largest viscosity, model 1 as well model 2 gives predictions for Γc

that are accurate at 10%, while model 2, in the other limit (5 cP) gives prediction

accurate at 20%. Considering the complexity of this problem that mix several effects

superimposed, and the absence of adjustable parameter in our modeling, we believe

that the present contribution is an important step for the prediction of the rewetting

threshold.

It would be now important to explore in more details the effects of the long waves observed

on the film at low viscosity, that are presumably the origin of the remaining discrepancies.

This effect could be explored by careful optical measurements of the correlation between

the wave amplitude and the effective contact angle of the rim. Finally, it would be also

interesting to explore the dependance of the dry patch on the wetting properties of the

plate. Our modeling gives explicitly predictions for the dependance upon contact angle but

our experiments were locked to a contact angle of order 45o. The limit of poor wettability

(θ ' 90 to 180o) is especially interesting for many technical applications.
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