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Abstract

An important goal in researching the biology of olfaction is to link the perception of smells to

the chemistry of odorants. In other words, why do some odorants smell like fruits and others

like flowers? While the so-called stimulus-percept issue was resolved in the field of color

vision some time ago, the relationship between the chemistry and psycho-biology of odors

remains unclear up to the present day. Although a series of investigations have demon-

strated that this relationship exists, the descriptive and explicative aspects of the proposed

models that are currently in use require greater sophistication. One reason for this is that the

algorithms of current models do not consistently consider the possibility that multiple chemi-

cal rules can describe a single quality despite the fact that this is the case in reality, whereby

two very different molecules can evoke a similar odor. Moreover, the available datasets are

often large and heterogeneous, thus rendering the generation of multiple rules without any

use of a computational approach overly complex. We considered these two issues in the

present paper. First, we built a new database containing 1689 odorants characterized by

physicochemical properties and olfactory qualities. Second, we developed a computational

method based on a subgroup discovery algorithm that discriminated perceptual qualities of

smells on the basis of physicochemical properties. Third, we ran a series of experiments on

74 distinct olfactory qualities and showed that the generation and validation of rules linking

chemistry to odor perception was possible. Taken together, our findings provide significant

new insights into the relationship between stimulus and percept in olfaction. In addition, by

automatically extracting new knowledge linking chemistry of odorants and psychology of

smells, our results provide a new computational framework of analysis enabling scientists in

the field to test original hypotheses using descriptive or predictive modeling.
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Author summary

An important issue in olfaction sciences deals with the question of how a chemical infor-

mation can be translated into percepts. This is known as the stimulus-percept problem.

Here, we set out to better understand this issue by combining knowledge about the

chemistry and cognition of smells with computational olfaction. We also assumed that

not only one, but several physicochemical models may describe a given olfactory quality.

To achieve this aim, a first challenge was to set up a database with ~1700 molecules char-

acterized by chemical features and described by olfactory qualities (e.g. fruity, woody). A

second challenge consisted in developing a computational model enabling the discrimi-

nation of olfactory qualities based on these chemical features. By meeting these 2 chal-

lenges, we provided for several olfactory qualities new chemical models describing why

an odorant molecule smells fruity or woody (among others). For most qualities, multiple

(rather than a single) chemical models were generated. These findings provide new ele-

ments of knowledge about the relationship between odorant chemistry and perception.

They also make it possible to envisage concrete applications in the aroma and fragrance

field where chemical characterization of smells is an important step in the design of new

products.

Introduction

Around the turn of the century, with its acknowledgement as an object of science by the Nobel

society [1] the hidden sense associated with the perception of odorant chemicals, hitherto con-

sidered superfluous to cognition, became a focus of study in its own right. Odors are emitted

by food, which is a source of pleasure [2]; they also influence our relations with others [3]. The

olfactory percept encoded in odorant chemicals contributes to our emotional balance and

wellbeing: olfactory impairment jeopardizes this equilibrium [4,5].

Neuroscientific studies have revealed that odor perception is the consequence of a complex

phenomenon rooted in the chemical properties of a volatile molecule (described by multiple

physicochemical descriptors) further detected by our olfactory receptors in the nasal cavity [6].

A neural signal is then transmitted to central olfactory brain structures [7]. At this stage, a

complete neural representation, called “odor” is generated and then, it can be described

semantically by various types of perceptual qualities (e.g., musky, fruity, floral, woody etc.).

While it is generally agreed that the physicochemical characteristics of odorants affect the

olfactory percept, no simple and/or universal rule governing this Structure Odor Relationship

(SOR) has yet been identified. Why does one odorant smell of rose and another smell of

lemon? Given the fact that the totality of the odorant message was encoded within the chemical

structure, chemists have tried for a long time to identify relationships between chemical prop-

erties and odors. Topological descriptors, eventually associated with electronic properties or

molecular flexibility, have been tentatively connected to odorant descriptors. For instance,

molecules carrying a sulfur atom and/or having low molecular weight or low structural com-

plexity are often rated as unpleasant [8–10]. In addition to the hedonic valence of odors,

others have looked for predictive models describing odor perception and quality (see [11–14]).

Indeed, this was the aim of a crowd-sourced challenge recently proposed by IBM Research and

Sage called DREAM Olfaction Prediction Challenge. The challenge resulted in several models

that were able to predict pleasantness and intensity as well as 8 out of 19 semantic descriptors

(namely “garlic”, “fish”, “sweet”, “fruit”, “burnt”, “spices”, “flower” and “sour”) with an average

correlation of predictions across all models above 0.5 [15].

Stimulus-percept issue in olfaction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006945 April 25, 2019 2 / 21

(www.ixxi.fr/) to MP and MK. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors declare no

competing interests.

https://doi.org/10.1371/journal.pcbi.1006945
http://www.ixxi.fr/


Although these investigations brought evidence that chemical features of odorants can be

linked to odor perception, the stimulus-percept problem raised a number of issues. For

instance, the stimulus-percept relationship is generally viewed as bijective in that one physico-

chemical rule describes or predicts one quality. However, some cases suggest the existence

of more than a single rule to relate chemistry and perception. Indeed, chemicals belonging to

different families can trigger a “camphor” or a musky smell [16]. On the other hand, a single

chiral center can render a compound odorless or shift its perceived odor completely, as is the

case for (+) and (-)-carvone [17]. These examples strengthen the notion that the connections

between the chemical space and the perceptual space are subtler than previously thought with

multiple physicochemical rules describing a given quality. At best, the bijective SOR rules may

be only be applicable to a very small fraction of the chemical space, with the remaining part of

the perceptual space being best described using a multiple rules approach. The complexity of

available databases, they include both thousands of chemical properties and a large heteroge-

neity in perceptual descriptions, [18–21] means that the manual generation of multiple rules

is not feasible. In other words, to better understand the stimulus-percept issue in olfaction,

there is a clear need to extract knowledge automatically and in an intelligible manner. Such an

approach is positioned upstream of predictive modeling since it will enable modeling that

extracts descriptive rules from the data that link subgroups belonging to both chemical and

perceptual spaces. The main aim of our study was to develop such a computational framework

to discover new descriptive structure-odor relationships.

To achieve this, we first set up a large database containing more than 1600 odorant mole-

cules described by both physicochemical properties and olfactory qualities. We then developed

an original methodology based on the discovery of physicochemical descriptions distinguish-

ing between a group of objects given a target or class label, namely odor qualities. This

approach has been widely studied in Artificial Intelligence (AI), data mining and machine

learning. Specifically, supervised descriptive rules were formalized through subgroup discov-

ery, emerging pattern/contrast-sets mining [22]. In all cases, we face a set of objects associated

with descriptions and these objects are related to one or several class labels. This new pattern

mining method, a variant of redescription mining [23], allows the discovery of pairs consisting

of a description (of physicochemical properties) and a label (or sub-set of labels, olfactory qual-

ities). The strength of the rule (SOR in our application) is evaluated through a new quality-

control measure detailed in the Methods section.

Methods

Olfaction database

We designed and set up a database describing odorant molecules by both their perceptual and

physicochemical properties. Here, data from different sources were extracted and grouped: (i)

for odorant identification and olfactory qualities, we referred respectively to the PubChem

website (https://pubchem.ncbi.nlm.nih.gov/) and the textbook by Arctander [24]; (ii) for phys-

icochemical properties, we referred to the Dragon software package (http://www.talete.mi.it/

index.htm).

Olfactory qualities were thus gathered from the book “Perfume and Flavor Chemicals”,

published in 1969 by Steffen Arctander. In this book, Arctander gives a complete description,

including olfactory and trigeminal qualities as well as flavors, of 3102 odorants (detailed physi-

cochemical properties of 1689 odorants among these 3102 odorants were retrieved, see below).

These odorants were further identified by chemical name, molecular weight and correspond-

ing olfactory qualities. Here, the 74 olfactory qualities selected by Chastrette and colleagues

[25] were used as a reference list. These qualities were selected in a study of the whole of

Stimulus-percept issue in olfaction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006945 April 25, 2019 3 / 21

https://pubchem.ncbi.nlm.nih.gov/
http://www.talete.mi.it/index.htm
http://www.talete.mi.it/index.htm
https://doi.org/10.1371/journal.pcbi.1006945


Arctander’s book by excluding those that did not provide qualitative olfactory information

and those that were the least frequent.

Note that before selecting this source, we ran a comparison with other existing Atlases

and websites used for research, teaching and applicative purposes: specifically, the Dravnieks

Atlas [26], the Boelens Atlas (see [27]), and the Flavornet website (http://www.flavornet.org).

These sources (atlases, book and website) were compared along a series of parameters (the

comparison took into account all odorants for which we collected CID numbers). The first

parameter of interest was the number of molecules studied in the source, and was respec-

tively 1689, 138, 263, and 660 for the Arctander, the Dravnieks, the Boelens and the Flavornet

(here, only molecules for which we found a PubChem Compound Identification or CID are

taken into account). The second parameter was the number of evaluators (and their expertise

level) who smelled the compounds and provided the olfactory qualities: one trained evalua-

tor for the Arctander, a large panel of evaluators for the Dravnieks (although there seems to

be a large heterogeneity in the expert profile of these panelists, and little information as to

the extent of training that panelists were given), six trained evaluators for the Boelens, and

no information is given regarding the panelists for the Flavornet website. Third, when con-

sidering the way olfactory qualities were collected in the source, both the Arctander and the

Flavornet used a binary format (presence/absence of quality), and both the Dravnieks and

the Boelens used a scale of intensity or agreement. Fourth, we compared the number of olfac-

tory qualities used in each atlas/book/website and observed the following distribution (the

average number of qualities per molecule is in brackets): 74 (2.88) for the Arctander, 146

(29.99) for the Dravnieks, 30 (12.86) for the Boelens, and 197 (2.72) for the Flavornet. Note

also that the minimum (and the maximum) number of qualities for one molecule was: Arc-

tander (min: 1; max: 10), Dravnieks (min: 5; max: 52), Boelens (min: 0; max: 22), Flavornet

(min: 1; max: 5).

Thus, this analysis showed that whereas some sources are characterized by a large number

of molecules (e.g. Arctander and Flavornet), others contain only a limited number of odor-

ants (e.g. Boelens and Dravnieks). Moreover, there is great heterogeneity between these

different sources with regards to the number and the degree of expertise of the evaluators.

Some sources involve a large number of evaluators but with heterogeneous profiles (e.g.

Dravnieks) and others involve a limited number of experts (e.g. Boelens and Arctander).

Finally, whereas some sources have, on average, between 10 and 30 qualities per odorant

(e.g. Boelens and Dravnieks), the average number is around three for others (e.g. Arctander

and Flavornet). In view of these parameters, and because the descriptive approach used in

this study requires a large database, we used the Arctander book because it contained the

highest number of odorant molecules (1689) and a reasonable number of qualities per odor-

ant (2.88 on average).

Odorant physicochemical properties were then obtained using Dragon, a software applica-

tion that enables the calculation of 4885 molecular descriptors (Talete). Descriptors included

in our dataset ranged from the simplest atom types, functional groups and fragment counts, to

topological and geometrical descriptors. As Dragon requires 3D structure files, these were col-

lected from the PubChem website (https://pubchem.ncbi.nlm.nih.gov) by using the compound

identifier number of each odorant (CID). Individual odorant CIDs were obtained by using the

CAS Registry Number and/or the chemical name of the odorant as an entry in the PubChem

website. In total, 1689 CIDs were found for the 3102 odorants. In the following section, we

study the set M of odorant molecules that are described by n physicochemical properties

denoted F. Each property fi 2 F is a function that associates a real value with a molecule: fi:
M! image(fi) with image(fi) an interval of R. The olfactory qualities are denoted by O and

class is a mapping that associates a subset of O to a molecule: class: M! 2O.

Stimulus-percept issue in olfaction
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The developed algorithm

Here, we developed an original subgroup discovery approach to mine descriptive rules that

specifically characterize subsets of olfactory qualities (O). The specificity of this approach is

intended to be able to extract rules with several olfactory qualities as targets, and also to treat

unbalanced classes robustly, i.e., the fact that some olfactory qualities are very rare (e.g.

“musty”) compared to others (e.g. “fruity”). Subgroup discovery is a generic data mining

method aimed at discovering regions in the data that stand out with respect to a given target.

We instantiated this framework in order to identify the conditions on some odorant physi-

cochemical properties that are strongly associated with olfactory qualities.

A structure odor rule (SORule), denoted D! Q, is defined by a physico- chemical descrip-

tion D and a set of olfactory qualities Q� O. The description is a set of n intervals D = h[x1,

y1],[x2,y2],. . .,[xn,yn]i, each being a restriction on the value image of its corresponding physi-

cochemical property: [xi, yi]� image(fi).
The molecules whose values on physicochemical descriptors belong to the intervals of the

description D are members of the coverage of D:

coverageðDÞ ¼ fm 2 M 8i ¼ 1 . . . n; xi � fiðmÞ � yig

We count the number of molecules in the coverage with support(D) = |coverage(D)|.

The quality of a rule is evaluated with respect to the olfactory qualities of the molecules in

its coverage. First, the precisionmeasure gives the proportion of the molecules of the coverage

of D that also have (part of) the olfactory qualities Q:

P D! Qð Þ ¼
jfm 2 coverageðDÞ classðmÞ � Qgj

supportðDÞ

This is the percentage of times the rule is triggered for molecules whose qualities are in Q.

On the other hand, it is also important to know if the rule covers all the molecules of quality Q.

This is what the recallmeasure evaluates:

R D! Qð Þ ¼
jfm 2 coverageðDÞ classðmÞ � Qgj
jfm 2 M classðmÞ � Qgj

These two measures behave in opposite ways: when one increases, the other decreases. One

way to globally evaluate a rule is to use the F1 measure, the harmonic mean between the preci-

sion and recall measures:

F1 D! Qð Þ ¼ 2
PðD! QÞRðD! QÞ
PðD! QÞ þ RðD! QÞ

As mentioned above, the olfactory qualities are more or less frequent in the data. To take

that into account, the Fβ measure gives more importance to the precision measure for rare

olfactory qualities, while favoring the recall measure for frequent qualities:

Fb D! Qð Þ ¼
ð1þ bðsupportðQÞÞPðD! QÞRðD! QÞ
bðsupportðQÞÞPðD! QÞ þ RðD! QÞ

Stimulus-percept issue in olfaction
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with support (Q) = |{m 2M |class(m)� Q}| and

b xð Þ ¼ 0:5 � 1 þ tanh
xb � x
lb

 ! ! !2

Here, the terms xBeta and lBeta are determinant in choosing the appropriate sigmoid

model, and are values that can be set by the experimenter. Given that, our approach aims to

discover rules D! Q whose support support(D) is greater than a threshold minSupp and with

|Q| is lower or equal to a value maxQual. Those parameters make it possible to identify rules

that are supported by sufficient odorant molecules, and also that are specific to a small set of

olfactory qualities. The maxQual parameter enforces that the right-hand side of the rule con-

tains a limited number of olfactory qualities to be interpretable by the analyst. Similarly, a max-

Prop parameter allows to limit the number of (physicochemical) conditions in the left-hand

side of the rules.

To illustrate the previous definitions, let us consider the toy olfactory dataset given in

Table 1. This dataset contains 6 molecules identified by their IDs M = {1,2,3,4,5,6}. Each mole-

cule is described by its molecular weight MW, its number of atoms nAt and its number of car-

bon atoms nC, that is, F = {MW, nAt, nC}. Besides, the molecules are also associated with their

olfactory qualities among O = {fruity, vanillin, woody}. Let us consider the description

D ¼ h½128; 151�; ½23; 29�; ½½9; 12�i

Its coverage is coverage(D) = {2, 3, 5, 6}. If we consider the odorant quality Q = {vanillin}, as

there is 2 molecules of coverage(D) with this quality, the precision of the rule is equal to:

P D! Qð Þ ¼
2

4

As there are 3 molecules in the whole dataset with that quality, the recall of the rule is:

R D! Qð Þ ¼
2

3

Its F1 measure is thus equal to:

F1 D! Qð Þ ¼ 2
2

7

Detailed information regarding the principle of the algorithm are provided as S1 Text.

Table 1. Description of the developed algorithm: A toy olfactory dataset.

ID MW nAT nC Quality/Class

1 150 21 11 vanillin, woody

2 128 29 9 fruity

3 136 24 10 fruity, woody

4 152 23 11 woody

5 151 27 12 fruity, vanillin

6 142 27 10 fruity, vanillin

https://doi.org/10.1371/journal.pcbi.1006945.t001
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Results

Olfactory dataset: 1689 odorant molecules described by both olfactory

qualities and physicochemical properties

Our olfactory dataset includes 1689 molecules described by 74 olfactory qualities. The dataset

is multi-labeled, each molecule being associated with one or several olfactory qualities. On

average, each molecule refers to 2.88 olfactory qualities among the 74 possible labels. More-

over, the frequency of olfactory qualities across odorants is unbalanced: on average a quality is

used in 65.79 molecules (standard deviation: 105.28), the maximum is reached for the “fruity”

quality (used in 570 molecules), the minimum for musty (used in only 2 molecules). Fig 1 illus-

trates the entire building process of the database. Fig 2 presents a world cloud of the 74 olfac-

tory qualities.

Physicochemical properties: Selection and interpretation

With regard to the physicochemical properties, our original database contained more than

4000 physicochemical features. For the purpose of a rational approach where features can be

interpreted on a chemical basis, we selected attributes that were relevant, but more importantly

easily interpretable. This approach is strongly inspired by the so-called 3D-olfactophore,

where such easily interpretable features computed on odorants sharing the same olfactory per-

cept are gathered in the 3 dimensions of space.

Such features are typically Hydrogen bond donor/acceptor, Aromatic cycle, Charged atom,

etc. This methodology is typically useful for molecular scientists to learn about structure-

Fig 1. Building process of the database used for the study. It was based on the Arctander’s Book and PubChem databases for

determining a total of 74 olfactory qualities. Dragon software was used to obtain 82 physico-chemical properties of the 1689

molecules.

https://doi.org/10.1371/journal.pcbi.1006945.g001
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property relationships and design new molecules which fulfill the properties of these olfacto-

phores [28]. Here the features we used were a series of physico-chemical properties. Thus, we

selected constitutional, topological and chemical descriptors that represent molecular features

which can be easily interpreted and extrapolated for further predictive models. They include

the following categories: constitutional indices (n = 29; ex. “Molecular weight”), ring descrip-

tors (n = 7; ex. “Number of rings”), functional group counts (n = 40; ex. “Number of esters”),

molecular properties (n = 6; ex. “Topological polar surface area”). To select these descriptors,

we screened the whole set of descriptors proposed by Dragon. We carefully selected descrip-

tors able to provide information interpretable by any molecular scientist. The cost of selecting

interpretable descriptors is a reduction in the description of the dataset. To evaluate the loss of

information on the variance of a given molecular dataset, descriptors were computed on a set

of 2620 odorants provided by Saito and colleagues [29]. Finally, 347 descriptors remained after

filtering the following: correlated (above 0.85), constant for the whole dataset (no variation

across parameters), not available for the whole dataset. After the dimensionality reduction, our

Fig 2. Word-cloud of the 74 studied olfactory qualities.

https://doi.org/10.1371/journal.pcbi.1006945.g002
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selected 82 descriptors accounted for 37.2% of the original variance. When choosing randomly

82 descriptors within this set of 347, the variance always falls below 25%, suggesting that our

descriptors performed quite well at describing a molecular set with a certain degree of variabil-

ity. Finally, when projecting the entire set of molecules on to the two first components of a

PCA, the dataset remains well split and molecules were still distinguishable.

Physicochemical descriptive rules: Generation and selection

First, the physicochemical rules were generated for each of the 74 qualities based on the 82

descriptors. This was done using the following parameters: maxoutput (100), beamwidth (30),

MaxQual (1), MaxProperties (8), max Supp (700), XBeta (110), IBeta (20), and four different

minSupp (5, 10, 20 and 30) (see Methods section and S1 Text for a detailed definition of these

parameters). Second, an algorithm search for the best rules or combination of rules (with a

maximum of 12 rules) for each of the 74 qualities and the four different minSupp (from 5 to

30). At this stage, the rules or combination of rules were ranked as a function of their Preci-

sion. Here, to evaluate the best rule or combination of rules that can describe each quality, we

calculated for each rule (or combination of rules) the distance (Euclidian) from the “ideal” sit-

uation defined as the data-point with an error of “0” (error was calculated as one minus preci-

sion) and the best recall (value of 1 in the y-axis, meaning that all molecules that belong to the

quality are described by these physicochemical rules). The point(s) with the smallest distance

was (were) selected as the best rule or combination of rules for a given quality.

From this selection, we built a list of rules and/or combination of rules for each quality (see

S1 Table). We showed that around 90% of the olfactory qualities were described by 1 to 6 rules

and 66% (49 qualities among 74) were described by 3, 4 or 5 rules (see Fig 3a). Moreover, for

the same quality, different rules or combinations of rules were selected because their distance

Fig 3. Rules and combinations of rules. (a) Histogram showing the number of rules (x-axis; one to twelve) used to describe the 74

olfactory qualities (number of olfactory qualities, y-axis). (b) Example of the selection of the best rule or combination of rules based

on the calculation of Euclidean distance from the “ideal” point (error “0”, recall “1” indicated as● in the graph) for the olfactory

quality jasmine. The number in parenthesis indicates the number of molecules described by this quality. The symbols (▲,■, x, -)

below the graph, indicates the different minSupp used for computation. The right panel indicates the combination of rules selected.

(c) Chemical structure and name of the 29 molecules described as “jasmine”.

https://doi.org/10.1371/journal.pcbi.1006945.g003
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to the “ideal” situation (recall: 1; error: 0) was the same (see an example in Fig 3b). Fig 3c

shows an example of the chemical structure of the molecules described by the same quality

(jasmine here) and rules/combinations of rules.

To compare olfactory qualities according to their description by physicochemical rules, we

plotted all physicochemical rules (and/or combination of rules) of each quality in a 2D space

comprising error (x-axis) and recall (y-axis) (Fig 4). As can be seen, whereas some qualities

were close to the “ideal” situation others were very far. First, 38 qualities (51.35%, named

“Group 1”) exhibited an error rate lower than 0.5 and a recall greater than (or equal to) 0.5

(sulfuraceous, vanillin, phenolic, musk, sandalwood, almond, orange-blossom, jasmine, hay,

tarry, smoky, lilac, piney, camphor, grape, anisic, buttery, gassy, fatty, waxy, acid, minty, aro-

matic, mossy, violet, citrus, peppery, caramelic, medicinal, tobacco, pear, lily, sour, orange,

animal, honey, hyacinth, rose). Second, 17 qualities (22.97%, named “Group 2”) exhibited an

error rate lower than 0.5 but a recall lower than 0.5 (amber, geranium, metallic, fruity, pineap-

ple, ethereal, plum, woody, balsamic, creamy, green, berry, oily, spicy, floral, winey, herba-

ceous). Third, 18 qualities (24.32%, named “Group 3”) showed an error rate greater than (or

equal to) 0.5 and a recall greater than (or equal to) 0.5 (leathery, aldehydic, mushroom, coco,

mimosa, tea, nut, root, peachy, earthy, powdery, orris, apple, leafy, apricot, musty, brandy, nar-

cissus). Fourth, one quality (1.35%, named “Group 4”) showed an error rate greater than (or

equal to) 0.5 and a recall lower than 0.5 (banana).

To further examine whether the generated physicochemical rules were specific to a given

perceptual quality, in other words whether they provided a good and relevant model, we used

Fig 4. Quartiles and group distribution of the best rules describing the 74 qualities. Quartile distribution was based on the

Euclidean distance of a rule/combination of rules from the “ideal” point (error of “0”, recall of “1” indicated as● in the graph).

Quartiles are indicated by different colors (Q1 = blue, Q2 = pink, Q3 = grey, Q4 = orange). Group distribution (indicated as Group

1, 2, 3, and 4) was based on error rate (0.5) and recall (0.5). The 4 groups are separated by the dotted horizontal and vertical lines and

indicated in the figure.

https://doi.org/10.1371/journal.pcbi.1006945.g004

Stimulus-percept issue in olfaction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006945 April 25, 2019 10 / 21

https://doi.org/10.1371/journal.pcbi.1006945.g004
https://doi.org/10.1371/journal.pcbi.1006945


Bootstrap confidence intervals to evaluate whether the generated F-measure of the rules/mod-

els was significative. Here, knowing that a given set of rules covers X molecules, we sampled

100,000 sets of X molecules (with replacement) and calculated the F-measure of each sample

according to the studied quality. Next, the confidence intervals (CI: 99%) of these sets were

computed. Afterwards, the F-measure of the set of discovered rules was compared to this CI.

Results showed that for all 74 qualities, the F-measure was significant in that its value was out-

side (and greater) the CI at 99%.

Finally, to examine how the model built with 82 physicochemical descriptors performed

compared to a model built with all 4000 descriptors, we calculated the F-measure for each

quality (computed on the basis of all sets of rules) in both types of models. Results showed that,

on average, the F-measure was significantly greater (p<0.0001) in the model with 82 physico-

chemical descriptors (mean = 0.592, SEM = 0.012) compared to the model with all 4000

descriptors (mean = 0.487, SEM = 0.011), reflecting that the use of a small but explicative and

intelligible set of descriptors enhances performance.

To sum up, we provide here a computational framework that enables the automatic extrac-

tion, from a complex and heterogeneous dataset, descriptive rules linking subgroups in a

chemical space onto subgroups in a perceptual space. As can be seen in Fig 3a, only 3 qualities

could be best described by a single physicochemical rule whereas more than two thirds of the

qualities needed between 3 and 5 rules to be described. When dealing with the confidence of

the rules, a gradient was observed whereby some rules were associated with a good rate of

recall and minimum rate of error, whereas other rules exhibited a lower confidence in describ-

ing olfactory qualities. Note that all the generated rules are available to the reader in S1 Table.

The computational approach that we developed is available at the following address: https://

projet.liris.cnrs.fr/olfamine/

Interpretation of the physicochemical rules

Here, we analyzed some of the best-known qualities in the field of olfactory evaluation, namely

"fruity", "floral", "woody", "camphor", "earthy", "spicy", "fatty". The analysis of the rules and

combinations of rules (see S1 Table), shows that the number of rules is quite high for these

qualities ranging from six (floral), seven (camphor, earthy), eight (spicy, woody), nine (fatty)

to twelve (fruity). From a physicochemical point of view, translated into interpretable rules,

the floral quality is characterized by either aromatic and strongly hydrophobic molecules or

non-aromatic and moderately hydrophobic odorants. For camphor, molecules are rather

small in size, moderately hydrophobic, and eventually cyclic. The earthy quality is character-

ized by moderately hydrophobic molecules with unsaturations. The spicy quality is character-

ized by rather rigid molecules, eventually aromatic. Woody quality includes hydrophobic

molecules, rather not cyclic nor aromatic. For the fatty, the molecules have a larger carbon-

chain skeleton which is highly hydropobic with aldehyde or acid functions. Finally, for the fru-

ity quality, molecules are described as having moderate hydrophobicity and being medium to

large in size.

To push the interpretation further, we examined qualities associated with generated physi-

cochemical rules with the highest level of confidence. Here, we attempted (i) to understand the

rules based on a priori knowledge and (ii) to examine whether the rules could raise new scien-

tific assumptions.

We analyzed a total of eleven qualities corresponding to the first quartile of the distribution

of all rules. Based on the Euclidian distance to the “ideal” situation; 473 rules were generated

by our analysis (see Fig 4). These qualities were: sulfuraceous, vanillin, phenolic, musk, sandal-

wood, almond, orange-blossom, jasmine, hay, tarry, smoky.
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The “sulfuraceous” quality was described as follows: R1: [0.0<nCsp2<0.0] [0.0<nHAcc<0.0]
[11.611<Se<22.069] [144.039<SAtot<222.269] [0.0<TPSA(Tot)<50.6]; R2: [1.0<nS<2.0]
[1.0<nC<6.0] [0.0<N%<0.0] [25.0<C%<33.3] [38.8<TPSA(Tot)<64.18]; R3: [1.0<nS<2.0]
[-0.264<Hy<0.323] [102.715<SAtot<222.269] [0.0<O%<6.3]. These descriptions suggest,

somewhat intuitively, that sulfuraceous odorants encompass molecules with one or two sulfur

atoms and are moderately heavy, with a maximum of six carbon atoms.

Four rules defined the “phenolic” quality: R1: [216.155<SAtot<218.661] [0.0<nCrs<0.0]
[0.0<nOHp<0.0] [30.4<C%<45.0] [0.0<Ui<2.322]; R2: [1.117<Mi<1.118] [-0.768<Hy<-
0.158] [0.0<nR = Ct<0.0] [43.5<H%<50.0] [0.0<nOxiranes<0.0] [0.0<nR = Cp<0.0]; R3:

[2.807<Uc<2.807] [3.0<nCp<5.0] [0.4<ARR<0.545] [2.0<Ui<2.0] [-0.888<Hy<-0.277]
[37.8<C%<40.0] [0.0<nOHt<0.0] [0.0<nOHp<0.0]; R4: [0.6<ARR<0.75] [1.0<nArOH<2.0]
[2.807<Uc<3.17] [170.356<SAtot<222.475] [0.893<MLOGP<2.778] [0.0<nArCO<0.0].
Thus, odorants having a “phenolic” quality are of moderate size, with few unsaturations and

low hydrophilicity (and high lipophilicity). It can be regarded as a cyclic molecule. A good con-

sistency is observed between the 4 rules.

For “vanillin”, the following rules were observed: R1: [0.5<ARR<0.545] [3.0<nCb-<4.0]
[3.0<nHAcc<3.0] [1.0<nArOR<2.0] [0.0<nR = Cp<0.0] [0.0<nArCO<0.0] [38.1<C%<
46.2]; R2: [3.0<nCb-<3.0] [3.0<nO<3.0] [0.0<nArCOOR<0.0] [-0.727<Hy<0.66] [42.1<H
%<50.0] [0.0<nArCO<0.0] [38.1<C%<42.3]; R3: [2.0<nCsp3<2.0] [1.0<nArOR<2.0]
[0.699<MLOGP<1.75] [0.0<nArCOOR<0.0] [0.0<nArCO<0.0] [2.0<nCb-<4.0]. These

descriptions suggest that odorants belonging to this group are mostly cyclic molecule (like the

prototypical molecule vanillin), with 3 Hydrogen bond acceptors branched on saturated car-

bons atoms on an aromatic cycle.

When considering the “musk” quality, the following rules emerged: R1: [3.72<MLOGP
<4.045] [2.0<nCrs<15.0] [1.0<nCIC<1.0] [333.936<SAtot<436.545]; R2: [4.0<nCb-<6.0]
[33.0<nBT<47.0] [0.0<nCbH<2.0]; R3: [0.0<RBN<0.0] [11.0<nCs<16.0]; R4: [238.46
<MW<270.41] [57.1<H%<63.8] [402.5<SAtot<440.301] [0.0<nR07<0.0] [-0.931<Hy<-
0.763] [0.0<ARR<0.316] [0.0<RBN<12.0] [0.0<nCt<3.0]. Musky molecules are heavy and

hydrophobic compounds. This is reflected by a rather large logP, surface area or molecular

weight. From a general point of view, these descriptors reflect well the features of musky

odorants.

For the “sandalwood” quality, two rules were observed: R1: [3.0<nCrt<5.0] [1.0<nHDon<
1.0] [0.0<nR04<0.0] [1.0<nCrq<2.0]; R2: [3.0<nCrt<5.0] [1.0<nHDon<1.0] [-0.429<Hy<-
0.325] [2.0<nR05<3.0]. Sandalwood odorants are quite diverse and minor modifications

within their structure can abolish the sandalwood note. The rules which are mined here corre-

spond to models which are very simple and hardly capture the subtlety of this odorant family

[28]. The description presented here corresponds to the prototypic beta-santalol structure

which has a campholenic skeleton.

The “almond” quality was described by four rules: R1: [0.0<nCp<0.0] [152.443<SAtot<
165.41] [1.0<nO<2.0] [2.0<Ui<2.585]; R2: [0.706<ARR<0.8] [0.0<nArCO<0.0] [1.0<nO
<1.0] [3.0<Uc<3.807] [0.143<MLOGP<3.571] [-0.917<Hy<-0.71] [0.0<nCb-<2.0]; R3:

[1.0<nH<5.0] [0.0<nOxiranes<0.0] [1.0<nHAcc<3.0] [1.0<nN<2.0] [23.79<TPSA(Tot)<
90.27] [0.0<O%<14.3] [0.0<ARR<0.75]; R4: [1.0<nArCHO<1.0] [11.0<nBT<20.0]
[45.0<C%<47.1] [-0.864<Hy<-0.668] [1.0<nHAcc<2.0]. These descriptions suggest that

odorants evoking an almond-like quality are compounds bearing at least one oxygen and/or

other hydrogen bond-accepting atom but also bearing an aromatic cycle. This means that the

structure bears several unsaturations. These chemicals are thus relatively small and can be

compared to the prototypical structure of benzaldehyde.
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Four physicochemical rules described the “orange-blossom” quality: R1: [10.0<nCsp2
<10.0] [9.23<TPSA(Tot)<58.89]; R2: [1.0<nArNH2<1.0] [213.361<SAtot<326.286]
[0.0<nR = Cs<0.0] [0.0<nCt<0.0] [37.9<C%<51.5]; R3: [0.773<ARR<0.857] [39.4<H%<
45.5] [9.23<TPSA(Tot)<52.32] [3.0<nCb-<5.0]; R4: [47.243<Se<53.454] [4.0<nCbH<9.0]
[3.287<MLOGP<5.007] [3.0<nHAcc<4.0] [0.231<ARR<0.462]. These descriptions character-

ize very diverse structures ranging from very small to medium or large compounds. As a gen-

eral rule, one can note the presence of unsaturations, consistent with a terpenic structure,

associated with a quite hydrophobic feature.

The “jasmine” quality was described by six rules: R1: [12.0<nC<13.0] [43.37<TPSA(Tot)<
44.76]; R2: [336.137<SAtot<337.327] [0.0<nR = Cs<0.0]; R3: [7.0<nCsp2<8.0] [1.0<nCb-
<1.0] [2.0<nCp<3.0] [50.0<H%<53.3] [4.0<nCsp3<5.0] [1.0<nCs<3.0] [1.0<nRCOOR<
1.0]; R4: [1.0<nCb-<1.0] [2.034<MLOGP<2.386] [2.0<nHet<3.0] [7.0<nCsp2<8.0]
[1.0<nCp<2.0] [-0.807<Hy<-0.727] [0.0<nArCOOR<0.0] [0.0<nArOR<0.0]; R5: [5.0<
RBN<6.0] [1.0<nRCO<1.0] [291.434<SAtot<350.346] [10.0<nC<13.0] [0.0<nArCO<
0.0]; R6: [1.0<nR = Ct<1.0] [4.0<nCs<8.0] [2.0<nCconj<4.0] [0.0<nCt<0.0] [-0.912<Hy<-
0.873]. This rule characterizes (i) molecules composed mainly of carbons and oxygen atoms,

(ii) molecules with an aromatic core and embranchments conferring a large flexibility, and

(iii) compounds with an optimal chain length around five carbon atoms. These rules are in

line with the prototypical molecule jasmonate.

For the “hay” quality, six rules were generated: R1: [1.0<nArCO<1.0] [-0.164<Hy<0.647]
[1.239<MLOGP<2.001]; R2: [13.3<O%<13.6] [2.322<Ui<2.322] [1.191<MLOGP<1.75]
[0.0<nR = Cp<0.0] [179.198<SAtot<300.766]; R3: [0.556<ARR<0.6] [177.465<SAtot<
205.275] [26.3<TPSA(Tot)<50.44] [-0.603<MLOGP<2.001] [11.1<O%<20.0] [0.0<nCs<
0.0] [0.0<nPyridines<0.0] [1.0<RBN<2.0]; R4: [2.0<nCb-<2.0] [179.249<SAtot<209.869]
[2.322<Ui<2.585] [26.3<TPSA(Tot)<37.3]; R5: [1.111<Mi<1.116] [2.0<nHAcc<2.0]
[2.0<nCb-<4.0] [0.0<nR05<0.0] [0.0<nCconj<1.0] [1.49<MLOGP<3.719]; R6: [0.0<RBN<
0.0] [2.0<nO<2.0] [0.0<nR = Ct<1.0] [-0.807<Hy<-0.668] [26.3<TPSA(Tot)<30.21]
[130.383<SAtot<214.985] [-0.145<MLOGP<2.265]. These rules characterize relatively

hydrophobic molecules composed of aromatic cycles, being either heterocyclic or linked to a

heteroatom outside of the cycle. These atoms confer to the molecule the possibility to accept

Hydrogen bonds.

“Tarry” quality was also described by six rules: R1: [6.0<nCsp2<6.0] [-0.213<Hy<0.031]
[1.348<MLOGP<1.859] [0.0<RBN<1.0]; R2: [3.0<nCb-<4.0] [2.807<Uc<2.807] [1.0<nHet
<2.0] [18.46<TPSA(Tot)<40.46] [138.18<MW<178.3] [38.7<C%<40.0] [0.0<nCs<0.0]; R3:

[0.733<ARR<0.773] [-0.905<Hy<-0.158] [1.0<nHet<1.0] [174.318<SAtot<277.868]; R4:

[0.0<nDB<0.0] [174.318<SAtot<175.125] [2.807<Uc<3.585] [15.862<Se<17.534]; R5:

[5.9<N%<7.7] [0.6<ARR<1.0] [0.565<MLOGP<1.834] [-0.828<Hy<0.031] [12.753<Se<
16.636]; R6: [-0.213<Hy<-0.158] [16.0<nBT<21.0] [0.0<nRCOOH<0.0] [0.0<nROH<0.0]
[1.58<MLOGP<2.193] [15.79<TPSA(Tot)<29.46]. With regard to this quality, it is not easy

to establish specific characteristics of the molecules of this group, but overall these molecules

are flexible, presenting heteroatoms while having low hydrophilicity due to the presence of

double bonds.

Finally, the “smoky” quality is described as follows: R1: [1.0<nArOH<1.0] [1.859<MLOGP
<2.193] [1.117<Mi<1.121] [0.0<nCconj<0.0]; R2: [7.0<nC<7.0] [2.807<Uc<2.807] [41.2
<C%<43.8] [-0.158<Hy<-0.107]; R3: [0.0<RBN<0.0] [4.0<nCar<5.0] [99.023<SAtot<
129.741]. In this case, a robust rule is hard to establish because the physicochemical descriptors

refer either to aromatic compounds with a hydroxyl group or flexible molecules with rotatable

bonds.
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Validation of the physicochemical rules in novel odorants

To evaluate the validity of the generated physicochemical rules, we applied them to novel sets

of odorants. For a given quality, we checked whether novel odorants that fulfill physicochemi-

cal criteria according to our descriptive model indeed evoked significantly more of the studied

quality than novel odorants than do not fulfill these physicochemical rules.

To this end, we isolated from 4 different databases, 4 sets of odorants not present in the

Arctander database and therefore not used to build the descriptive rules. These databases were

from the Dravnieks study [26] (n = 45; i.e. 45 odorants not present in our original dataset

could be used), the Boelens & Harding study [30] (n = 56), one set from the Keller et al. study

[15] (n = 118), and one set from the Licon et al. study [31] (n = 19). Within each of these four

novel sets, olfactory quality was coded using a continuous variable (Dravnieks: from 0 to 100;

Boelens & Haring: from 0 to 9; Keller et al.: from 0 to 100; Licon et al.: from 0 to 100). Note

that, for the Keller et al. study, perceptual data were provided for 2 levels of odorant concentra-

tions (« High » and « Low »).

Our descriptive model was tested in qualities that were common between the Arctander

database and these four different databases. Moreover, for statistical purposes and for a given

quality, only when the rules were filled for at least five odorants, comparisons were performed

between odorants that filled the criteria for the rules and those that did not filled the rules. The

qualities that satisfy these criteria were: 1/ for the Dravnieks study: Woody (n = 5), Camphor

(n = 5), Earthy (n = 5), 2/ for the Boelens & Haring study: Woody (n = 10), Fruity (n = 9),

Green (n = 8) and Balsamic (n = 5), 3/ for the Keller et al. study: Fruity (n = 15), and Sulfurac-

eous (n = 16; which was compared to a semantically proximal perceptual quality present in the

Keller database, namely « Decayed »), and 4/ for the Licon et al. study: Camphor (n = 5).

Results are presented in Fig 5. Within each set, an analysis of variance (ANOVA) compar-

ing perceptual values for a given quality for odorants that fulfill the physicochemical rules

(Rule (1), black bars) vs. those that did not fulfill the rules (Rule (0), grey bars) was performed.

For the Dravnieks dataset, the statistical analysis revealed that odorants that fulfill the rules for

woody, earthy and camphor, were respectively perceived as significantly more woody (F(1,43)

= 14.19, p<0.001, η2 = 0.248; Fig 5a.i), earthy (F(1,43) = 6.128, p = 0.017, η2 = 0.125; Fig 5a.ii)

and camphoreous (F(1,43) = 28.63, p<0.001, η2 = 0.400; Fig 5a.iii). In the same line, a signifi-

cant increase in camphor quality was observed for odorants that fulfill the rules for this quality

in the Licon et al. dataset (F(1,17) = 6.804, p = 0.018, η2 = 0.286; Fig 5b). Validation was also

observed within the Boelens & Haring dataset, but the results were more mixed. Whereas a sig-

nificant increase was observed for woody (F(1,54) = 88.47, p<0.001, η2 = 0.621; Fig 5c.i) and

balsamic (F(1,54) = 15.86, p<0.001, η2 = 0.227; Fig 5c.iv) in odorants that fulfill the physico-

chemical rules for these respective qualities, this was not the case for the green quality (F(1,54)

= 0.227, p = 0.636, η2 = 0.004; Fig 5c.ii). On a descriptive level, Fig 5c.iii shows that odorants

that fulfill the physicochemical criteria for the quality fruity seem to be perceived as more fru-

ity, but this was not significant (F(1,54) = 1.989, p = 0.164, η2 = 0.036). However, when consid-

ering the Keller et al. dataset, validation was reached for fruity: odorants that fulfill criteria for

the fruity quality were perceived as more fruity (for both low (F(1,116) = 9.219, p = 0.003, η2 =

0.074; Fig 5d.i) and with high levels of concentrations (F(1,116) = 11.76, p<0.001, η2 = 0.092;

Fig 5d.ii)), than odorants that did not fulfill the rules. The statistical analysis of this dataset

shows also that odorants that fulfill the physicochemical criteria for the quality sulfuraceous

were perceived as more decayed at both low (F(1,116) = 10.49, p = 0.002, η2 = 0.083; Fig 5d.iii)

and high levels of concentrations (F(1,116) = 24.42, p<0.001, η2 = 0.174; Fig 5d.iv).

To sum up, the present validation involved four sets of stimuli for a total of 238 odorants. It

allowed us to test the descriptive model on seven perceptual qualities and for six of them
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(woody, earthy, camphor, balsamic, sulfuraceous, fruity), the rules generated by our model

have been consistent with the ratings provided in these independent datasets.

Discussion

The interaction between the odorant molecule and the olfactory receptor(s) induces a percept

called “odor”. Chemists have previously attempted to characterize this phenomenon by

Fig 5. Validation studies in novel odorants from different available databases. Bars correspond to means and error bars to the

standard error to the mean (SEM). (a) Dravnieks dataset: odorants that fulfill the criteria for the rules woody (a.i), earthy (a.ii), and

camphor (a.iii) from our model (Rule (1), black bars) were significantly more described by these respective qualities than odorants

that did not fulfill these physicochemical rules (Rule (0), grey bars). (b) Licon et al. dataset: significant validation was observed for

camphor. (c) Boelens & Haring dataset: validation of our rules was observed for woody (c.i) and balsamic (c.iv). (d) Keller et al.

dataset: odorants that fulfill the criteria for rules associated with fruity were indeed perceived as more fruity for both concentrations

of odorants (d.i: low concentration; d.ii: high concentration). Validation of the rules associated with the quality sulfuraceous was also

observed (odorants that fulfill the criteria were perceived as more decayed at both low, d.iii, and high, d.iv, concentrations).
���p<0.001, ��p<0.01, �p<0.05.

https://doi.org/10.1371/journal.pcbi.1006945.g005
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working to obtain descriptive and/or predictive rules connecting physicochemical properties

to odors [32]. Such is the case with olfactophores or the exploitation of more specific molecular

features for predicting intensity or pleasantness [8,11,33,34]. Recently, a large database of com-

pounds as well as a large number of human panelists were used in order to predict percepts,

intensity and pleasantness [15]. In our study, we also considered that, to a certain extent, the

odor quality of a molecule is encoded in its chemical structure. Our aim was to provide a

descriptive model of the relationship between molecules and their perceived odors. To achieve

this aim, we set up a new computational framework that considers the scientific assumption

that, rather than relying on single physicochemical descriptions, the relationship between the

chemical space of odorants and the perceptual space of odors should be examined through

multiple descriptions. We developed a new method based on a subgroup discovery algorithm

to mine descriptive (physicochemical) rules characterizing specific subsets of class labels

(olfactory qualities). Thanks to this data-mining approach, we were able to provide new

descriptive structure-odor rules with a gradient of confidence (taking into account both the

recall and the precision) that varied from one quality to another. Validation of these descrip-

tive models was achieved for a series of olfactory qualities associated with rules with medium

levels of confidence (woody, earthy, balsamic, fruity) to higher levels of confidence (sulfurac-

eous and to a less degree camphor).

Our findings contribute to a better understanding of the olfactory system by elucidating the

relationships between the chemistry and the psychobiology of smells. Indeed, the function of

the olfactory system is to detect and discriminate volatile environmental molecules in order to

make sense of them. This implies the construction of dedicated percepts that can influence

behavior. In order to understand this system, relating the worlds of chemistry and perception

is a requirement. Our findings provide descriptive elements of responses and highlight the

physicochemical rules that describe olfactory perceptual qualities. Beyond these aspects, our

algorithm would benefit from a more systemic approach through the inclusion of neurobiolog-

ical representational states, ranging from olfactory receptors and olfactory bulb to primary and

secondary olfactory areas. This will allow us to better understand how the interaction between

the chemical features of odorants and olfactory receptors is mediated and processed in the

brain to build olfactory percepts.

One question that may be raised from the current finding is how our descriptive approach

is different from other machine learning methods and how it may help chemists and neurosci-

entists interested in olfaction solve scientific issues? In contrast to classical predictive machine

learning tasks where the goal is to turn the data into an as-accurate-as-possible prediction

machine, exploratory data analysis such as ours aims to automatically discover new insights

about the domain in which the data was measured (e.g., olfaction). To this end, the notion of

interpretability is fundamental as it is the premise of descriptive rules. Indeed, these rules are

composed of conjunctions of conditions on attributes that conclude on some olfactory quali-

ties. In contrast to black-box models, these rules, assessed by intuitive and mathematically

well-funded measures are easy to assimilate for a domain expert. This, in turn, makes develop-

ment of new hypotheses possible. In sum, our data-mining method should be regarded as

an approach that can extract knowledge from a dataset characterized by its complexity, size

and heterogeneity. Our approach is therefore situated at the upstream of any hypothetical-

deductive approaches. The generation of descriptive rules allows researchers to start such a

hypothetical-deductive approach, and to formulate new scientific assumptions, to establish an

experimental methodology and finally to develop and test the validity of predictive models.

Our algorithm has made it possible to extract significant knowledge about a series of olfac-

tory qualities. First, qualities with a chemical terminology (sulfuraceous, vanillin, phenolic)

have a great reliability in the rules generated. These rules contained expected attributes such as
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the presence of sulfur atoms to describe “sulfuraceous odors”, suggesting that our algorithm

was efficient in extracting relevant and meaningful knowledge. Our results went beyond the

sole description of these expected physico-chemical attributes. The generated rules contained

also unexpected features such as “phenolic odors”, where the presence of moderate size mole-

cules, with few unsaturations and low hydrophilicity were put forward. Structure-odor rela-

tionships for some qualities such as musky [35,36], sandalwood [37–39] and to a lesser degree

almond and jasmine [40] have already been explored in the past. Our descriptive model could

bring new information for most of these qualities, thus enabling the testing of innovative

hypothesis in the field. Importantly, we revealed the existence of descriptive rules for qualities

that have not, to the best of our knowledge, been investigated before. These qualities include

orange-blossom, hay, tarry and smoky. The generated rules will help scientists to better under-

stand the chemical composition of the stimuli that evoke these odors and bring new insights

about the way these molecules can interact with the olfactory system at the receptor level. Last

but not least, our approach showed also that it was difficult to generate reliable rules for some

qualities, particularly the most represented in the database (e.g., fruity, floral and woody).

Although the recall associated with these rules was not high, they were characterized by a low

rate of error, and validation was achieved for some of them including the well-known fruity

and woody qualities. Finally, it is noticeable that a series of interesting qualities were described

by rules with a good level of confidence but may be not precise enough to warrant detailed

interpretation at this stage. These qualities are those that belong to the second quartile (Fig 4)

and include, for instance, camphor for which validation with novel odorants was performed

using two different external datasets.

A methodological issue that may be raised from our study relates to the choice of Arctan-

der’s book in our methodology. Before answering this question, one must detail why such

linguistic sources are used in olfactory research. In general terms, whereas emotional reac-

tions are very prominent in olfaction [41], lexical and linguistic processes are relatively lim-

ited: spontaneous odor identification performances are around 50% (see [42]). Such an

absence has led scientists and those in the industry to develop different sources (atlases,

books, websites) listing the olfactory qualities of a series of odorant molecules (Arctander

book [24], the Dravnieks Atlas [26], the Boelens Atlas [27], and the Flavornet website (http://

www.flavornet.org)). A comparison of these sources led us to consider the Arctander’s book

since it contained the highest number of odorant molecules and a reasonable number of

qualities per odorant. The book, in being developed by a single scientist, gave the advantage

of allowing us to integrate more homogeneous data with less variable response profiles than

those collected in other atlases. However, this same feature also opens up the possibility that

certain odorants that evoke a given quality could be missed. One should therefore not dis-

card the possibility that certain molecules that evoke, for instance, the quality “fruity” were

not considered by our model in the validation phase because they were just below the percep-

tual threshold set by Arctander for that particular quality. Given the variability of olfactory

perception between individuals, it is conceivable that the same quality of “fruity” could have

been the perceptual threshold of another rater. As a consequence of these factors, we face a

double challenge: on one hand, there is a clear need to implement some flexibility in olfac-

tory databases, whereby a given molecule can be described by one or several qualities with an

associated level of confidence instead of a binary response. On the other hand, in order to

account for interindividual variability in olfactory perception, olfactory databases need

to consist of data from a large number of individuals. Future work will need to overcome

these factors, for example, by asking raters to provide a level of confidence alongside each

response, or by using a fuzzy logic algorithm in order to provide the model with responses

ranging in quality from not at all plausible to extremely plausible. In this way, our model will
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benefit from a better characterization of olfactory percepts, as the rules generated would be

more suited to the complexity of human perception. On a more general front, one interesting

perspective in this research field would be to implement a new Atlas that integrates response

diversity accompanied by all the strengths present in each individual atlas (see Methods sec-

tion; large number of molecules, large panel of evaluators in the qualitative description of

each odor). Such an atlas could serve as a basis for a large number of: (i) fundamental

research studies (to better understand the perceptual olfactory space and its relation to the

chemical space and the neuronal space), (ii) applied research studies (to better understand

the olfactory properties of new compounds developed by the perfume and flavor industry),

(iii) education and teaching actions (to standardize olfactory learning procedures in perfume

schools or culinary arts schools).

To sum up, current psychological and biological models of olfaction consider that olfactory

perception is not totally universal. Although the sense of smell includes invariant aspects, a

wide range of olfactory responses are characterized by their diversity from one person to

another. In other words, while some molecules can induce very similar behavioral responses

and perceptions among individuals, other molecules induce diverse perceptions, not only

between individuals but also within the same person according to physiological and cognitive

factors. It is undoubtedly in the invariant part of olfaction that we can establish the best predic-

tive models linking chemistry to perception. In this case, a model including bijective rules can

even be considered. Nevertheless, the more one moves towards the area of perceptual space of

odors that is characterized by its heterogeneity between individuals, the higher the predictabil-

ity threshold (i.e. bad prediction) becomes. This variability characterizes what could be called

"the glass ceiling of olfactory diversity". New methods are thus needed to break or circumvent

this glass ceiling. Such methodology should integrate the notion of multiple rules for linking

the chemical space to these diverse perceptions. Our approach is providing some new elements

to this challenging issue.

In conclusion, the present findings provide two important contributions to the fields of

computation and neurosciences. First, although direct SOR seems illusory for some olfactory

qualities if additional protagonists of the sense of smell are not taken into account, our

approach suggests that descriptive rules exist for some qualities. Second, the present approach

showed that several sub-rules should be taken into account when describing structure-odor

relationships. From these findings, by correlating the multiple molecular properties of odors

to their perceptual qualities and evoked-neural activities, experts in neuroscience and chemis-

try may generate new and innovative hypotheses in the field. In terms of application, this work

can add to our knowledge of the complex phenomenon of smells and tastes. Indeed, by imple-

menting such a descriptive structure/odor model within a dedicated data-analytics platform

we could improve our understanding of the effects of molecular structure on the perception of

those objects with highly-valued odorant properties such as foods, desserts, perfumes and fla-

vors. This, in turn, would enable the optimization of product formulation with respect to the

needs and expectations of consumers.
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