
HAL Id: hal-02343579
https://hal.science/hal-02343579v1

Submitted on 2 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric realizations of the accordion complex of a
dissection

Thibault Manneville, Vincent Pilaud

To cite this version:
Thibault Manneville, Vincent Pilaud. Geometric realizations of the accordion complex of a dissection.
Discrete and Computational Geometry, 2019, 61 (3), pp.507-540. �10.1007/s00454-018-0004-2�. �hal-
02343579�

https://hal.science/hal-02343579v1
https://hal.archives-ouvertes.fr


GEOMETRIC REALIZATIONS OF THE

ACCORDION COMPLEX OF A DISSECTION

THIBAULT MANNEVILLE AND VINCENT PILAUD

Abstract. Consider 2n points on the unit circle and a reference dissection D◦ of the convex

hull of the odd points. The accordion complex of D◦ is the simplicial complex of non-crossing
subsets of the diagonals with even endpoints that cross a connected subset of diagonals of D◦.

In particular, this complex is an associahedron when D◦ is a triangulation and a Stokes complex

when D◦ is a quadrangulation. In this paper, we provide geometric realizations (by polytopes
and fans) of the accordion complex of any reference dissection D◦, generalizing known construc-

tions arising from cluster algebras.

keywords. Permutahedra · Zonotopes · Associahedra · g-, c- and d-vectors.

The (n−3)-dimensional associahedron is a simple polytope whose face poset is isomorphic to the
reverse inclusion poset of non-crossing subsets of diagonals of a convex n-gon. Introduced in early
works of D. Tamari [Tam51] and J. Stasheff [Sta63], it was first realized as a convex polytope
by M. Haiman [Hai84] and C. Lee [Lee89], and later constructed by more systematic methods
developed by several authors, in particular [GKZ08, Lod04, HL07, CSZ15]. Various relevant
generalizations of the associahedron were introduced and studied, in particular secondary polytopes
and fiber polytopes [GKZ08, BFS90], generalized associahedra [FZ03b, CFZ02, HLT11, Ste13, Hoh]
in connection to cluster algebras [FZ02, FZ03a], graph associahedra [CD06, Pos09, FS05, Zel06,
Pil13, MP17], or brick polytopes [PS12, PS15].

In a different context, Y. Baryshnikov [Bar01] introduced the simplicial complex of crossing-free
subsets of the set of diagonals of a polygon that are in some sense compatible with a reference
quadrangulation Q◦. Although the precise definition of compatibility is a bit technical in [Bar01],
it turns out that a diagonal is compatible with Q◦ if and only if it crosses a connected subset of
diagonals of Q◦ that we call accordion of Q◦. We thus call Y. Baryshnikov’s simplicial complex
the accordion complex AC(Q◦). A polytopal realization of AC(Q◦) was announced in [Bar01],
but the explicit construction and its proof were never published as far as we know. Revisiting
some combinatorial and algebraic properties of AC(Q◦), F. Chapoton [Cha16, Intro. p.4] raised
three explicit challenges: first prove that the oriented dual graph of AC(Q◦) has a lattice struc-
ture extending the Tamari and Cambrian lattices [MHPS12, Rea06]; second construct geometric
realizations of AC(Q◦) as fans and polytopes generalizing the known constructions of the associ-
ahedron; third show that the facets of AC(Q◦) are in bijection with other combinatorial objects
called serpent nests [Cha16, Sect. 4].

In [GM16], A. Garver and T. McConville defined and studied the accordion complex AC(D◦) of
any reference dissection D◦ (their presentation slightly differs as they use a compatibility condition
on the dual tree of the dissection D◦, but the simplicial complex is the same). In this context,
they settled F. Chapoton’s lattice question, using lattice quotients of a lattice of biclosed sets. In
this paper, we present geometric realizations of AC(D◦) for any reference dissection D◦, providing
in particular an answer to F. Chapoton’s geometric question. In fact, we present three methods
to realize AC(D◦) based on constructions of the classical associahedron.

Our first method is based on the g-vector fan. It belongs to a series of constructions of
the (generalized) associahedra initiated by S. Shnider and S. Sternberg [SS93], popularised by
J.-L. Loday [Lod04], developed by C. Hohlweg, C. Lange and H. Thomas [HL07, HLT11] using
works of N. Reading and D. Speyer [Rea06, Rea07, RS09], and revisited by S. Stella [Ste13] and
by V. Pilaud, F. Santos, and C. Stump [PS12, PS15]. It was recently extended by C. Hohlweg,
V. Pilaud, and S. Stella [HPS18] to construct an associahedron parametrized by any initial trian-
gulation. Here, we first extend to the D◦-accordion complex AC(D◦) the g-vectors and c-vectors
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defined in the context of cluster algebras by S. Fomin and A. Zelevinski [FZ07]. Note that c-
vectors were already implicitly considered in [GM16], while g-vectors are new in this context.
When D◦ is a triangulation, our definitions coincide with those given in terms of triangula-
tions and laminations for cluster algebras from surfaces by S. Fomin and D. Thurston [FT12].
We then show that the g-vectors with respect to the dissection D◦ support a complete sim-
plicial fan Fg(D◦) realizing the D◦-accordion complex AC(D◦). Finally, we construct a D◦-
accordiohedron Acco(D◦) realizing the g-vector fan Fg(D◦) by deleting inequalities from the facet
description of the D◦-zonotope Zono(D◦) obtained as the Minkowski sum of all c-vectors. See
Figure 7 for an illustration of D◦-accordiohedra.

Our second method is based on the d-vector fan. This construction is inspired from the original
cluster fan of S. Fomin and A. Zelevinsky [FZ03a] later realized as a polytope by F. Chapoton,
S. Fomin and A. Zelevinsky [CFZ02], and from the generalization of C. Ceballos, F. Santos and
G. Ziegler [CSZ15] to construct a compatibility fan and an associahedron from any initial triangu-
lation. For any reference dissection D◦, we associate to each diagonal a d-vector which records the
crossings of this diagonal with those of D◦. We show that the d-vectors support a complete sim-
plicial fan realizing the D◦-accordion complex AC(D◦) if and only if D◦ contains no even interior
cell. The polytopality of the resulting fan remains open in general, but was shown for arbitrary
triangulations in [CSZ15].

Finally, our third method is based on projections of associahedra. Namely, for any dissection D◦
and triangulation T◦ such that D◦ ⊆ T◦, the accordion complex AC(D◦) is a subcomplex of the
simplicial associahedron AC(T◦). It turns out that the g-vector fan Fg(D◦) is then a section of
the g-vector fan Fg(T◦) by a coordinate subspace. Therefore, the accordion complex AC(D◦) is
realized by a projection of the associahedron Asso(T◦) of [HPS18]. This point of view provides a
complementary perspective on accordion complexes that leads on the one hand to more concise
but less instructive proofs of combinatorial and geometric properties of the accordion complex
(pseudomanifold, g-vector fan, accordiohedron), and on the other hand to natural extensions to
coordinate sections of the g-vector fan in arbitrary cluster algebras.

As recently observed in [GM16, PPP17, PPS17, BDM+17], accordion complexes are prototypes
of support τ -tilting complexes introduced in [AIR14], for certain associative algebras called gentle
algebras. In this context, g-vectors have a deep algebraic meaning and still define a g-vector
fan. Although this fan is still polytopal for finite support τ -tilting complexes, it is not in general
obtained by deleting inequalities in the facet description of a zonotope. We refer to [PPP17, Part 4]
for details.

The paper is organized as follows. Section 1 introduces the accordion complex and accordion
lattice of a dissection D◦. We essentially follow the definitions and arguments of A. Garver and
T. McConville [GM16], except that we prefer to work on the dissection D◦ rather than on its
dual graph. Section 2 is devoted to the generalization of the g-vector fan and the associahedra
of [HL07, HPS18]. Section 3 discusses the generalization of the construction of the d-vector fan and
associahedra of [FZ03a, CSZ15]. Finally, Section 4 shows that the accordion complex is realized
by a projection of a well-chosen associahedron and presents related questions on cluster algebras,
subcomplexes of the cluster complex, and sections of the g-vector fan.

1. The accordion complex and the accordion lattice

In this section, we define the accordion complex AC(D◦) of a dissection D◦, show that it is
a pseudomanifold, and define an orientation of its dual graph. Our definitions and proofs are
essentially translations of the arguments of A. Garver and T. McConville [GM16] given in terms
of the dual tree of the dissection D◦. However our presentation in terms of dissections is more
convenient for our purposes.

1.1. The accordion complex. Let P be a convex polygon. We call diagonals of P the segments
connecting two vertices of P. This includes both the internal diagonals and the external diagonals
(or boundary edges) of P. A dissection of P is a set D of non-crossing internal diagonals of P. The
cells of D are the closures of the connected components of P minus the diagonals of D. A triangu-
lation (resp. quadrangulation) is a dissection whose cells are all triangles (resp. quadrangles).
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Figure 1. A dissection D (left) and three accordions whose zigzags are bolded (middle and right).

We denote by D the dissection D together with all boundary edges of P. A cut of D is the
subset of D intersected by a line crossing two boundary edges of P. An accordion is a connected
cut. By definition, an accordion is a tree and contains two boundary edges of P. The zigzag of an
accordion A is the chain obtained by deleting all degree 1 vertices of A. A subaccordion of D is a
connected subset of D intersected by a segment in the interior of P. Note that any subaccordion
of an accordion A consists of the diagonals of A between two internal diagonals of A. Note that
we include boundary edges of P in the accordions of D, but not in the subaccordions nor in the
zigzags of D. See Figure 1.

We consider 2n points on the unit circle labeled clockwise by 1◦, 2•, 3◦, 4•, . . . , (2n− 1)◦, (2n)•.
We say that 1◦, . . . , (2n−1)◦ are the hollow vertices while 2•, . . . , (2n)• are the solid vertices. The
hollow polygon is the convex hull P◦ of 1◦, . . . , (2n − 1)◦ while the solid polygon is the convex
hull P• of 2•, . . . , (2n)•. We simultaneously consider hollow diagonals δ◦ (with two hollow ver-
tices) and solid diagonals δ• (with two solid vertices), but we never consider diagonals with one
hollow vertex and one solid vertex. Similarly, we consider hollow dissections D◦ (of the hollow
polygon, with only hollow diagonals) and solid dissections D• (of the solid polygon, with only solid
diagonals), but never mix hollow and solid diagonals in a dissection. To help distinguish them,
hollow (resp. solid) vertices and diagonals appear red (resp. blue) in all pictures.

We fix an arbitrary reference hollow dissection D◦. A solid diagonal δ• is a D◦-accordion
diagonal if the hollow diagonals of D◦ crossed by δ• form an accordion of D◦. In other words,
δ• cannot enter and exit a cell of D◦ using two non-incident diagonals. For example, note that
for any hollow diagonal i◦j◦ ∈ D◦, the solid diagonals (i − 1)•(j − 1)• and (i + 1)•(j + 1)• are
D◦-accordion diagonals (here and throughout, labels are considered modulo 2n). In particular, all
boundary edges of the solid polygon are D◦-accordion diagonals. A D◦-accordion dissection is a
set of non-crossing internal D◦-accordion diagonals. We define the D◦-accordion complex to be
the simplicial complex AC(D◦) of D◦-accordion dissections.

Example 1. As a running example, we consider the reference dissection Dex
◦ of Figure 2 (left).

Examples of maximal Dex
◦ -accordion dissections are given in Figure 2 (right). The Dex

◦ -accordion
complex is illustrated in Figure 3 (left).
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Figure 2. A hollow dissection Dex
◦ , a solid Dex

◦ -accordion diagonal whose corresponding hollow
accordion is bolded, and two maximal solid Dex

◦ -accordion dissections.
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Figure 3. The Dex
◦ -accordion complex (left) and the Dex

◦ -accordion lattice (right), oriented from
bottom to top, for the reference hollow dissection Dex

◦ of Figure 2 (left).

Example 2. Special reference hollow dissections D◦ give rise to special accordion complexesAC(D◦):
� If D◦ is the empty dissection with the whole hollow polygon as unique cell, then the

D◦-accordion complex AC(D◦) is reduced to the empty D◦-accordion dissection.
� If D◦ has a unique internal diagonal, then the D◦-accordion complex AC(D◦) consists of

only two points.
� For a hollow triangulation T◦, all solid diagonals are T◦-accordions, so that the T◦-accor-

dion complex AC(T◦) is the simplicial associahedron.
� For a hollow quadrangulation Q◦, a solid diagonal is a Q◦-accordion if and only if it does not

cross two opposite edges of a quadrangle of Q◦. The Q◦-accordion complex AC(Q◦) is thus
the Stokes complex defined by Y. Baryshnikov [Bar01] and studied by F. Chapoton [Cha16].

Remark 3. Following the original definition of the non-crossing complex of A. Garver and T. Mc-
Conville [GM16], the accordion complex could equivalently be defined in terms of the dual tree D?

◦
of D◦ (with one node in each cell of D and one edge connecting two adjacent cells). More precisely,
the duality provides the following dictionary between the two definitions:

present paper A. Garver and T. McConville [GM16]
reference dissection D◦ ←→ embedded tree D?

◦
diagonal u•v• of P• ←→ path connecting the leaves u?• and v?• of D?

◦
D◦-accordion diagonal ←→ arc (path where any two consecutive edges belong to the

boundary of a face of the complement of D?
◦ in the unit disk)

D◦-subaccordion ←→ segment
D◦-accordion complex ←→ non-crossing complex of D?

◦

The g-, c- and d-vectors defined in Section 2.1 could as well be defined in terms of D?
◦. In fact,

c-vectors were already implicitly considered in [GM16], while g- and d-vectors are new in this
context. For this paper, we find more convenient to work directly with dissections, in particular
in Sections 3 and 4.

1.2. Two structural observations. Before studying the accordion complex in details in Sec-
tion 1.3, we present two simple structural observations. For this, let us recall two classical notions
on simplicial complexes. The join of two simplicial complexes ∆,∆′ with disjoint ground sets X,X ′

is the simplicial complex ∆ ∗∆′ with ground set X tX ′ whose faces are disjoint unions of faces
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of ∆ with faces of ∆′. For a face D in a simplicial complex ∆ on X, the link of D is the simplicial
complex on X r D whose faces are the subsets D′ of X r D such that D ∪D′ is a face of ∆.

Proposition 4. If the reference hollow dissection D◦ has a cell containing p boundary edges of the
hollow polygon P◦, then the D◦-accordion complex AC(D◦) is the join of p accordion complexes.

Proof. Assume that D◦ has a cell C◦ containing p boundary edges of the hollow polygon P◦.
Let C1

◦, . . . ,C
p
◦ denote the p (possibly empty) connected components of the hollow polygon mi-

nus C◦. For i ∈ [p] := {1, . . . , p}, let Di
◦ denote the dissection formed by the cell C◦ together with

the cells of D◦ contained in the closure of Ci◦. Observe that for i 6= j, the internal diagonals

of Di
◦ are not incident to the internal diagonals of Dj

◦. Thus, no D◦-accordion can contain internal

diagonals from distinct dissections Di
◦ and Dj

◦. Therefore, the set of D◦-accordion diagonals is
the union of the sets of Di

◦-accordion diagonals for i ∈ [p]. Moreover, for i 6= j, the Di
◦-accordion

diagonals do not cross the Dj
◦-accordion diagonals. It follows that the D◦-accordion complex is

the join of the Di
◦-accordion complexes: AC(D◦) = AC(D1

◦) ∗ · · · ∗ AC(D
p
◦). �

Remark 5. In view of Proposition 4, we can do the following reductions:

(i) If a non-triangular cell of D◦ has two consecutive boundary edges γ◦, δ◦ of the hollow polygon,
then contracting γ◦ and δ◦ to a single boundary edge preserves the D◦-accordion complex.

(ii) If a cell of D◦ has two non-consecutive boundary edges of the hollow polygon, then the
D◦-accordion complex is a join of smaller accordion complexes.

In all the examples of the paper, we therefore only consider dissections where any non-triangular
cell of D◦ has at most one boundary edge. All of our constructions work in general, but are just
obtained as products or joins of the non-degenerate situation.

Proposition 6. The links in an accordion complex are joins of accordion complexes.

Proof. Consider a D◦-accordion dissection D• with cells C1
•, . . . ,C

p
•. Let Di

◦ denote the hollow
dissection obtained from D◦ by contracting all hollow boundary edges which do not cross Ci•.
Then a diagonal δ• of a cell Ci• is a D◦-accordion diagonal if and only if it is a Di

◦-accordion

diagonal. Moreover, for i 6= j, the diagonals of Ci• do not cross the diagonals of Cj•. It follows that
the link of D• in AC(D◦) is isomorphic to the join AC(D1

◦) ∗ · · · ∗ AC(D
p
◦). �

1.3. Pseudo-manifold. We now prove that the accordion complex AC(D◦) is a pseudomanifold,
i.e. that it is:

(i) pure: all maximal D◦-accordion dissections have the same number of diagonals as D◦, and
(ii) thin: any codimension 1 simplex of AC(D◦) is contained in exactly two maximal D◦-accordion

dissections.

We follow the arguments of A. Garver and T. McConville [GM16] (except that they work on the
dual tree of the dissection D◦). A much more concise but less instructive proof of the pseudoman-
ifold property will be derived from geometric considerations in Remark 60.

Recall that we denote by D◦ the set formed by D◦ together with all boundary edges of the
hollow polygon. An angle u◦v◦w◦ of D◦ is a pair {u◦v◦, v◦w◦} of two consecutive diagonals of D◦
around a common vertex v◦, called the apex. Note that D◦ has 2|D◦|+ n = 2|D◦| − n angles.
Observe also that an accordion A◦ of D◦ can be seen as a sequence of |A◦| − 1 angles where two
consecutive angles are separated by a diagonal of A◦. We say that a solid vertex p• belongs to an
angle u◦v◦w◦ if it lies in the cone generated by the edges v◦u◦ and v◦w◦ of the angle. The main
observation is given in the following statement.

Lemma 7. Let D• be a maximal D◦-accordion dissection, and let p•, q•, r•, s• denote four consec-
utive vertices of a cell C• of D• (with possibly p• = s• if C• is a triangle). Then p• and s• belong
to the same angle of the accordion of D◦ which is crossed by q•r•.

Proof. Let A◦ be the accordion of D◦ which is crossed by q•r•. Assume that p• and s• belong to dis-
tinct angles of A◦. Then they are separated by a diagonal ε◦ of A◦. Therefore, there are two bound-
ary edges q•r• and u•v• of C• with distinct vertices such that the hollow diagonal ε◦ separates the
vertices q•, u• from the vertices r•, v•. Let γ1◦ , . . . , γ

i
◦ = ε◦, . . . , γ

a
◦ (resp. δ1◦, . . . , δ

j
◦ = ε◦, . . . , δ

b
◦)
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increasing
flip

Figure 4. Two maximal D◦-accordion dissection D• (left) and D′• (right) related by the flip of δ•
to δ′•. The angles of D◦ closed by δ• and δ′• are shaded. The flip is oriented from D• to D′•.

denote the diagonals of D◦ crossed by q•r• from q• to r• (resp. crossed by u•v• from u• to v•).

Then the hollow diagonals γ1◦ , . . . , γ
i
◦ = ε◦ = δj◦, . . . , δ

b
◦ which are crossed by q•v• also form an

accordion. It follows that D• is not maximal as we can still include q•v•. �

Consider now an angle u◦v◦w◦ of D◦. In any maximal D◦-accordion dissection D•, the set X•
of diagonals of D• that cross both u◦v◦ and v◦w◦ is non-empty (since it contains the boundary
edge (v − 1)•(v + 1)•) and totally ordered (since the diagonals of D• do not cross). Let δ• be
the largest diagonal of X• (meaning the farthest from v◦). We say that the diagonal δ• closes the
angle u◦v◦w◦. Note that each angle of D◦ is closed by precisely one diagonal of D•. The following
lemma is stated and proved in [GM16] in terms of the dual tree D?

◦ of the dissection D◦.

Lemma 8 ([GM16]). For any maximal D◦-accordion dissection D•, each internal diagonal δ•
of D• closes two angles of D◦ (one apex on each side of δ•) while each boundary edge of the solid
polygon closes one angle of D◦. Therefore the accordion complex AC(D◦) is pure of dimension |D◦|.

Proof. The first sentence is a consequence of Lemma 7: for any four consecutive vertices p•, q•, r•, s•
of a cell of D•, the diagonal q•r• closes the unique angle of the accordion of D◦ crossed by q•r•
that contains the vertices p• and s•. Therefore, q•r• closes precisely two angles (resp. one angle)
of D◦ if it is an internal diagonal (resp. a boundary edge of the solid polygon). We finally obtain
by double-counting that 2|D◦| + n = |{angles of D◦}| = 2|D•| + n and thus |D•| = |D◦| for any
maximal D◦-accordion dissection D•. �

We are now ready to prove that the D◦-accordion complex is thin, i.e. that each internal
diagonal of a maximal D◦-accordion dissection can be flipped into a unique other internal diagonal
to form a new maximal D◦-accordion dissection. Here and throughout the paper, X4Y denotes
the symmetric difference of two sets X,Y defined by X4Y := (X r Y ) ∪ (Y rX).

The following notations are illustrated in Figure 4. Let D• be a maximal D◦-accordion dissection
and δ• be a diagonal of D•. Let u◦ and v◦ be the apices of the angles of D◦ closed by δ•, let µ• and ν•
denote the edges of the cells of D• containing δ•, which separate δ• from u◦ and v◦ respectively,
and let Q• denote the quadrilateral defined by the four vertices of µ• and ν•. Note that δ• is a
diagonal of Q•, and let δ′• denote the other diagonal.

Lemma 9 ([GM16]). With the previous notations, the collection of diagonals D′• := D•4{δ•, δ′•} is
a maximal D◦-accordion dissection, and D• and D′• are the only maximal D◦-accordion dissections
containing D• r {δ•}. In other words, the accordion complex AC(D◦) is thin.

Proof. We first observe that δ′• is a D◦-accordion diagonal, since the edges of D◦ crossed by δ′• are
obtained by merging three subaccordions of D◦: the subaccordion formed by the diagonals of D◦
crossed by µ• but not δ• nor ν•, the subaccordion formed by the diagonals of D◦ crossed by δ•,
µ• and ν•, and the subaccordion formed by the diagonals of D◦ crossed by ν• but not δ• nor µ•.
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Moreover, δ• and δ′• are the only D◦-accordion diagonals compatible with D• r {δ•}. Indeed,
any other such diagonal would cross δ• and δ′• (by maximality of D• and D′•), and thus also the
subaccordion A◦ of D◦ crossed by δ• and δ′• (because it cannot cross µ and ν). But it would then
improperly intersect the two cells of D◦ containing precisely one diagonal of A◦. �

The D◦-accordion flip graph is the dual graph AFG(D◦) of the D◦-accordion complex: its ver-
tices are the maximal D◦-accordion dissections, and its edges are the flips between them, i.e. the
pairs {D•,D′•} of maximal D◦-accordion dissections with D•r{δ•} = D′•r{δ′•}. See Figure 3 (right).

1.4. The accordion lattice. We now define a natural orientation on the D◦-accordion flip graph.
We use the same notations as in Lemma 9 (see also Figure 4), where D•r{δ•} = D′•r{δ′•} and δ•, δ

′
•

are the two diagonals of the quadrilateral defined by µ•, ν•. Observe that one of the path µ•δ•ν•
and µ•δ

′
•ν• forms a Zwhile the other forms a Z, see Figure 4. We then orient the flip from the

dissection containing the Zto that containing the Z. See Figure 3 (right) for an illustration of
D◦-accordion oriented flip graph (where the graph is oriented from bottom to top).

A. Garver and T. McConville introduced a natural closure on sets of D◦-subaccordions, and
showed that the inclusion poset of biclosed sets of D◦-subaccordions is a well-behaved lattice
(namely, semidistributive, congruence-uniform and polygonal). Then, they introduced a lattice
quotient map from biclosed sets of D◦-subaccordions to maximal D◦-accordion dissections, which
imply the following statement.

Theorem 10 ([GM16]). The D◦-accordion oriented flip graph is the Hasse diagram of a lattice,
that we call the D◦-accordion lattice and denote by AL(D◦).

In particular, the D◦-accordion oriented flip graph is connected and acyclic, and has a unique
source D−• := {(i− 1)•(j − 1)• | i◦j◦ ∈ D◦} (obtained by slightly rotating D◦ counterclockwise)
and a unique sink D+

• := {(i+ 1)•(j + 1)• | i◦j◦ ∈ D◦} (obtained by slightly rotating D◦ clockwise).

Example 11. Following Example 2, note that special reference hollow dissections D◦ give rise to
special accordion lattices AL(D◦), as it was already observed in [GM16]:

� For a fan triangulation F◦ (i.e. where all internal diagonals are incident to a common
vertex), the F◦-accordion lattice AL(F◦) is the famous Tamari lattice [Tam51, MHPS12]
defined equivalently by slope increasing flips on triangulations of a convex polygon, by
right rotations on binary trees, or by flips on Dyck paths.

� In general, accordion lattices of accordion triangulations (i.e. with no interior triangle)
precisely correspond to type A Cambrian lattices defined by N. Reading [Rea06].

� For an arbitrary triangulation T◦ (with or without interior triangle), the T◦-accordion
oriented flip graph AFG(A◦) is a particular instance of the oriented exchange graphs
of 2-acyclic quivers defined by T. Brüstle, G. Dupont and M. Pérotin [BDP14]. These
oriented exchange graphs are far more general and their transitive closures are in general
not lattices.

� For a quadrangulation Q◦, the Q◦-accordion lattice AL(Q◦) is the Stokes poset on Q◦-com-
patible quadrangulations studied by F.Chapoton [Cha16].

The following statement is a direct consequence of Proposition 4.

Proposition 12. If the reference hollow dissection D◦ has a cell containing p boundary edges of
the hollow polygon P◦, then the D◦-accordion lattice AL(D◦) is a Cartesian product of p accordion
lattices.

Proof. Consider the dissections D1
◦, . . . ,D

p
◦ as in the proof of Proposition 4. Since any increasing

flip in AC(D◦) is an increasing flip in one of the AC(Di
◦), we obtain that the D◦-accordion lattice

is the Cartesian product of the Di
◦-accordion lattices: AL(D◦) = AL(D1

◦)× · · · × AL(Dp
◦). �

In particular, if two consecutive boundary edges γ◦, δ◦ of the hollow polygon belong to the
same non-triangular cell of D◦, then contracting γ◦ and δ◦ to a single boundary edge preserves
the D◦-accordion lattice. This shows the following statement conjectured for quadrangulations
in [Cha16] and proved in [BMP16].
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Corollary 13. Consider an accordion dissection A◦, i.e. a dissection where each cell has at most
2 edges which are internal diagonals of P◦. Then the A◦-accordion lattice is a Cambrian lattice.

Remark 14. Call cell-sequence of a dissection the sequence whose ith entry is its number
of (i+ 2)-cells. For example, the dissection of Figure 2 (left) has cell-sequence 3, 1, 0∞ and all
(p+2)-angulations of a (pm+2)-gon have cell-sequence 0p−1,m, 0∞. Observe that the flip preserves
the cell-sequence. Thus, all maximal D◦-accordion dissections have the same cell-sequence as D◦.

We conclude this section with a reciprocity result on accordion dissections.

Proposition 15. Let D◦ be a hollow dissection and D• be a solid dissection. Then D• is a maximal
D◦-accordion dissection if and only if D◦ is a maximal D•-accordion dissection.

Proof. Since D−• := {(i− 1)•(j − 1)• | i◦j◦ ∈ D◦} and D+
• := {(i+ 1)•(j + 1)• | i◦j◦ ∈ D◦} are both

D◦-accordion dissections, we already know that D◦ is a D−• -accordion dissection. Observe now in
Figure 4 that if D• and D′• are maximal D◦-accordion dissections connected by a flip, then D◦ is a
D•-accordion dissection if and only if it is a D′•-accordion dissection. Indeed, if δ• belongs to the
zigzag of the D•-accordion A• of a hollow diagonal δ◦, then δ◦ crosses both µ• and ν•, but then
δ◦ also crosses δ′•, and thus δ◦ crosses the D′•-accordion A•4{δ•, δ′•}. Since the D◦-accordion flip
graph is connected, we obtain that D◦ is a D•-accordion dissection for any maximal D◦-accordion
dissection D•. Finally, maximality follows since all maximal D◦-accordion dissections have |D◦|
diagonals. The equivalence follows by symmetry. �

2. The g-vector fan

In this Section, we construct accordiohedra using g- and c-vectors. Our construction is in the
same spirit as the Cambrian fans of N. Reading and D. Speyer [Rea06, Rea07, RS09] and their
polytopal realizations by C. Hohlweg, C. Lange and H. Thomas [HL07, HLT11], recently extended
in [HPS18] to any initial triangulation, acyclic or not. A different approach to the g-vector fan
together with an alternative polytopal realization will be presented in Section 4.

2.1. g- and c-vectors. Consider a hollow dissection D◦ and a solid dissection D• that are maximal
accordion dissections of each other (see Proposition 15), and let δ◦ ∈ D◦ and δ• ∈ D•. When δ◦
crosses δ•, we let µ◦ and ν◦ be the other diagonals of D◦ crossed by δ• in the two cells of D◦
containing δ◦. We say that δ• slaloms on δ◦ if µ◦δ◦ν◦ forms a path, and we define ε◦

(
δ◦ ∈ D◦ | δ•

)
to be 1, −1, or 0 depending on whether µ◦δ◦ν◦ forms a Z, a Z, or a VI . Similarly we let µ• and ν•
be the other diagonals of D• crossed by δ◦ in the two cells of D• containing δ•, we say that δ◦
slaloms on δ• if µ•δ•ν• forms a path, and we define ε•

(
δ◦ | δ• ∈ D•

)
to be 1, −1, or 0 depending

on whether µ•δ•ν• forms a Z, a Z, or a VI . Note that the sign convention for ε◦
(
δ◦ ∈ D◦ | δ•

)
and ε•

(
δ◦ | δ• ∈ D•

)
is opposite: the reciprocity already observed in Proposition 15 naturally

reverses the orientation. More informally, we exchange the role of hollow and solid dissections
by looking at the picture from the opposite side of the blackboard, which of course reverses the
orientation. Finally, if δ◦ and δ• do not cross, then we let ε◦

(
δ◦ ∈ D◦ | δ•

)
= ε•

(
δ◦ | δ• ∈ D•

)
= 0.

Let (eδ◦)δ◦∈D◦ denote the canonical basis of RD◦ . As in [HPS18], we define the following vectors:

(i) the g-vector of δ• with respect to D◦ is g
(
D◦ | δ•

)
:=
∑
δ◦∈D◦ ε◦

(
δ◦ ∈ D◦ | δ•

)
eδ◦ . We also

define g
(
D◦ |D•

)
:=
{
g
(
D◦ | δ•

) ∣∣ δ• ∈ D•
}

.

(ii) the c-vector of δ• ∈ D• with respect to D◦ is c
(
D◦ | δ• ∈ D•

)
:=
∑
δ◦∈D◦ ε•

(
δ◦ | δ• ∈ D•

)
eδ◦ .

We denote by c
(
D◦ |D•

)
:=
{
c
(
D◦ | δ• ∈ D•

) ∣∣ δ• ∈ D•
}

the set of c-vectors of the diagonals

of D• and by C(D◦) :=
⋃

D•
c
(
D◦ |D•

)
the set of all c-vectors with respect to D◦.

Example 16. Consider the hollow dissection Dex
◦ = {3◦7◦, 3◦13◦, 9◦13◦} and the rightmost solid

dissection Dex
• = {2•6•, 2•10•, 10•14•} of Figure 2. Then we have for example

� ε◦
(
3◦13◦ ∈ Dex

◦ | 2•10•
)

= 1 since the path 1◦ − 3◦ − 13◦ − 9◦ forms a Z,

� ε◦
(
9◦13◦ ∈ Dex

◦ | 2•10•
)

= −1 since the path 3◦ − 13◦ − 9◦ − 11◦ forms a Z, and

� ε◦
(
3◦13◦ ∈ Dex

◦ | 2•6•
)

= 0 since 3◦ connects 1◦, 13◦, 7◦ as a VI .
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Moreover, we have

g
(
Dex
◦ | 2•6•

)
= e3◦7◦ , c

(
Dex
◦ | 2•6• ∈ Dex

•
)

= e3◦7◦ ,
g
(
Dex
◦ | 2•10•

)
= e3◦13◦ − e9◦13◦ , c

(
Dex
◦ | 2•10• ∈ Dex

•
)

= e3◦13◦ ,
g
(
Dex
◦ | 10•14•

)
= −e9◦13◦ , c

(
Dex
◦ | 10•14• ∈ Dex

•
)

= −e3◦13◦ − e9◦13◦ .

Example 17. For any hollow diagonal i◦j◦ ∈ D◦, we have

g
(
D◦ | (i− 1)•(j − 1)•

)
= −ei◦j◦ , c

(
D◦ | (i− 1)•(j − 1)• ∈ D−•

)
= −ei◦j◦ ,

g
(
D◦ | (i+ 1)•(j + 1)•

)
= ei◦j◦ , c

(
D◦ | (i+ 1)•(j + 1)• ∈ D+

•
)

= ei◦j◦ .

Remark 18. For a hollow triangulation T◦, our definitions of g- and c-vectors coincide with the
shear coordinates of S. Fomin and D. Thurston [FT12], defined in the much more general context
of cluster algebras on surfaces [FST08].

Remark 19. Consider the quiver Q(D◦) of the reference dissection D◦, with one node on each
internal diagonal of D◦ and one arrow between two diagonals counter-clockwise consecutive around
a cell of D◦. Let W(D◦) be the reflection group whose Dynkin diagram is the underlying graph
of Q(D◦). Then all g-vectors of the D◦-accordion diagonals are weights of W(D◦) and all c-vectors
of C(D◦) are roots of W(D◦).

Remark 20. Informally, the g- and c-vectors can be interpreted as follows:

(i) The g-vector g(D◦ | δ•) has coordinate 1 and −1 alternating along the zigzag of the accordion
crossed by δ• in D◦, and coordinate 0 on all other diagonals of D◦.

(ii) The c-vector c(D◦ | δ• ∈ D•) is, up to a sign, the characteristic vector of the diagonals of
the subaccordion of D◦ crossed by both diagonals µ• and ν• of Lemma 9 (see also Figure 4).
Thus, any c-vector is either positive (only non-negative coordinates) or negative (only non-
positive coordinates).

In fact, the g-vectors are clearly in bijection with the accordions and with the zigzags in D◦. In
contrast, many pairs (δ•,D•) produce the same c-vector c(D◦ | δ• ∈ D•). For example, if two dissec-
tions D•,D

′
• contain δ• and have the same cells incident to δ•, then c(D◦ | δ• ∈ D•) = c(D◦ | δ• ∈ D′•).

The set of c-vectors C(D◦) without repetitions can be understood as follows.

Lemma 21. There are bijections between:

� the negative (resp. positive) c-vectors of C(D◦),
� the subaccordions of D◦,
� the D◦-accordion diagonals not in the source dissection D−• := {(i− 1)•(j − 1)• | i◦j◦ ∈ D◦}

(resp. not in the sink dissection D+
• := {(i+ 1)•(j + 1)• | i◦j◦ ∈ D◦}).

Proof. By Remark 20 (ii), the support of any c-vector is a subaccordion of D◦. Reciprocally,
let A◦ be a subaccordion of D◦, let C◦ and C′◦ denote the two cells of D◦ containing exactly
one diagonal of A◦, and let p◦, q◦, r◦, s◦ (resp. p′◦, q

′
◦, r
′
◦, s
′
◦) denote the four consecutive vertices

in clockwise order around C◦ (resp. around C′◦) such that q◦r◦ (resp. q′◦r
′
◦) is the diagonal of A◦

in C◦ (resp. in C′◦). Let δ• := (s−1)•(s
′−1)•, µ• := (p+ 1)•(s

′ − 1)• and ν• := (p′+1)•(s−1)• and
consider any D◦-accordion dissection D• containing {µ•, δ•, ν•}. Then A◦ is precisely the support
of the negative c-vector c(D◦ | δ• ∈ D•). Finally, we have associated to the subaccordion A◦ of D◦
a D◦-diagonal δ• = (s − 1)•(s

′ − 1)• which cannot be in D−• as otherwise s◦s
′
◦ would cross q◦r◦.

Reciprocally, A◦ is precisely the set of diagonals of D◦ crossed by δ• and not incident to s◦ or s′◦. �

The g-vectors and c-vectors are connected in the following two statements, inspired and moti-
vated by classical analogues in cluster algebra theory.

Proposition 22. For any maximal D◦-accordion dissection D•, the set of g-vectors g(D◦ |D•)
and the set of c-vectors c(D◦ |D•) form dual bases.

Proof. Let 〈 · | · 〉 denote the standard Euclidean inner product of RD◦ . Given two solid diag-
onals γ•, δ• of D•, we want to compute 〈g(D◦ | γ•) | c(D◦ | δ• ∈ D•) 〉. By Remark 20 (i), the
g-vector g(D◦ | γ•) has coordinate ±1 alternating along the zigzag Z◦ of the accordion crossed
by γ• in D◦, and coordinate 0 on all other diagonals of D◦. Moreover, by Remark 20 (ii), the
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Figure 5. Illustration of the proof of Proposition 22. The red hollow diagonals form the zigzag
of γ•, and the bolded ones are slaloming on δ•. There are an even number of bolded diagonals
when γ• 6= δ• (left) and an odd number when γ• = δ• (right).

c-vector c(D◦ | δ• ∈ D•) has coordinate ±1 on the diagonals of D◦ which slalom on δ• in D•,
and coordinate 0 on all other diagonals of D◦. We thus need to understand how the diagonals
of Z◦ slalom on δ• in D•. See Figure 5 for a schematic illustration. Observe that there is an even
(resp. odd) number of hollow diagonals of Z◦ that slalom on δ• when δ• 6= γ• (resp. when δ• = γ•).
Moreover, since they are non-crossing, all hollow diagonals of Z◦ slaloming on δ• do it the same
way (either all as a Zor all as a Z). Finally, when γ• = δ•, consider the first hollow diagonal δ◦ of
the zigzag Z◦ which slaloms on δ•. Then δ◦ slaloms on δ• in the opposite way as δ• slaloms on δ◦.
This shows that〈

g
(
D◦ | γ•

) ∣∣ c(D◦ | δ• ∈ D•
) 〉

=
∑
δ◦∈D◦

ε◦
(
δ◦ ∈ D◦ | γ•

)
· ε•
(
δ◦ | δ• ∈ D•

)
= 11γ=δ,

since we sum an even number of alternating ±1 when γ• 6= δ•, and an odd number of alternating ±1
starting by a 1 when γ• 6= δ•. In other words, g(D◦ |D•) and c(D◦ |D•) form dual bases. �

Proposition 23. Let D◦ be a hollow dissection and D• be a solid dissection such that D◦ and D•
are maximal accordion dissections of each other (see Proposition 15). Then

g
(
D◦ |D•

)
= −c

(
D• |D◦

)t
and c

(
D◦ |D•

)
= −g

(
D• |D◦

)t
,

where we consider the sets of g-vectors g(D◦ |D•) and c-vectors c(D◦ |D•) as matrices in RD◦×D• ,
and M t denotes the transpose of a matrix M .

Proof. We immediately derive from the definitions that for any δ◦ ∈ D◦ and δ• ∈ D•,

g
(
D◦ |D•

)
(δ◦,δ•)

= ε◦
(
δ◦ ∈ D◦ | δ•

)
= −ε•

(
δ• | δ◦ ∈ D◦

)
= −c

(
D• |D◦

)
(δ•,δ◦)

,

which shows g(D◦ |D•) = −c(D• |D◦)t. The other equality follows by exchanging D◦ and D•. �

Corollary 24. For any maximal D◦-accordion dissection D•, we have the following sign coherence:

(i) for any δ• ∈ D•, all coordinates of the c-vector c(D◦ | δ• ∈ D•) have the same sign,
(ii) for any δ◦ ∈ D◦, the δ◦-coordinates of all g-vectors g(D◦ | δ•) for δ• ∈ D• have the same sign.

Proof. Point (i) was already seen in Remark 20 (ii), and Point (ii) follows by Proposition 23. �

2.2. c-vector fan and D◦-zonotope. Define the c-vector fan of D◦ to be the complete polyhe-
dral fan Fc(D◦) given by the arrangement of the linear hyperplanes orthogonal to the c-vectors
of C(D◦). Be careful: in contrast to the g- and d-vector fans defined later, the c-vectors are not
the rays of Fc(D◦) but the normal vectors of the hyperplanes supporting the facets of Fc(D◦).

We call D◦-zonotope the Minkowski sum Zono(D◦) of all c-vectors:

Zono(D◦) :=
∑

c∈C(D◦)

c.
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The normal fan of the D◦-zonotope Zono(D◦) is the c-vector fan Fc(D◦). Note that the c-vector
fan is not always simplicial, and thus the D◦-zonotope Zono(D◦) is not always simple. See Figure 7.

Example 25. Consider an accordion dissection A◦ (where each cell has at most 2 edges which are

internal diagonals of P◦). Label its internal diagonals by δ1◦, . . . , δ
|A◦|
◦ such that δk◦ and δk+1

◦ belong
to the same cell of A◦ for all k. Identifying eδk◦ to the simple root fk − fk+1 of type A|A◦|, the

c-vectors of C(A◦) are all roots ±(fi − fj) = ±
∑
i≤k≤j eδk◦ of type A|A◦|. Therefore, the c-vector

fan is the type A|A◦| Coxeter fan and the A◦-zonotope is a permutahedron. More precisely,

Zono(A◦) =
∑

k∈[|A◦|+1]

k(|A◦|+ 1− k) [−eδk◦ , eδk◦ ] = 2Perm(|A◦|)− (|A◦|+ 2)
∑

i∈[|A◦|+1]

fi,

where Perm(|A◦|) := conv
{∑

i∈[|A◦|+1] σ(i) fi
∣∣ σ ∈ S|A◦|+1

}
is the classical permutahedron.

The vertices of Zono(D◦) correspond to separable subsets of C(D◦), i.e. those which can be
strictly separated from their complement by a hyperplane. Although we could work out all facets
of Zono(D◦), we will only need the following specific inequalities.

Proposition 26. For any D◦-accordion diagonal γ•, the D◦-zonotope Zono(D◦) has a facet defined
by the inequality 〈

g
(
D◦ | γ•

) ∣∣ x 〉 ≤ ω(D◦ | γ•),
where ω(D◦ | γ•) is the D◦-height of γ•, i.e. the number of D◦-accordion diagonals that cross γ•.

Proof. Let ω(D◦ | γ•) denote the maximum of 〈g(D◦ | γ•) | x 〉 over Zono(D◦). As Zono(D◦) is the
Minkowski sum of all c-vectors, we have

ω
(
D◦ | γ•

)
=

∑
c∈C(D◦)

〈 g(D◦ | γ•) | c 〉>0

〈
g
(
D◦ | γ•

) ∣∣ c 〉 .
By Remark 20, we have 〈g(D◦ | γ•) | c 〉 ∈ {−1, 0, 1} for any c ∈ C(D◦). We thus just need to count
the distinct c-vectors c such that 〈g(D◦ | γ•) | c 〉 > 0. It turns out that it is more convenient and
equivalent (since C(D◦) = −C(D◦)) to count the distinct c-vectors c such that 〈g(D◦ | γ•) | c 〉 < 0.
For that, let Z◦ denote the zigzag of the accordion crossed by γ• in D◦, and decompose Z◦ = Z−◦ t Z+

◦
such that g(D◦ | γ•) = 11Z+

◦
− 11Z−◦ (where 11X◦ :=

∑
δ◦∈X◦ eδ◦ for X◦ ⊆ D◦).

Let δ• be a D◦-accordion diagonal. Let A−◦ (resp. A+
◦ ) denote the accordion crossed by δ• = u•v•

in D◦ and not including (u + 1)◦ or (v + 1)◦ (resp. (u − 1)◦ or (v − 1)◦). Let c−(δ•) := − 11A−◦
and c+(δ•) := 11A+

◦
. Recall from Lemma 21 that the negative (resp. positive) c-vectors of C(D◦)

are given by c−(δ•) (resp. c+(δ•)) for all D◦-accordion diagonal δ• not in D−• (resp. D+
• ). We let

the reader check that:

� If γ• and δ• do not cross and have no common endpoint, both |Z◦ ∩ A−◦ | and |Z◦ ∩ A+
◦ |

are even. Thus 〈g(D◦ | γ•) | c−(δ•) 〉 = 〈g(D◦ | γ•) | c+(δ•) 〉 = 0.
� If γ• and δ• have a common endpoint, and γ•δ• form a counterclockwise angle, then |Z◦ ∩A−◦ |

is even while Z◦ ∩ A+
◦ is empty or starts and ends in Z+

◦ . Thus 〈g(D◦ | γ•) | c−(δ•) 〉 = 0
while 〈g(D◦ | γ•) | c+(δ•) 〉 ≥ 0. The situation is similar if γ•δ• form a clockwise angle.
� If γ• and δ• cross, Z◦ ∩ A−◦ and Z◦ ∩A+

◦ are empty or start and end both in Z−◦ or both
in Z+

◦ . Thus, either 〈g(D◦ | γ•) | c−(δ•) 〉 < 0 and 〈g(D◦ | γ•) | c+(δ•) 〉 ≥ 0 or conversely.

We conclude from this case analysis that

ω(D◦ | γ•) = | {c ∈ C(D◦) | 〈g(D◦ | γ•) | c 〉 < 0} | = |{D◦-accordion diagonals crossing γ•}|.

Finally, the inequality 〈g(D◦ | γ•) | x 〉 ≤ ω(D◦ | γ•) defines a priori a face F(γ•) of the zono-
tope Zono(D◦). This face F(γ•) is the Minkowski sum of the c-vectors of C(D◦) orthogonal
to g(D◦ | γ•). Proposition 22 ensures that any D◦-accordion dissection D• containing γ• already
provides |D•|−1 linearly independent such c-vectors c(D◦ | δ• ∈ D•) for δ• ∈ D• r {γ•}. We obtain
that F(γ•) has dimension |D•|−1 = |D◦|−1 and is therefore a facet of the zonotope Zono(D◦). �
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Define the half-space and the hyperplane corresponding to a solid D◦-accordion diagonal γ• by

H≤
(
D◦ | γ•

)
:=
{
x ∈ RD◦

∣∣ 〈g(D◦ | γ•) ∣∣ x 〉 ≤ ω(D◦ | γ•)},
and H=

(
D◦ | γ•

)
:=
{
x ∈ RD◦

∣∣ 〈g(D◦ | γ•) ∣∣ x 〉 = ω
(
D◦ | γ•

)}
.

2.3. g-vector fan and D◦-accordiohedron. In this section, we give a geometric realization of
the D◦-accordion complex. We start by realizing this simplicial complex as a complete simplicial
fan in RD◦ . We denote by R≥0R the nonnegative span of a set R of vectors in RD◦ .

Theorem 27. The collection of cones

Fg(D◦) :=
{
R≥0g

(
D◦ |D•

) ∣∣ D• any D◦-accordion dissection
}

forms a complete simplicial fan, that we call the g-vector fan of D◦.

The proof uses the following characterization of complete simplicial fans [DRS10, Coro. 4.5.20].
We will provide as well an alternative proof in Remark 60 based on sections of Cambrian fans.

Proposition 28. Consider a pseudomanifold ∆ on a finite vertex set X and a set of vec-
tors R := (rx)x∈X of Rd. For D ∈ ∆, define the cone RD := {rx | x ∈ D}. The collection of
cones

{
R≥0RD

∣∣ D ∈ ∆
}

forms a complete simplicial fan if and only if

(1) there exists a facet D of ∆ such that RD is a basis of Rd and such that the open cones R>0RD

and R>0RD′ are disjoint for any facet D′ of ∆ distinct from D;
(2) for two adjacent facets D,D′ of ∆ with D r {x} = D′ r {x′}, there is a linear dependence

α rx + α′ rx′ +
∑

y∈D∩D′
βy ry = 0

on RD∪D′ where the coefficients α and α′ have the same sign. (When these conditions
hold, these coefficients do not vanish and the linear dependence is unique up to rescaling.)

Proof of Theorem 27. By Corollary 24, the cone R≥0g(D◦ |D−• ) is the only cone of Fg(D◦) in-
tersecting the interior of the positive orthant (R≥0)D◦ . Consider now two adjacent maximal
D◦-accordion dissections D•,D

′
•. Let δ• ∈ D• and δ′• ∈ D′• be such that D• r {δ•} = D′• r {δ′•},

and let µ• and ν• be the other diagonals as in Lemma 9 (see also Figure 4). Note that a diagonal
of D◦ crosses none of (resp. one of, resp. both) the diagonals δ•, δ

′
• if and only if it crosses none

of (resp. one of, resp. both) the diagonals µ•, ν•. The same holds for a Z or a Zof D◦. There-
fore, we have the linear dependence g(D◦ | δ•) + g(D◦ | δ′•) = g(D◦ |µ•) + g(D◦ |µ•). This shows
that Fg(D◦) satisfies the two conditions of Proposition 28, and thus concludes the proof. �

Remark 29. The linear dependence g(D◦ | δ•) + g(D◦ | δ′•) = g(D◦ |µ•) + g(D◦ |µ•) relating the
g-vectors of two adjacent maximal D◦-accordion dissections D•,D

′
• with D• r {δ•} = D′• r {δ′•}

shows that det
(
g(D◦ |D•)

)
= − det

(
g(D◦ |D′•)

)
. Since the initial cone R≥0g(D◦ |D−• ) is gener-

ated by the coordinate vectors (see Example 17), we obtain that det
(
g(D◦ |D•)

)
= ±1 for all

D◦-accordion dissection D•, so that the g-vector fan Fg(D◦) is always smooth.

By Proposition 22, any non-maximal cone of Fg(D◦) is supported by a hyperplane orthogonal
to a c-vector of C(D◦). We thus obtain the following consequence.

Corollary 30. The g-vector fan Fg(D◦) coarsens the c-vector fan Fc(D◦).

Example 31. Following Example 2, we observe that special reference dissections give rise to the
following relevant fans:

� For an accordion triangulation A◦ (i.e. with no interior triangle), the g-vector fan Fg(A◦)
coincides with a type A Cambrian fan of N. Reading and D. Speyer [RS09].

� For an arbitrary triangulation T◦ (with or without interior triangle), the g-vector fan Fg(T◦)
was recently constructed in [HPS18].

Example 32. Figure 6 illustrates the g-vector fans Fg(D◦) for various reference dissections D◦:
the fan, the snake, and the cyclic triangulation of the hexagon, and a dissection of the heptagon.
More precisely, we have represented the stereographic projection of the fans from the point [ 1, 1, 1 ].
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Figure 6. Stereographic projections of the g-vector fans Fg(D◦) for various reference hollow
dissections D◦. See Figure 9 for alternative simplicial fan realizations of these accordion complexes.

Therefore, the external face of the projection corresponds to the D◦-accordion dissection D−• . We
have labeled all vertices of the projection (i.e. the rays of the fan) by the corresponding D◦-
accordion diagonals.

We now provide a first polytopal realization of the g-vector fan Fg(D◦) (see also Section 4). This
fan has a maximal cone for each maximal D◦-accordion dissection and a ray for each D◦-accordion
diagonal. For a maximal D◦-accordion dissection D•, we define a point p

(
D◦ |D•

)
∈ RD◦ by

p
(
D◦ |D•

)
:=

∑
δ•∈D•

ω
(
D◦ | δ•

)
· c
(
D◦ | δ• ∈ D•

)
,

where ω(D◦ | δ•) still denotes the D◦-height of δ• defined as the number of D◦-accordion diagonals
that cross δ•. We will need the following two technical lemmas in the proof of Theorem 35.

Lemma 33. For any maximal D◦-accordion dissection D•, the point p(D◦ |D•) is the intersection
of all hyperplanes H=(D◦ | δ•) with δ• ∈ D•.



14 THIBAULT MANNEVILLE AND VINCENT PILAUD

Proof. Observe first that the hyperplanes H=(D◦ | δ•) with δ• ∈ D• have a unique intersection
point, since g(D◦ |D•) is a basis. Moreover, since g(D◦ |D•) and c(D◦ |D•) form dual bases by
Proposition 22, we have for any γ• ∈ D•:〈

g
(
D◦ | γ•

) ∣∣ p(D◦ |D•) 〉 =
∑
δ•∈D•

ω
(
D◦ | δ•

)
·
〈
g
(
D◦ | γ•

) ∣∣ c(D◦ | δ• ∈ D•
) 〉

=
∑
δ•∈D•

ω
(
D◦ | δ•

)
· 11γ•=δ• = ω

(
D◦ | γ•

)
. �

Lemma 34. If D•,D
′
• are two adjacent maximal D◦-accordion dissections, and δ• ∈ D• and δ′• ∈ D′•

are such that D• r {δ•} = D′• r {δ′•}, then

c
(
D◦ | δ• ∈ D•

)
= −c

(
D◦ | δ′• ∈ D′•

)
and p

(
D◦ |D′•

)
− p

(
D◦ |D•

)
∈ Z<0 · c

(
D◦ | δ• ∈ D•

)
.

Proof. Let D•,D
′
• be two adjacent maximal D◦-accordion dissections, let δ• ∈ D• and δ′• ∈ D′• be

such that D• r {δ•} = D′• r {δ′•}, and let µ• and ν• be the other diagonals as in Lemma 9 (see
also Figure 4). A quick case analysis then shows that

c
(
D◦ | γ• ∈ D′•

)
=


c
(
D◦ | γ• ∈ D•

)
for all diagonal γ• ∈ D• r {δ•, µ•, ν•},

−c
(
D◦ | δ• ∈ D•

)
if γ• = δ′•,

c
(
D◦ | γ• ∈ D•

)
+ c
(
D◦ | δ• ∈ D•

)
if γ• ∈ {µ•, ν•}.

Summing the contribution of all c-vectors with their coefficients ω(D◦ | γ•), we obtain

p
(
D◦ |D′•

)
− p

(
D◦ |D•

)
=
(
ω
(
D◦ |µ•

)
+ ω

(
D◦ | ν•

)
− ω

(
D◦ | δ•

)
− ω

(
D◦ | δ′•

))
· c
(
D◦ | δ• ∈ D•

)
.

Finally, note that any diagonal of P• that crosses one of (resp. both) the diagonals µ•, ν• also
crosses one of (resp. both) the diagonals δ•, δ

′
•. Moreover, δ• and δ′• cross each other but do not

cross µ• and ν•. It follows that ω(D◦ |µ•) + ω(D◦ | ν•)− ω(D◦ | δ•)− ω(D◦ | δ′•) ≤ −2 < 0. �

Theorem 35. The g-vector fan is the normal fan of the D◦-accordiohedron Acco(D◦) defined
equivalently as

� the convex hull of the points p(D◦ |D•) for all maximal D◦-accordion dissection D•, or
� the intersection of the half-spaces H≤(D◦ | γ•) for all D◦-accordion diagonals γ•.

Thus, the polar dual of Acco(D◦) is a polytopal realization of the D◦-accordion complex AC(D◦).

The proof of Theorem 35 is based on the following characterization of polytopal realizations of
a complete simplicial fan, whose proof can be found e.g. in [HLT11, Thm. 4.1].

Theorem 36. Given a complete simplicial fan F in Rd, consider for each ray r of F a half-
space H≤r of Rd containing the origin and defined by a hyperplane H=

r orthogonal to r. For each
maximal cone C of F , let a(C) ∈ Rd be the intersection of all hyperplanes H=

r with r ∈ C. Then
the following assertions are equivalent:

(i) The vector a(C′)−a(C) points from C to C′ for any two adjacent maximal cones C, C′ of F .
(ii) The polytopes

conv {a(C) | C maximal cone of F} and
⋂

r ray of F

H≤r

coincide and their normal fan is F .

Proof of Theorem 35. The g-vector fan Fg(D◦) has a ray g(D◦ | δ•) for each D◦-accordion diago-
nal δ• and a maximal cone C(D•) = R≥0g(D◦ |D•) for each maximal D◦-accordion dissection D•.
Consider the half-spaces H≤(D◦ | γ•) for all D◦-accordion diagonals γ•. Lemma 33 ensures that the
point a(C(D•)) coincides with p(D◦ |D•) for each maximal D◦-accordion dissection D•. Finally,
Lemma 34 shows that the conditions of application of Theorem 36 are fulfilled. �

Example 37. Following Example 2, observe that special reference hollow dissections give rise to
the following relevant polytopes, illustrated in Figure 7:

� For a fan triangulation T◦, the T◦-accordiohedron Acco(T◦) is the classical associahedron
constructed by S. Shnider and S. Sternberg [SS93] and J.-L. Loday [Lod04].
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Figure 7. The zonotope Zono(D◦), D◦-accordiohedron Acco(D◦) and parallelepiped Para(D◦)
for different reference dissections D◦. The first column is J.-L. Loday’s associahedron [Lod04],
the second column is one of C. Hohlweg and C. Lange’s associahedra [HL07], the third column
appeared in a discussion in C. Ceballos, F. Santos and G. Ziegler’s survey on associahedra [CSZ15,
Fig. 3] and was explained in C. Hohlweg, V. Pilaud and S. Stella’s recent paper [HPS18], and the
last column is a Stokes complex discussed by F. Chapoton in [Cha16] and illustrated in Figure 3.

� The A◦-accordiohedra Acco(A◦) for all accordion triangulations A◦ are precisely the asso-
ciahedra constructed by C. Hohlweg and C. Lange in [HL07].

� For a triangulation T◦ with an interior triangle, the T◦-accordiohedron Acco(T◦) was
recently constructed in [HPS18]. For example, for the triangulation of the hexagon with
an interior triangle, this associahedron appeared as a mysterious realization in [CSZ15].

� For a quadrangulation Q◦, the Q◦-accordiohedron Acco(Q◦) is a realization of the Stokes
polytope announced by Y. Baryshnikov [Bar01] and discussed by F. Chapoton in [Cha16].

We conclude this section by an immediate consequence of Theorem 35. To our knowledge, this
property of accordion complexes was not observed before. However, using the connection between
accordion complexes and support τ -tilting complexes [GM16, PPP17, PPS17, BDM+17], it can
also be obtained from [DIJ17, Thm. 1.7].

Corollary 38. For any reference dissection D◦, the D◦-accordion complex AC(D◦) is shellable.
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2.4. Some properties of Acco(D◦). We conclude this section by pointing out some relevant
combinatorial and geometric properties and observations on the D◦-accordiohedron.

Proposition 39. The graph of the D◦-accordiohedron Acco(D◦) linearly oriented in the direc-
tion −11 := −

∑
δ◦∈D◦ eδ◦ is the Hasse diagram of the accordion lattice AL(D◦).

Proof. Consider two adjacent maximal D◦-accordion dissections D•,D
′
• such that the flip from D•

to D′• is increasing. Let δ• ∈ D• and δ′• ∈ D′• be such that D• r {δ•} = D′• r {δ′•}. As observed
in Remark 20 (ii), the c-vector c(D◦ | δ• ∈ D•) is the characteristic vector 11A◦ of the set A◦ of
diagonals of D◦ crossed by both δ• and δ′•. Applying Lemma 34, we therefore obtain that〈
−11

∣∣ p(D◦ |D′•)− p
(
D◦ |D•

) 〉
=
〈
−11

∣∣ λ · c(D◦ | δ• ∈ D•
) 〉

= λ · 〈 −11 | 11A◦ 〉 = −λ · |A◦|,

for some λ ∈ Z<0. Thus, the linear functional −11 indeed orients the edge [p(D◦ |D•),p(D◦ |D′•)]
from p(D◦ |D•) to p(D◦ |D′•). �

Remark 40. Since the c-vector fan Fc(D◦) refines the g-vector fan Fg(D◦), there is a natural pro-
jection π from the vertices of the D◦-zonotope Zono(D◦) to that of the D◦-accordiohedron Acco(D◦).
In analogy to the acyclic case, one could hope to obtain the accordion lattice as a lattice quotient
through this projection. However, the transitive closure of the graph of the D◦-zonotope Zono(D◦)
oriented in the direction −11 is not a lattice in general (the first counter-example is the dissection
with a central square surrounded by 4 triangles). As shown in [GM16], the right objects are not the
separable subsets of c-vectors (i.e. the vertices of Zono(D◦)) but the biclosed subsets of c-vectors.

Proposition 41. The accordiohedron Acco(D◦) has precisely |D◦| pairs of parallel facets.

Proof. Two facets of Acco(D◦) are parallel if and only if the corresponding g-vectors are opposite.
We therefore want to prove that the pairs of opposite coordinate vectors are the only pairs of
opposite g-vectors. Assume by contradiction that there exist two hollow diagonals δ◦, δ

′
◦ ∈ D◦ and

two solid D◦-diagonals δ•, δ
′
• such that g(D◦ | δ•) and g(D◦ | δ′•) have non-zero opposite coordinate

both on δ◦ and δ′◦. Then both δ• and δ′• cross both δ◦ and δ′◦. But this implies that they both
slalom on δ◦ (and on δ′◦) in the same way. Contradiction. �

Recall from Example 17 that the g-vectors of the diagonals of D−• (resp. D+
• ) are the coordinate

vectors (resp. negative of the coordinate vectors). Consider the D◦-parallelepiped

Para(D◦) :=
{
x ∈ RD◦

∣∣ 〈g(D◦ | δ•) | x 〉 | ≤ ω(D◦ | δ•) for all δ• ∈ D−• ∪D+
•
}

defined by the inequalities of the D◦-zonotope Zono(D◦) corresponding to the positive and negative
basis vectors. Our next statement follows from Proposition 41 and is illustrated in Figure 7.

Corollary 42. For any D◦, we have matriochka polytopes: Zono(D◦) ⊆ Acco(D◦) ⊆ Para(D◦).

In fact, each polytope in this chain is obtained by deleting facets from the previous one.
Consider now an isometry σ of the plane that preserves the hollow polygon P◦ and the solid

polygon P•. For any diagonals and dissections δ• ∈ D• and δ◦ ∈ D◦, we have

� δ• is a D◦-accordion diagonal ⇐⇒ σ(δ•) is a σ(D◦)-accordion diagonal,
� D• is a D◦-accordion dissection ⇐⇒ σ(D•) is a σ(D◦)-accordion dissection,
� if Σ : RD◦ → Rσ(D◦) denotes the isometry defined by

(
Σ(x)

)
σ(δ◦)

:= ε(σ)·xδ◦ , (where ε(σ) = 1

if σ is direct and −1 if σ is indirect), then we have

g
(
σ(D◦) |σ(δ•)

)
= Σ

(
g(D◦ | δ•)

)
, c

(
σ(D◦) |σ(δ•) ∈ σ(D•)

)
= Σ

(
c(D◦ | δ• ∈ D•)

)
,

ω
(
σ(D◦) |σ(δ•)

)
= ω

(
D◦ | δ•

)
, and p

(
σ(D◦) |σ(D•)

)
= Σ

(
p(D◦ |D•)

)
.

This immediately implies the following statement.

Proposition 43. Any P◦-preserving isometry σ : R2 → R2 induces an isometry Σ : RD◦ → Rσ(D◦)
with Σ

(
Zono(D◦)

)
= Zono

(
σ(D◦)

)
, Σ
(
Acco(D◦)

)
= Acco

(
σ(D◦)

)
and Σ

(
Para(D◦)

)
= Para

(
σ(D◦)

)
.
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We say that a dissection D is σ-invariant when σ(D) = D. Assume now that σ is a rotation
and D◦ is σ-invariant. We call σ-invariant D◦-accordion complex the simplicial complex ACσ(D◦)
whose vertices are the crossing-free σ-orbits of D◦-accordion diagonals, and whose faces are sets
of such orbits whose union is crossing-free. In other words, the faces of ACσ(D◦) are σ-invariant
D◦-accordion dissections, seen as sets of σ-orbits of diagonals.

Lemma 44. The σ-invariant D◦-accordion complex ACσ(D◦) is a pseudomanifold.

Proof. Assume first that σ is the central symmetry. In this case, there are two possible types of
orbits: the long D◦-accordion diagonals and the centrally symmetric pairs of D◦-accordion diago-
nals. One can check that any facet of ACσ(D◦) has a long diagonal if and only if D◦ has, and has
as many centrally symmetric pairs of diagonals as D◦. Finally, any orbit in any facet of ACσ(D◦)
can be flipped: long diagonals can already be flipped in AC(D◦), and a centrally symmetric pair
of diagonals can be flipped by flipping one after the other its two diagonals in AC(D◦).

Finally, the general statement follows from this special case. Indeed, if σ is not a central
symmetry, let C◦ denote the cell of D◦ containing the center of P◦, let u◦ be a vertex of C◦, let D◦
be the set of diagonals of D◦ whose endpoints are between u◦ and σ(u◦), and let ρ be the central
symmetry around the middle of u◦σ(u◦). Then ACσ(D◦) is isomorphic to ACρ

(
D◦ ∪ ρ(D◦)

)
. �

Let Σ : RD◦ → RD◦ denote the isometry defined by
(
Σ(x)

)
σ(δ◦)

:=xδ◦ and Fix(Σ) denote the

linear subspace of fixed points of Σ. According to the previous discussion, a maximal D◦-accordion
dissection D• is σ-invariant if and only if p(D◦ |D•) ∈ Fix(Σ). We obtain the following statement.

Proposition 45. For a σ-invariant dissection D◦, the polytope Accoσ(D◦) defined equivalently as

� the convex hull of p(D◦ |D•) for all σ-invariant maximal D◦-accordion dissections D•,
� the intersection of the D◦-accordiohedron Acco(D◦) with the fixed space Fix(Σ),

is a polytopal realization of the σ-invariant accordion complex ACσ(D◦).

Proof. Denote by P = conv {p(D◦ |D•) | σ-invariant maximal D◦-accordion dissections D•} and
by Q = Acco(D◦) ∩ Fix(Σ). The inclusion P ⊆ Q is clear since D• is σ-invariant if and only
if p(D◦ |D•) ∈ Fix(Σ). We now prove the reverse inclusion. For that, consider an arbitrary σ-
invariant maximal D◦-accordion dissection D•. Its corresponding point p(D◦ |D•) is a common
vertex of P and Q. Moreover, any edge e of Q incident to p(D◦ |D•) is the intersection of Fix(Σ)
with a face F of Acco(D◦) that corresponds to a σ-invariant D◦-dissection. Since ACσ(D◦) is
a pseudomanifold, this dissection can be refined into another maximal σ-invariant D◦-accordion
dissection D′•. The point p(D◦ |D′•) belongs to F and to Fix(Σ) and thus to e. We conclude that
if v is a common vertex of P and Q, then so are all neighbors of v in the graph of Q. Propagating
this property, we obtain that all vertices of Q are also vertices of P , so that P = Q. Finally, there
is a clear injection from the σ-invariant accordion complex ACσ(D◦) to the boundary complex
of P = Q, thus a bijection (since these complexes are two spheres with the same vertex set). �

3. The d-vector fan

In this section, we discuss the generalization to the D◦-accordion complex of another classical
geometric realization of the associahedron coming from the theory of cluster algebras [FZ02, FZ03a,
CFZ02, CSZ15]. Namely, we define compatibility vectors in analogy with the denominator vectors
of cluster variables, and we characterize the reference dissections D◦ for which these vectors support
a complete simplicial fan realizing the D◦-accordion complex.

3.1. d-vectors. Fix a dissection D◦ of the hollow n-gon. For a hollow diagonal δ◦ = i◦j◦ and a
solid diagonal δ•, we denote by

(δ◦ | δ•) :=


−1 if δ• = (i− 1)•(j − 1)•,

0 if δ• and (i− 1)•(j − 1)• do not cross,

1 if δ• and (i− 1)•(j − 1)• cross.
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For any D◦-accordion diagonal δ•, the d-vector of δ• with respect to D◦ is the vector

d
(
D◦ | δ•

)
=
∑
δ◦∈D◦

(δ◦ | δ•) eδ◦ .

In other words, our d-vector d(D◦ | δ•) records the compatibility of the diagonal δ• with the
dissection D−• . For a D◦-accordion dissection D•, we define d

(
D◦ |D•

)
:=
{
d
(
D◦ | δ•

) ∣∣ δ• ∈ D•
}

.

Example 46. Consider the hollow dissection Dex
◦ = {3◦7◦, 3◦13◦, 9◦13◦} and the rightmost solid

dissection Dex
• = {2•6•, 2•10•, 10•14•} of Figure 2. Its d-vectors are given by

d
(
Dex
◦ | 2•6•

)
= −e3◦7◦ , d

(
Dex
◦ | 2•10•

)
= e9◦13◦ , and d

(
Dex
◦ | 10•14•

)
= e3◦13◦ + e9◦13◦ .

3.2. d-vector fan. We now consider the set of cones{
R≥0d

(
D◦ |D•

) ∣∣ D• any D◦-accordion dissection
}

generated by the d-vectors of the D◦-accordion dissections. We want to characterize the ref-
erence hollow dissections D◦ for which these cones form a complete simplicial fan realizing the
D◦-accordion complex. We start with a negative result. An even interior cell of a dissection D is
a cell with an even number of edges which are all internal diagonals of D.

Proposition 47. If the reference hollow dissection D◦ contains an even interior cell, then the
d-vectors cannot realize the D◦-accordion complex.

Proof. Assume that D◦ contains an even interior cell C◦. Denote its vertices by i1◦, . . . , i
2p
◦

(in clockwise order) and its edges δk◦ := ik◦i
k+1
◦ for k ∈ [2p] (where i2p+1 = i1 by convention).

Denote by Dk
◦ the set of diagonals of D◦ separated form C◦ by δk◦ (including δk◦ itself), and

let Dk
• :=

{
(i− 1)•(j − 1)•

∣∣ i◦j◦ ∈ Dk
◦
}

. Consider the solid diagonals δk• := (ik + 1)•(i
k+1 + 1)•

for k ∈ [2p]. Observe that δk• only crosses diagonals of Dk−1
• and Dk

•, and that δk• and δk+1
• cross

precisely the same diagonals of Dk
•. Since the cell is even, it ensures that the d-vectors of the

diagonals δk• for k ∈ [2p] satisfy the linear dependence∑
k∈[2p]
k even

d
(
D◦ | δk•

)
=
∑
k∈[2p]
k odd

d
(
D◦ | δk•

)
.

However, as already mentioned in Section 1.4, the diagonals δk• for k ∈ [2p] all belong to the
D◦-accordion dissection D+

• := {(i+ 1)•(j + 1)• | i◦j◦ ∈ D◦}. Therefore, the cone R≥0d(D◦ |D+
• )

is degenerate, so that the d-vectors cannot realize the D◦-accordion complex. �

Example 48. Consider a hollow octagon and the reference dissection D◦ := {1◦5◦, 5◦9◦, 9◦13◦, 13◦1◦}
with an interior square cell 1◦5◦9◦13◦. Then we have

d
(
D◦ | 2•6•

)
= e1◦5◦ + e5◦9◦ d

(
D◦ | 6•10•

)
= e5◦9◦ + e9◦13◦

d
(
D◦ | 10•14•

)
= e9◦13◦ + e13◦1◦ d

(
D◦ | 14•2•

)
= e13◦1◦ + e1◦5◦

so that there is already a linear dependence

d
(
D◦ | 2•6•

)
+ d

(
D◦ | 10•14•

)
= d

(
D◦ | 6•10•

)
+ d

(
D◦ | 14•2•

)
among the d-vectors of the D◦-accordion dissection D+

• = {2•6•, 6•10•, 10•14•, 14•2•}.

On the negative side, we have seen that the presence of even interior cells prohibits the d-vectors
from forming a complete simplicial fan. The positive side is that the even interior cells are the
only obstructions.

Theorem 49. The collection of cones

Fd(D◦) :=
{
R≥0d

(
D◦ |D•

) ∣∣ D• any D◦-accordion dissection
}

forms a complete simplicial fan, that we call the d-vector fan of D◦, if and only if D◦ contains no
even interior cell.
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Figure 8. Illustration of the notations and of the different cases in the proof of Theorem 49.

Proof. We use the characterization of complete simplicial fans presented in Proposition 28.
Observe first that d(D◦ |D−• ) = (R≤0)D◦ is the only cone of Fd(D◦) intersecting the interior of

the negative orthant (R≤0)D◦ . Therefore, Fd(D◦) fulfills Condition (1) in Proposition 28.
To check Condition (2), consider two adjacent maximal D◦-accordion dissections D• and D′•

and let δ• ∈ D• and δ′• ∈ D′• be such that D• r {δ•} = D′• r {δ′•}. Let µ• and ν• be the diagonals

of D• ∩ D
′
• as in Lemma 9 (see also Figure 4). In other words, µ• and ν• are incident to both δ•

and δ′•, and they are crossed by the hollow diagonal which intersect δ• and δ′•. Let γ◦ = i◦j◦ be
such a hollow diagonals crossing δ•, δ

′
•, µ• and ν•, and let γ• = (i−1)•(j−1)•. We now distinguish

three cases:

� Assume that γ• still crosses µ• and ν•. In this case, any diagonal of D−• crossing both
(resp. either) δ• and (resp. or) δ′• also crosses both (resp. either) µ• and (resp. or) ν•. See
Figure 8 (left). Therefore, the d-vectors of D• ∪D′• satisfy the linear dependence

d(D◦ | δ•) + d(D◦ | δ′•) = d(D◦ |µ•) + d(D◦ | ν•).

� Assume that γ• crosses neither µ• nor ν•. Then γ• is incident to both µ• and ν•, and
therefore is either δ• or δ′•, say γ• = δ•. Then d(γ◦ | δ•) = −1 while d(γ◦ | δ′•) = 1 (since δ′•
crosses δ• = γ•), so that d(γ◦ | δ•) + d(γ◦ | δ′•) = 0. Moreover, we have d(γ◦ | δ′•) = 0 for
any diagonal ε• ∈ D• ∩ D′• since δ• = γ• cannot cross ε• as they both belongs to D•.
Therefore, the set

{
d(D◦ | δ•) +d(D◦ | δ•)

}
∪d(D◦ |D• ∩D′•) contains |D◦| vectors of RD◦

whose γ◦-coordinate all vanish, so that it admits a linear dependence.

� Otherwise, we can assume that γ• crosses µ• but not ν•. Then γ• has a common endpoint
with ν• and δ• (or δ′•, but we then permute notations). Changing our initial choice of γ◦,
we can assume that no diagonal of D−• separates γ• from δ•. We now denote clockwise

– by ν• =: λ0•, λ
1
•, . . . , λ

`
• := δ• the edges of the cell C• of D• containing ν• and δ•,

– by γ• =: γ0• , γ
1
• , . . . , γ

k
• the edges of the cell C−• of D−• containing γ• and crossed by δ•.

These notations are illustrated on Figure 8. We still distinguish two subcases as in Figure 8:
– If γi• crosses λi• for all i as in Figure 8 (middle), then ` = k and we have the linear

dependence

2d(D◦ | δ•) + d(D◦ | δ′•) = d(D◦ |µ•) +
∑

i∈[`−1]

(−1)(i−1)d(D◦ |λi•).

It is essential here that ` = k is even. This is guarantied by the assumption that D◦
(and thus D−• ) has no even interior cell, since C−• is an interior cell of D−• of size k.

– Otherwise, we are in a situation similar to Figure 8 (right). Considering the maximal
index m such that γi• crosses λi• for all i ≤ m, and we have the linear dependence

d(D◦ | δ•) + d(D◦ | δ′•) = d(D◦ |µ•) +
∑
i∈[m]

(−1)(i−1)d(D◦ |λi•). �



20 THIBAULT MANNEVILLE AND VINCENT PILAUD

Figure 9. Stereographic projections of the d-vector fans Fd(D◦) for various reference hollow
dissections D◦. See Figure 6 for alternative simplicial fan realizations of these accordion complexes.

Example 50. Following Example 2, we observe that special reference dissections give rise to the
following relevant fans:

� For a snake triangulation Z◦, the d-vector fan Fd( Z◦) coincides with the type A cluster
fan of S. Fomin and A. Zelevinsky [FZ03a].

� For any triangulation T◦, the d-vector fan Fd(T◦) was already constructed in [CSZ15].
� For a quadrangulation Q◦ with no interior quadrangle (equivalently, with no cross), we

obtain an alternative realization of the Stokes complexes studied in [Bar01, Cha16]. This
was observed by A.-H. Bateni, T. Manneville and V. Pilaud in [BMP16].

Figure 9 illustrates the d-vector fans Fd(D◦) for the same reference dissections D◦ as in Fig-
ure 6. More precisely, we have represented the stereographic projection of the fans from the
point [−1,−1,−1 ]. Therefore, the external face of the projection corresponds to the D◦-accordion
dissection D−• . We have labeled all vertices of the projection (i.e. the rays of the fan) by the cor-
responding D◦-accordion diagonals. Compare with Figure 6.

Remark 51. To prove that the d-vector fan Fd(D◦) is polytopal, we would need to find suitable
hyperplanes orthogonal to their rays in order to apply Theorem 36. For the g-vector fan, these
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hyperplanes were defined using the height function ω(D◦ | δ•). It would be natural to use the same
height function for the d-vector fan as well. Unfortunately, for this choice of height function, we
can only prove Condition (i) of Theorem 36 when D◦ is a triangulation (see also [CSZ15]). We
were not able to find suitable right hand sides for any dissection D◦.

Remark 52. Our d-vectors record the compatibility with the dissection D−• . A priori, we could
compute compatibility vectors with respect to any other maximal D◦-accordion dissection Dini

• .
Experiments suggest that the d-vector construction provides a complete simplicial fan as long as
neither D◦ nor Dini

• contain no even interior cell. We checked it for reference quadrangulations
with at most 5 diagonals. The linear dependences involved seem however much more complicated
than those of the proof of Theorem 49 (in particular, they may involve d-vectors of diagonals not
included in the cells containing δ• and δ′•).

4. Sections and projections

Recall that for a fan F of Rd and a linear subspace V of Rd, the section of F by V is the
fan F

∣∣
V

:= {C ∩ V | C ∈ F}. For a polytope P ⊆ Rd and a projection π : Rd → V , the normal

fan of the projected polytope π(P ) is the section of the normal fan of P by V [Zie95, Lem. 7.11].
We now consider sections of the g- and d-vector fans by coordinate subspaces. For two dissec-
tions D◦ ⊂ D′◦, we naturally identify RD◦ with the subspace spanned by {eδ◦ | δ◦ ∈ D◦} in RD′◦ .

4.1. Coordinate sections of the d-vector fan. We start by presenting sections of the d-vector
fan which are not very surprising. The following lemma is immediate from the definition of
d-vectors.

Lemma 53. Consider two dissections D◦ ⊂ D′◦, and a D′◦-accordion diagonal δ•. Then we have
d(D◦ | δ•) ∈ RD◦ if and only if δ• does not cross any diagonal of {(i− 1)•(j − 1)• | i◦j◦ ∈ D′◦ r D◦}.

Corollary 54. For two dissections D◦ ⊂ D′◦, the face complex of the section of the d-vector
fan Fd(D′◦) by RD◦ is isomorphic to the link of the dissection {(i− 1)•(j − 1)• | i◦j◦ ∈ D′◦ r D◦}
in the D′◦-accordion complex AC(D′◦).

4.2. Coordinate sections of the g-vector fan. More relevant are the sections of the g-vector
fan. They provide an alternative approach to polytopal realizations of the accordion complex
based on projected associahedra. This approach relies on the following crucial observation.

Lemma 55. Consider two dissections D◦ ⊂ D′◦, and a D′◦-accordion diagonal δ•. Then we
have g(D′◦ | δ•) ∈ RD◦ if and only if δ• is a D◦-accordion diagonal. Moreover, in this case, the
g-vectors g(D◦ | δ•) and g(D′◦ | δ•) coincide.

Proof. Let δ◦ ∈ D′◦ r D◦. By definition, a D′◦-accordion diagonal δ• does not slalom on δ◦ if and
only if the δ◦-coordinate of g(D◦ | δ•) vanishes. Thus, δ• is a D◦-accordion diagonal if and only if
the δ◦-coordinate of g(D′◦ | δ•) vanishes for all δ◦ ∈ D′◦ r D◦. �

Based on this lemma, we obtain in the following statements an alternative realization on the
g-vector fan, which is illustrated on Figure 10.

Theorem 56. For two dissections D◦ ⊂ D′◦, the g-vector fan Fg(D◦) is precisely the set of
cones

{
C ∈ Fg(D′◦)

∣∣ C ⊂ RD◦
}

and coincides with the section of the g-vector fan Fg(D′◦) by RD◦ .

Proof. Lemma 55 immediately implies that Fg(D◦) =
{
C ∈ Fg(D′◦)

∣∣ C ⊂ RD◦
}

. A priori, it is a

subfan of the section Fg(D′◦)
∣∣
RD◦ =

{
C ∩ RD◦

∣∣ C ∈ Fg(D′◦)
}

. However, since Fg(D◦) is already

a complete simplicial fan of RD◦ , it coincides with Fg(D′◦)
∣∣
RD◦ . �

Theorem 57. For two dissections D◦ ⊂ D′◦, the g-vector fan Fg(D◦) is realized by the orthogonal
projection of the D′◦-accordiohedron Acco(D′◦) on RD◦ , which is equivalently described by:

� the convex hull of the points
∑
δ•∈D• ω(D′◦ | δ•) · c(D◦ | δ• ∈ D•) for all D◦-accordion dis-

sections D•,
� the intersection of the half-spaces

{
x ∈ RD◦

∣∣ 〈g(D◦ | γ•) | x 〉 ≤ ω(D′◦ | δ◦)
}

for all D◦-accor-
dion diagonals γ•.
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Proof. Since Fg(D′◦) is the normal fan of Acco(D′◦), Theorem 56 implies that Fg(D◦) = Fg(D′◦)
∣∣
RD◦

is the normal fan of the orthogonal projection of Acco(D′◦) on RD◦ [Zie95, Lem. 7.11]. We there-
fore just need to prove the given vertex and facet descriptions of this projection. First, since
Fg(D◦) = Fg(D′◦)

∣∣
RD◦ , the inequalities of the projection of Acco(D′◦) on RD◦ are just the inequal-

ities of Acco(D′◦) whose normal vectors are in RD◦ . Finally, the vertex description follows from
the inequality description using the same argument as in Lemma 33. �

Remark 58. The projection of the accordiohedron Acco(D′◦) on RD◦ differs from the accordiohe-
dron Acco(D◦): they have both Fg(D◦) as normal fan, but their precise geometry is different.

Corollary 59. For any hollow dissection D◦, the g-vector fan Fg(D◦) is realized by a projection
of an associahedron of [HPS18].

Proof. Apply Theorem 57 to any triangulation T◦ that refines D◦. �

Remark 60. Approaching accordion complexes as coordinate sections of g-vector fans actually
provides more concise (but also less instructive) proofs for Sections 1.3 and 2.3. Namely, consider
any dissection D◦ and let T◦ be a triangulation that refines D◦. The sign coherence property for
triangulations (see Corollary 24) shows that the section Fg(T◦)

∣∣
RD◦ =

{
C ∩ RD◦

∣∣ C ∈ Fg(T◦)
}

actually coincides with
{
C ∈ Fg(T◦)

∣∣ C ⊂ RD◦
}

. Therefore, this gives an alternative concise

proof that the collection of cones
{
C ∈ Fg(T◦)

∣∣ C ⊂ RD◦
}

forms a complete simplicial fan. More-
over, this fan has the same combinatorics as the D◦-accordion complex AC(D◦) by Lemma 55. We
conclude directly that AC(D◦) is a pseudomanifold realized by the fan

{
C ∈ Fg(T◦)

∣∣ C ⊂ RD◦
}

and by the orthogonal projection of the associahedron Asso(T◦) on RD◦ .

4.3. Cluster algebra analogues. The perspective on accordion complexes developed in this
section also opens the door to generalizations on arbitrary cluster algebras (finite type or not).
Namely, consider an arbitrary cluster X◦ = (x1◦, . . . , x

m
◦ ) in an arbitrary cluster algebra A. For

any cluster variable y ∈ A, we denote by g(X◦ | y) ∈ Rm and d(X◦ | y) ∈ Rm the g- and d-vectors
of y computed with respect to X◦, see [FZ02, FZ07]. Fix a non-empty proper subset I of [m]. We
consider two natural subcomplexes of the cluster complex of A:

� the subcomplex ∆d(X◦, I) induced by the variables y such that d(X◦ | y)i = 0 for all i ∈ I,
� the subcomplex ∆g(X◦, I) induced by the variables y such that g(X◦ | y)i = 0 for all i ∈ I.

It is well-known that the subcomplex ∆d(X◦, I) is the cluster complex obtained by freezing all
variables xi for i ∈ I. For example in type A, it is a join of simplicial associahedra and it can
therefore be realized by a product of smaller associahedra. In contrast, we do not know whether the
subcomplex ∆g(X◦, I) has been investigated. The present paper dealt with the type A situation.

Example 61. Let T◦ be a triangulation, with internal diagonals labeled by 1, . . . ,m. Consider
the corresponding type Am cluster X◦. Then for any non-empty proper subset I of [m], the

Figure 10. Projecting accordiohedra on coordinate planes yields smaller accordiohedra.
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subcomplex ∆g(X◦, I) is isomorphic to the D◦-accordion complex, where D◦ is the dissection
obtained by deleting in T◦ the diagonals labeled by I.

Example 62. Example 61 extends to cluster algebras on surfaces [FST08, FT12], using accordions
of dissections of surfaces.

The following statement extends Theorem 56 to arbitrary cluster algebras.

Theorem 63. The subset
{
C ∈ Fg(X◦)

∣∣ C ⊆ R[m]rI} of the g-vector fan Fg(X◦) of X◦ coin-

cides with the section Fg(X◦)
∣∣
R[m]rI =

{
C ∩ R[m]rI

∣∣ C ∈ Fg(X◦)
}

.

Proof. The inclusion
{
C ∈ Fg(X◦)

∣∣ C ⊆ R[m]rI} ⊆ Fg(X◦)
∣∣
R[m]rI is clear. For the reverse in-

clusion, we use the sign coherence property of g-vectors in cluster algebras, which was conjec-
tured in [FZ07, Conj. 6.13] and proved in [GHKK, Thm. 5.1] in general. This property implies
that the coordinate plane R[m]rI intersects any cone C of Fg(X◦) in a face C ′. This shows
that C ∩ R[m]rI = C ′ belongs to

{
C ∈ Fg(X◦)

∣∣ C ⊆ R[m]rI}. �

Corollary 64. The subcomplex ∆g(X◦, I) induced by the variables y such that g(X◦ | y)i = 0 for
all i ∈ I is a pseudomanifold.

Moreover, extending the result of C. Hohlweg, C. Lange and H. Thomas [HLT11] in the acyclic
case, C. Hohlweg, V. Pilaud and S. Stella recently constructed a polytope Asso(X◦) realizing the g-
vector fan Fg(X◦) in [HPS18]. We can use this associahedron to realize the subcomplex ∆g(X◦, I)
as a convex polytope, extending Theorem 57.

Corollary 65. The orthogonal projection of Asso(X◦) on R[m]rI is a realization of ∆g(X◦, I).

Finally, when oriented in the suitable direction v (the sum of the positive roots, or equivalently
the sum of the fundamental weights), the graph of the generalized associahedron Asso(X◦) is the
Hasse diagram of a Cambrian lattice [Rea06]. One can similarly orient the graph of the projection
of Asso(X◦) on R[m]rI in the direction of the projection of v on R[m]rI . Is the resulting graph the
Hasse diagram of a lattice? Combining the results of [GM16] with that of the present paper shows
that this property holds in type A. We also computationally verified the statement in types B4,
B5, D4 and D5. Following [GM16] it seems promising to construct first a lattice structure on
biclosed sets of c-vectors, and to obtain then the graph of the projection of Asso(X◦) on R[m]rI

as the Hasse diagram of a lattice quotient.
To conclude, let us mention that the ideas developed in this section have also inspired further

investigation of sections of g-vector fans of support τ -tilting complexes of associative algebras,
see [PPS17] and [PPP17, Sect. 4.2.6].
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