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the first time by Bénard [2] and modeled by von Kármán 5 [3] [4] at the beginning of the XXth century and has since 6 been extensively investigated. This phenomenon is ubiq-7 uitous in meteorology, oceanography, naval engineering, 8 vehicle design, modeling of the air flows around buildings 9 or piles of bridges, etc [5]. According to Von Kármán [3], Monkewitz [10]. The whole vortex arrangement would be in fact intrinsically unstable in its own framework [11].

A very different situation arises when the bidimensional vortex street is confined between two lateral walls, separated by a distance 2c. Calculations performed on point vortices in the complex plane addressed this question at the end of the 20's, and found non trivial results [12] [13] [14] [15]. In particular, Rosenhead [13], established that in this configuration, equation (1) had to be replaced in the plane (a c, b c) by a continuous stability tongue of finite and non-zero extent. To our knowledge, no experimental check of this result has been published yet, though recent attempts combined with numerical computations have now begun to appear [16] [17]. Experimental investigations of this phenomenon in this configuration is difficult : usual experiments combine the vortex emission behind the obstacle with the wake growth and reorganization downstream. This growth involves complex questions about the absolute and convective nature of the vortex system stability [18] [19]. In this letter, we present a new experimental study using a completely different strategy. We present a new method to create double rows of vortices with almost no mean velocity ; their stability can be investigated at will for various degrees of confinement [START_REF] Boniface | Instabilité de kelvin-helmholtz et allée de bénard-von kármán en géométrie rectangulaire confinée[END_REF] [START_REF] Boniface | Stabilité absolue d'une allée de bénard-von kármán confinée engendrée par deux instabilités couplées de kelvin-helmholtz presented at Comptes-endus de la 17e Rencontre du Non-Linéaire[END_REF]. We induce a longitudinal flow inside a long rectangular pool using a tape moving at high speed on the free surface of a layer of water. The liquid below the tape is dragged at the tape velocity, and a recirculation has to occur in the opposite direction because of mass conservation. If this recirculation occurs on the lateral sides of the tank, the mixing layers between the two flows can become unstable and two coupled Kelvin-Helmholtz instabilities develop [22] [23], leading to two counter-rotative vortex rows spatially out of phase, i.e a classic vortex street.

The spatial properties of this street can be investigated varying the degree of confinement, using moving lateral walls and varying the water layer depth. Because of mass conservation the mean velocity calculated across a section of the container vanishes which implies that the double row of vortices is studied nearly in its own frame without any mean flow superimposed to it, in absolute stability conditions. This flow geometry is intrinsically of great interest, as it can be viewed as an uncurved equivalent of Couder et al's experiments [START_REF] Rabaud | [END_REF] in which vortices were formed and observed in the vicinity of concentric rotating disks. Both geometries have a great technical interest for applications in which a thin plate or a disk is moving at high speed between static walls as it is the case for moving belts [START_REF] Chang | Machinery Dynamics and Element Vibrations[END_REF] and hard disks drives [26] [27]. Our geometry has also, presumably, some implications for the drag resistance of slender boats advancing in a narrow channel.

The experiment is represented on figure 1. An endless tape of width 2l b is pulled with a constant speed at the free surface of a liquid layer in a long pool, of length 80 L = 2 m and with a rectangular cross section : 70 cm 81 in width versus 20 cm in height. The tape velocity 82 V can vary between 1 to 140 cm.s -1 . It is possible 83 to select smaller lateral length, 2l b < 2c < 70 cm, by 84 using adjustable walls, while the liquid depth h can be 85 selected at will by removing or adding water before the 86 experiment. Two tape widths have been explored: l b = 25 87 cm and l b = 5 cm. To investigate the effects of a very 88 thin belt, we also used an endless rope with a diameter 89 of 0.5 cm. The container is made of transparent glass, 90 in order to allow us to use optical diagnostics and in 91 particular particle image velocimetry (PIV) ; Polyamide 92 seeding particles (PSP) with a diameter of 50 µm were 93 dispersed in the liquid before measurements, and their 94 motion was followed by a tunable laser sheet and a high 95 speed video camera. The particles' motion is analyzed 96 and gives the velocity field, its instantaneous streamlines 97 or the vorticity distribution in a selected plan. The liquid immediately below the tape is dragged in one 102 direction, while mass conservation inside a closed channel 103 implies that the liquid must somewhere recirculate in 104 the opposite direction. At low tape velocity, all the free 105 surface follows the tape motion, while the liquid recircu-106 taken into account in the estimation of the ν value [START_REF] Weast | CRC handbook of chemistry and physics[END_REF].
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All the data seem to collapse on a single straight line, which implies that the Reynolds at the transition Re t only depends on the depth of the water h, and is governed by the following empirical law

Re t = Ah -B. ( 2 
)
with A ≈ 1.3 × 10 5 m -1 and B ≈ 950. This corresponds to a belt velocity at the transition V t = ν A -B h that reaches empirically V t (h → ∞) = 13 cm.s -1 , at 20 ○ C in water. The order of magnitude of V t suggests a link with capillarity-gravity wave drag at the free surface [START_REF] Merrer | [END_REF]. This could explain how the tape can entrain so easily the whole free surface in a certain range of velocity. Having however scaled the tape velocity on this empirical scale, we have built phase diagrams specifying when each of the three flows were observed. A typical example is reproduced on figure 2.b, in which the ratio r = l b c plotted on the horizontal axis measures the degree of confinement applied to the obtained array, as most often the distance between each rows seemed to be close to l b . It appears that the double row of vortices is unstable when the confinement is high, but becomes stabilized in its own frame, when the confinement is sufficiently low. These observations are consistent with the ideas presented recently that the double row is in fact intrinsically unstable in an absolute frame, but can be stabilized apparently by convective effects, or can be really absolutely stabilized by the action of walls confining laterally the flow [11].

The precise geometry selection of the vortex street is a complex question. As suggested on figure 4-a, the system can chose two typical lengths : the width of the street 2a and its wavelenght 2b. We have investigated the a and b dependence upon l b and c. The experimental values are highly fluctuating in time, and so is the residual drift velocity of the street. In this paper we will only focus on the possible correlation between a and b that should replace equation (1) in a confined geometry.

The stability of a vortex street in a two-dimensionnal channel was extensively investigated at the end of the 1920s, in the framework of point vortices in the complex plane. The complex potential of the flow can be calculated exactly in the base state by adding the velocity flows induced by the two rows of vortices and all their successive images by the walls ; this guarantees the boundary condition of a vanishing normal velocity at the walls. Following Rosenhead [13], the complex potential reads:

w(z = x+iy) = - iκ 2π log ⎡ ⎢ ⎢ ⎢ ⎣ ϑ 1 z 2b -i a 2b 2ic b ϑ 3 z 2b -i a 2b 2ic b ϑ 2 z 2b + i a 2b 2ic b ϑ 4 z 2b + i a 2b 2ic b ⎤ ⎥ ⎥ ⎥ ⎦ .
(3) where x is the streamwise coordinate, y the transverse coordinate and κ the circulation of the vortex. The functions ϑ i (u, τ ) are the elliptic functions of Tannery and Molk [START_REF] Tannery | Éléments de la théorie des fonctions elliptiques[END_REF], that read, for q = e iπτ : 1), but grows progressively at larger values of the b c ratio. We have plotted all our experimental data, with the rope setup or the belt setup. It appears that the stability area predicted by Rosenhead, inside the geometric limitations, is explored and satisfied by the experimental measures. 

• ϑ 1 (u τ ) = 2 ∑ n (-1) n q n+ 1 2 2 sin((2n + 1)πu), 185 • ϑ 2 (u τ ) = 2 ∑ n q n+ 1 2 2 cos((2n + 1)πu), • ϑ 3 (u τ ) = 1 + 2 ∑ n q n 2 cos(2πnu
c > 2 1 -2 a c , (4) 
a c < 1 2 . ( 5 
)
We have indicated these two limits on figure 4.c, that reduce the available part of the stability tongue and seem to explain remarkably well the observed confinement of the points inside a narrow band of a c values. There is clearly something to understand related to this question of finite size of vortex cores, but the extension of Rosenhead calculations to this situation is certainly a difficult task. At this stage, detailed analysis of the finite size of vortices only exist in the case of non confined geometry [START_REF] Crowdy | [END_REF].

To conclude, we have carried out a new experiment to study the absolute stability of a BVK street in its own frame. In contrast with the well-known selection given by (1), we observed that the system explores a continuous band of stability, in a way consistent with Rosenhead's calculations. These observations are presumably the first and presently the unique experimental confirmation of this theory. We have also provided evidences that suggest reconsidering this theory with a finite size of the vortex cores, which is certainly a difficult theoretical challenge. It would be also interesting to check what happens for a wake behind an obstacle confined between two walls. The present result is presumably important for the diverse applications mentioned at the beginning of the paper, and for the drag encountered by a moving slender boat inside a narrow channel, the momentum carried by the vortices being to be added to the more classical wave drag due to surface waves [START_REF] Merrer | [END_REF].
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 10 vortex street of point vortices in a plane perfect flow can 11 be stable only if the wavelength of the vortex street, i.e. the distance between two consecutive vortices in one array 13 of the street, 2b, is linked to the width of the street 2a by is very well satisfied in exper-15 iments, theoretically, the precise nature of this unique 16 stable solution, is still under discussion after several 17 controversies [6] [7] [8] [9]. Recently, it has been proposed 18 that the stability could be in fact only apparent and of 19 convective nature, in the sense of Huerre, Chomaz and 20

Fig. 1 :

 1 Fig. 1: (a) and (b), detailed stretch of our experiment, in which a belt (tape) runs at high speed along the central part of the free surface of a long slender tank of water. In (c) and (d), are represented the two main patterns of flow observed at large scale: in (c) the recirculation occurs at the bottom of the container and in (d) it occurs on the lateral sides.

Fig. 2 :

 2 Fig. 2: (a) Experimental measurement of the Reynolds number at which we observe a transition from the recirculation by the bottom flow to the lateral sides. (b) Phase diagram of the three flow patterns observed for h = 45 mm : recirculation by the bottom (blue), recirculation along the lateral walls with double vortex row formation (green), recirculation along the lateral walls with no stable array (red). (c) and (d) show typical instantaneous flow lines observed in the two last cases.
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 98 Depending on the tape velocity and on the aspect ra-100 tios, three very different kinds of flow have been observed. 101

Fig. 3 :

 3 Fig. 3: Typical flow observed in a horizontal plane, at the middle height of the water layer inside the container, using a rope instead of the belt. As the vortex street does not move, these are temporal means calculated over 30 seconds. (a) fluid velocity calculated by PIV, (b) stream lines, (c) vorticity distribution.
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 133 figure 2.a, in which we have defined the Reynolds number 141

Fig. 4 :

 4 Fig. 4: (a) Sketch of the vortex street with the definition of the variables a, b and c. (b) Sketch of the vortex street with maximal density, when the vortex are modelized as rigid disks with radius R. (c) Representation of the stability area calculated by Rosenhead and the geometric limits given by the rigid disks model. The lower part of stability zone, when 1 c tend to 0, coincides with von Kármán condition giver by equation (1), but grows progressively at larger values of the b c ratio. We have plotted all our experimental data, with the rope setup or the belt setup. It appears that the stability area predicted by Rosenhead, inside the geometric limitations, is explored and satisfied by the experimental measures.

  Up to now, there is no equivalent of Rosenhead calculations for vortices of finite size, but we were able to develop here the following qualitative argument, based on the structure suggested on figure 4.b. If we consider the vortex cores as rigid disks that must tile the available space without overlapping, but keeping contacts between each other and with the two boundaries, it is easy to show that the ratios a/c and b/c must satisfy the following relationships b

		),
	198	presence of the walls modifies the stability of the street,
	199	allowing for a continuous band of ratios b a, instead of
	200	the "sharp" selection observed on isolated wakes. As
	201	mentioned above, a particularity of our experiment is that
	202	we are in conditions of zero mean velocity superimposed
	203	to the array, which implies that our result holds for the
	204	absolute stability of the double row.
	205	
	206	Another surprising result when one considers figure 4.c,
		is that though the points are distributed in a continu-

207 ous way inside Rosenhead stability tongue, they do not 208 cover the whole allowed domain and remain distributed 209 in a rather narrow band of a c values. We suggest that 210 this could partly be due to the finite extent of the vor-211 tex cores, which is of course not captured by Rosenhead 212 point vortex model.

We are indebted to stimulating discussions with C. Arratia, J.-M. Chomaz, P. Ern, F. Gallaire, C. Gondret, C.-T. Pham, M. Rabaud, L. Tuckerman and J. E. Wesfreid.

Rosenhead investigated the stability of the vortex street, 189 having the potential of equation (3). He found that this