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Abstract
The formation and differentiation of planetary bodies are thought to involve
magma oceans stages. We study the case of a planetary mantle crystallizing
upwards from a global magma ocean. In this scenario, it is often considered
that the magma ocean crystallizes more rapidly than the time required for
convection to develop in the solid cumulate. This assumption is appealing since
the temperature and composition profiles resulting from the crystallization of
the magma ocean can be used as an initial condition for convection in the
solid part. We test here this assumption with a linear stability analysis of the
density profile in the solid cumulate as crystallization proceeds. The interface
between the magma ocean and the solid is a phase change interface. Convecting
matter arriving near the interface can therefore cross this boundary via melting
or freezing. We use a semi-permeable condition at the boundary between the
magma ocean and the solid to account for that phenomenon. The timescale with
which convection develops in the solid is found to be several orders of magnitude
smaller than the time needed to crystallize the magma ocean as soon as a few
hundreds kilometers of cumulate are formed on a Mars- to Earth-size planet.
The phase change boundary condition is found to decrease this timescale by
several orders of magnitude. For a Moon-size object, the possibility of melting
and freezing at the top of the cumulate allows the overturn to happen before
complete crystallization. The convective patterns are also affected by melting
and freezing at the boundary: the linearly most-unstable mode is a degree-1
translation mode instead of the approximately aspect-ratio-one convection rolls
found with classical non-penetrative boundary conditions. The first overturn
of the crystallizing cumulate on Mars and the Moon could therefore be at the
origin of their observed degree-1 features.

Keywords: magma ocean, overturn, mantle dynamics, linear stability

1. Introduction1

A common scenario considered for the formation of terrestrial planets is the2

crystallization of a global magma ocean from the bottom-up, because the liq-3
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uidus of silicate magmas increases with pressure more steeply than the isentropic4

temperature, at least at low to moderate mantle pressure (Andrault et al., 2011;5

Fiquet et al., 2010; Thomas and Asimow, 2013; Boukaré et al., 2015). The6

crystallization of the surface magma ocean is expected to be rapid, around 17

Myr (e.g. Abe, 1997; Lebrun et al., 2013). This has led several authors to as-8

sume convection in the solid part of the crystallizing mantle does not start until9

the mantle is entirely crystallized (e.g. Hess and Parmentier, 1995; Abe, 1997;10

Parmentier et al., 2002; Elkins-Tanton et al., 2003, 2005; Zhang et al., 2013).11

However, this assumption deserves scrutiny since the compositional and thermal12

structure of the mantle after complete crystallization could be widely different13

if solid-state convection does set in during its crystallization.14

Two processes might lead to the destabilization of the solid mantle during its15

crystallization. First, assumming fractional crystallization, the surface magma16

ocean gets enriched in incompatible elements. As a secondary result, the new17

solid formed at the solid/liquid boundary gets richer and richer in these elements18

as crystallization progresses. Iron is such an element and its abundance is such19

that it affects significantly the density of both the solid and the liquid. The solid20

formed at the end of the crystallization is richer in iron than the solid formed at21

the beginning of the crystallization, leading to an unstable setup with material22

denser at the top than at the bottom of the solid mantle.23

The second process that can further destabilize the solid mantle is the tem-24

perature gradient in the solid. The solidus temperature increases with pressure,25

and is steeper than the isentropic temperature profile. Assuming the tempera-26

ture in the solid stays close to the solidus, the resulting profile is hence unstable.27

This effect is enhanced by fractional crystallization and the associated enrich-28

ment of the solid in incompatible elements: their presence further decreases the29

solidus temperature and the compositional gradient discussed above induces an30

even steeper solidus.31

Numerical simulations including these processes suggest it is possible for32

solid-state convection to set in prior to the entire crystallization of the surface33

magma ocean (e.g. Maurice et al., 2017; Boukaré et al., 2018). Whether con-34

vection in the mantle starts during or after the crystallization of the surface35

magma ocean is found to have profound implications on the preservation of36

compositional heterogeneities as well as the dynamics of the mantle (Ballmer37

et al., 2017; Tosi et al., 2013). These results further confirm the need to assess38

the parameters controlling the onset of convection in the primitive mantle.39

A dynamical feature of the solid cumulate in contact with a magma ocean40

that has not been accounted for in the past studies is the possibility of exchange41

of matter at the boundary between the solid and the ocean via melting and42

freezing. We use a boundary condition developed for the inner core boundary43

(Deguen et al., 2013) to take this effect into account. This boundary condition44

is expected to have important effects on the convection pattern and heat flux45

as well as the timescale with which convection sets in (Deguen, 2013; Labrosse46

et al., 2018).47

Our aim is to assess how the timescale at which convection starts in the48

solid cumulate compares with the time needed to crystallize a surface magma49
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ocean. Different scenarios are explored to determine the parameters controlling50

the onset of convection in the magma ocean cumulate. We consider the case51

where fractional crystallization happens during the entire cooling history of the52

magma oceans as well as the case where no compositional fractionation occurs.53

We explore the classical case for which no matter crosses the boundary between54

the magma ocean and the solid cumulate, and also the case with a boundary55

that allows matter transfer accross it. The study is applied to the Earth, Mars,56

and the Moon.57

2. Methods58

We consider a mantle that is initially fully molten and crystallizes from the59

bottom or some intermediate depth upward. The goal of the present study is to60

determine the timescale for convection to start in the solid part of the mantle61

as the magma ocean crystallizes.62

For the sake of simplicity, we assume the compaction length to be small and63

neglect the thickness of a mush layer at the phase change interface. Matter on64

one side of the boundary is entirely liquid while matter on the other side is65

entirely solid. We nonetheless allow for compositional fractionation to occur66

as the mantle crystallizes. The temperature at the solid/liquid boundary is67

denoted Tm and referred to as the melting temperature.68

Depending on how the temperature profile in the magma ocean compares69

with the profile of the melting temperature, two situations can occur. Either the70

solidification of the ocean progresses from the bottom up, or the solidification71

starts from an intermediate depth leading to a setup in which the solid part of72

the mantle is surrounded by two magma oceans. In this second scenario, the73

crystallization of the surface magma ocean (SMO) is thought to be a lot faster74

than the crystallization of the basal magma ocean (BMO) (Labrosse et al., 2007).75

We assume the solid mantle is a spherical shell of internal radius R− and76

external radiusR+. Since the crystallization of the BMO is much slower than the77

crystallization of the SMO, we assume R− to be constant even for the case where78

the solid shell is surrounded by two magma oceans. The presence or absence of a79

BMO however affects the boundary condition applied at the bottom boundary80

of the solid mantle (see section 2.4).81

As the magma ocean cools down, R+ increases to reach the total radius of the82

planetary body, denoted by RT . The temperature at the top boundary of the83

solid follows the melting temperature. The composition of the solid changes as84

well with the radius if we assume fractional crystallization occurs. For the sake85

of simplicity, we only consider fractionation of iron. The mass fraction of FeO,86

denoted by C, varies between 0 (e.g. Forsterite) and 1 (e.g. Fayalite). Although87

simplistic, such a model allows us to study the effect of the density gradient88

due to fractional crystallization on the dynamics of the solid. Figure 1 shows89

the composition and temperature profiles at two different times. We assume90

the velocity of the freezing front Ṙ+ does not vary laterally and that the SMO91

is well mixed, the temperature and compositional fields in the resulting solid92
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Figure 1: Temperature and composition reference profiles. Solid lines are the profiles at time
t, dashed lines the profiles at time t + δt. The green area is the solid mantle at time t. The
yellow area represents the part of the surface magma ocean (SMO, in red) that has crystallized
during δt. All the annotations on the axes are written at time t (see table 1 for the meaning of
symbols). Notice how the melting temperature decreases between the two instants owing to
the enrichment in iron of the surface magma ocean. The slopes of the curves are exaggerated
for readability purpose.

hence only vary with the radial position (as long as no solid-state convection93

operates).94

In this section, we introduce the simple phase diagram we use to compute the95

resulting temperature and composition profiles in the solid under the assumption96

that no convection occurs in the solid (section 2.1). This serves as base state97

which stability against overturning motion is studied. We don’t treat the full98

dynamics of the overturn but compute, using a linear stability analysis, the99

growth rate of an overturning instability to compare it to the crystallization100

rate of the magma ocean. The latter is computed using a magma ocean cooling101

model which gives R+ as a function of time, as described in section 2.2.102

2.1. Composition and temperature reference profiles103

Under the assumption that no convection occurs during crystallization, one104

can determine the resulting temperature and compositional profiles in the cu-105

mulate. These profiles are used as reference profiles in order to perform the106

linear stability analysis (section 2.5).107
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Symbol Description Earth Moon Mars
Input parameters

R− Internal radius of the solid shell 3871 km∗ 737 km 2090 km
RT Total radius of the planet 6371 km 1737 km 3390 km
T − Temperature at the bottom boundary† 4500K 1500K 2400K
T∞ Black body equilibrium temperature 255K 255K 212K
ε Emissivity¶ 10−4 1 10−3

g Gravity acceleration 9.81m/s2 1.62m/s2 3.71m/s2

RaS Rayleigh number of SMO 1030 1028 5× 1028

α Thermal expansion coefficient 10−5 K−1

Cp Heat capacity 103 JK−1

κ Thermal diffusivity 10−6 m2/s
Lh Latent heat 4× 105 J kg−1

σ Stefan-Boltzmann constant 5.67× 10−8 Wm−2K−4

ρ Reference density 4× 103 kg/m3

Δρm Solid/liquid density contrast 2× 102 kg/m3

η Viscosity in the solid 1018 Pa s
Cl0 Iron content of the primitive SMO† 0.1
D Solid/liquid partition coefficient of iron‡ 0.6
β Compositional expansion coefficient -0.33

∂Tm/∂P Clapeyron slope 2× 10−8 KPa−1

∂Tm/∂C Dependence of Tm on iron content −700K
Computed dimensional variables

LM Final thickness of solid mantle RT −R− 2500 km 1000 km 1300 km
Tm Melting temperature Tm(P,C) described by eq. (2.4)
T + Temperature at the top boundary T +(t) with eq. (2.5)
Tp Potential temperature at the surface Tp(t) with eq. (2.8)
Ts Temperature at the surface of the planet Ts(t) with eq. (2.9)
R+ External radius of the solid shell R+(t) with eq. (2.10)
L Thickness of the solid shell L = R+ −R−

C0 Iron content of the first solid KCl0 = 0.06
Cl Iron content of the SMO KCl(t) = C+(t) with eq. (2.2)

τStokes Stokes time ηL2/(ΔρgL3
M )

Dimensionless numbers
Ra(t) Thermal Rayleigh number ρgαΔTL3/(ηκ)
Rc(t) Compositional Rayleigh number ρgβL3/(ηκ)

W (t) Freezing front velocity (Peclet number) LṘ+/κ
Γ(t) Thickness of the solid part L/LM

ΓS(t) Thickness of the SMO (RT −R+)/LM

Φ± Phase change number§ 10−2; ∞

Table 1: Symbols used in this paper. All quantities with a + superscript are evaluated at
the top boundary (R+), while quantities with a − superscript are evaluated at the bottom
boundary (R−). ¶ The emissivity values for the Earth and Mars are chosen so that the
crystallization time scale of the SMO is of the order of 1 Myr (Lebrun et al., 2013). For
the Moon, we neglect the effects of the atmosphere and assume a black body cooling. ∗ This
choice assumes a 400 km thick basal magma ocean. Using R− = 3471 km does not change
significantly the results. † From Andrault et al. (2011), ‡ from Andrault et al. (2012). § 10−2:
flow-through, ∞: non-penetrative. For the Moon and Mars, the possibility of a BMO is not
considered and Φ− = ∞ (see section 2.4 for details).5



We consider a magma ocean crystallizing from some depth R− up to its top108

radius RT . The mass fraction of the heavy component (FeO) is C(r) in the solid109

and Cl(t) in the liquid, assuming that no diffusion (nor convection) operates in110

the solid (therefore C does not depend on time) and convection mixes the liquid111

efficiently (therefore Cl depends only on time). At the freezing front, the phase112

relation is113

C(R+(t)) = DCl(t) (2.1)

with D the partition coefficient (considered constant) and R+(t) the time-114

evolving radius of the freezing interface.115

Assuming the magma ocean undergoes fractional crystallization, the com-116

position profile in the cumulate is exponential. At the radial position r it is117

C(r) =




C0

�
RT

3−(R−)3

RT
3−r3

�1−D

if r < Rs

1 if r > Rs,
(2.2)

with118

Rs =

�
(R−)3C

1
1−D

0 +RT
3

�
1− C

1
1−D

0

��1/3

(2.3)

the value of R+ at which Cl reaches 1 (see appendix A for more details).119

Since the diffusion timescale is much larger than the other time scales con-120

sidered here, we assume the temperature profile in the cumulate stays close to121

the melting temperature. We take into account variations of the melting tem-122

perature Tm due to both the pressure and the composition. A higher concentra-123

tion in iron leading to a lower melting temperature, the resulting temperature124

profile in the solid is steeper than a constant-concentration solidus when frac-125

tional crystallization is accounted for (Figure 1). The melting temperature Tm126

verifies:127
dTm
dr

=
∂Tm
∂P

∂P

∂r
+

∂Tm
∂C

∂C

∂r
. (2.4)

With ∂P

∂r
= −ρg and eq. (2.2), one obtains128

dTm
dr

= −ρg
∂Tm
∂P

+ 3C(1−D)
r2

RT
3 − r3

∂Tm
∂C

. (2.5)

For the sake of simplicity, we assume ∂Tm
∂P

and ∂Tm
∂C

to be constant (see table 1129

for values).130

We denote T = T − Tisen the superisentropic temperature in the solid, with131

Tisen = T − exp

�
αg(R− − r)

Cp

�
(2.6)

the isentropic temperature profile in the solid, with α the coefficient of ther-132

mal expansion, g the acceleration of gravity and Cp the heat capacity. We133
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assume the variations of α, Cp and g with depth to be negligible. The reference134

superisentropic temperature (denoted T̄ ) gradient is then:135

dT̄

dr
= −ρg

∂Tm
∂P

+3C(1−D)
r2

RT
3 − r3

∂Tm
∂C

+
αg

Cp
T − exp

�
αg(R− − r)

Cp

�
. (2.7)

2.2. Crystallization time scale136

Assuming the temperature profile in the SMO to be isentropic and neglecting137

variations of α, g and Cp with depth, the potential temperature at the surface is:138

Tp = T + exp

�−αg(RT −R+)

Cp

�
. (2.8)

Note that we are neglecting the temperature drop across the boundary layer at139

the bottom of the magma ocean. This is justified by the very small viscosity of140

the magma and the main buoyancy force coming from cooling to the atmosphere141

at the top surface.142

King et al. (2012) showed that the scaling law for the heat flux in a ro-143

tating fluid (such as the surface magma ocean) depends on how the quantity144

RaSE
3/2
S =

αgΔTν1/2

κ(2Ω)3/2
compares to 1, with ES the Ekman number and RaS145

the Rayleigh number in the SMO. A conservative lower bound with the ther-146

mal expansivity α ∼ 10−5 K−1, the gravity g ∼ 10m/s2, the super-isentropic147

temperature difference ΔT ∼ 1K, the kinematic viscosity ν ∼ 10−5 m2/s,148

the thermal diffusivity κ ∼ 10−6 m2/s and the rotation rate Ω ∼ 10−4 s−1 is149

RaSE
3/2
S ∼ 105 � 1. We then consider the heat flux is not controlled by rota-150

tion and scales as Nu = 0.16Ra
2/7
S Γ

6/7
S with ΓS = (RT −R+)/L the dimension-151

less thickness of the SMO (King et al., 2012). Note that this scaling does not152

depend on the Prandtl number in the range of values explored by King et al.153

(2012), i.e. 1 � Pr � 100. Since Pr ∼ 10 is a reasonable value for a magma154

ocean, we assume this scaling holds for our study. We neglect variations of RaS155

with time and assume the magma ocean behaves like a gray body at its upper156

surface. Heat flow conservation at the surface gives the following equation for157

the surface temperature Ts:158

k(Tp − Ts)
LM

0.16Ra
2/7
S Γ

−1/7
S = εσ(T 4

s − T 4
∞) (2.9)

where T∞ is the black body equilibrium temperature, σ is the Stefan-Boltzmann159

constant and ε the emissivity. The emissivity should depend on the atmosphere160

dynamics and composition (particularly its water content) and vary with time.161

Taking this effet into account would require an atmosphere model (e.g. Abe,162

1997; Lebrun et al., 2013). For the sake of simplicity, we assume the emissivity163

to be constant, tuning its value to obtain a crystallization timescale that matches164

the ones of Lebrun et al. (2013) (see table 1 for values).165

As the SMO crystallizes (i.e. R+ increases with time), we assume the tem-166

perature at the top of the solid mantle T + follows the solidus (eq. (2.5)), and167
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the temperature profile in the SMO follows an isentropic profile. As R+ grows,168

two phenomena produce heat that should be evacuated: the crystallization it-169

self with an associated latent heat Lh, and the cooling of the magma ocean.170

Assuming this heat is entirely evacuated through radiation in the atmosphere171

modeled as a gray body, one obtains the following equation:172

εσR2
T (T 4

s −T 4
∞) = ρLhR

+2 dR+

dt
−ρCp

d

dt

�� RT

R+

T + exp

�
αg(R+ − r)

Cp

�
r2dr

�
.

(2.10)
The last term of this equation can be developed (keeping in mind that the lower173

bound of the integral R+ depends on time). This yields the time derivative174

of T +, which is written as a derivative with respect to R+ using the chain175

rule. One obtains an ordinary differential equation on R+(t) whose numerical176

integration gives the position of the interface between the solid and the surface177

magma ocean as a function of time.178

2.3. Set of dimensionless equations179

L = R+ − R−, L2
M/κ, κ/L, ηL3/κ, ΔT = T− − T+ are used as scales for180

length, time, velocity, mass and temperature respectively. Note that R+ and T+181

vary with time as the surface magma ocean crystallizes. LM = RT −R− is the182

thickness of the solid mantle once the SMO is entirely crystallized. Note that183

all scales depend on time except the one for time itself, which is why Γ = L/LM184

appears in the following equations. The dimensionless radial position is built185

as 1 + (r − R−)/L so that it is between 1 and 2 at all times. Similarly, the186

dimensionless temperature is chosen as (T − T+)/ΔT so that it is between 0187

and 1 at all times.188

Using the same symbols for dimensionless quantities, dimensionless conser-
vation equations of mass, momentum, heat and iron fraction are written as:

∇ · u = 0 (2.11)
0 = −∇p+∇2u+Ra (Θ− �Θ�) r̂+Rc (c− �c�) r̂ (2.12)

Γ2 ∂Θ

∂t
+ u ·∇(Θ+ T̄ )−∇2Θ = W

�
(r − 1)

∂Θ

∂r
+

�
∂ T̄

∂r

�+

Θ

�
(2.13)

Γ2 ∂c

∂t
+ u ·∇(c+ C̄) = W (r − 1)

∂c

∂r
. (2.14)

u is the velocity field, p the dynamic pressure, Θ the temperature perturbation189

with respect to the reference profile T̄ and c the composition perturbation with190

respect to the reference profile C̄. �x� denotes the lateral average of the quantity191

x. Ra is the thermal Rayleigh number, Rc is the compositional Rayleigh number.192

The terms on the right hand side of eqs. (2.13) and (2.14) are due to the time193

dependence of the scales L andΔT , which brings new advection terms associated194

with the change of frame, with W = LṘ+/κ the dimensionless velocity of the195

freezing front. See table 1 for the definition and values of the various symbols.196
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Note that these equations are written under the assumption that Ṙ− = 0.197

Other terms would appear on the right hand side of eqs. (2.13) and (2.14) in the198

general case involving the crystallization of a basal magma ocean. For Earth’s199

case, we assume the basal ocean crystallizes much slower than the surface ocean,200

and as such we neglect Ṙ− (Labrosse et al., 2007). We assume the diffusion of the201

compositional field is negligible since the diffusion coefficient of composition is202

much smaller than that of heat. Moreover, diffusion of T̄ is neglected while that203

of Θ is retained in order to ease the linear stability analysis. This is justified a204

posteriori by the fact that the diffusion timescale is much longer than the other205

timescales considered in this study.206

2.4. Phase change boundary condition207

In the classical Rayleigh-Bénard setup, convecting matter arriving near an208

horizontal boundary forms a topography whose height is limited by the weight209

viscous forces can sustain. This topography is often neglected and a non-210

penetrative boundary condition is assumed at the interface (ur(R
+) = 0). How-211

ever, in the system studied here, the boundary between the magma ocean and212

the cumulate is a phase change interface. A topography of the solid with respect213

to the equilibrium position of the solid/liquid interface can then be eroded by214

melting or freezing. Provided that the melting/freezing time is short compared215

to the time needed to build the topography by viscous forces, it is thus possible216

to have a non-zero normal velocity accross the interface. This is taken into ac-217

count with the help of the boundary condition introduced for the inner core by218

Deguen et al. (2013). This boundary condition, which translates the continuity219

of normal stress across the interface, is written in dimensional form as:220

Δρmgτφur + 2η
∂ur

∂r
− p = 0. (2.15)

where Δρm is the density difference between the solid and liquid phases and τφ221

is the phase change timescale. Note that our definition of the dynamic pressure222

(defined here as p = P−�P �) differs from that of p̂ used by Deguen et al. (2013).223

The laterally constant term ΔρmgτφṘ is thus included in p instead of explicitly224

appearing in the boundary condition. The dimensionless form of the boundary225

condition is226

±Φ±ur + 2
∂ur

∂r
− p = 0 (2.16)

where Φ is the phase change number defined as:227

Φ± =
|Δρm|±gLτφ

η
(2.17)

(the superscript + denotes the interface between the SMO and the solid at R+228

while the superscript − denotes the interface between the BMO and the solid at229

R−). Moreover, the continuity of tangential stress is simply written as a classic230

free-slip boundary condition.231
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The phase change timescale τφ is related to the time needed to transport232

latent heat in the magma ocean from the areas that freeze to the areas that233

melt (Deguen et al., 2013):234

τφ =
ρLh

(ρ−Δρm)2Cp(∂PTm − ∂PTisen)gu� (2.18)

where u� is the velocity scale in the magma ocean. A reasonable value for the235

latter is u� ∼ 1m s−1 (Lebrun et al., 2013). Using nominal values for the other236

parameters, we find that τφ ∼ 104 s. Plugging this in the expression of the phase237

change parameter eq. (2.17) yields Φ ∼ 10−5.238

The phase change number Φ compares the phase change timescale τφ (i.e.239

the time needed to erode topography via melting and freezing) to the viscous240

timescale (i.e. the time needed to build topography with viscous forces). The241

value of Φ allows to tune continuously the boundary condition between a non-242

penetrative classical condition (Φ → ∞) and a fully permeable condition (Φ →243

0). Although this number should depend on time since L depends on time and244

τφ depends also on time but in a non trivial way, it is kept constant in this245

study. Two extreme values are tested for the SMO/solid interface: Φ = ∞246

which leads to the classical non-penetrative boundary condition and Φ = 10−2247

which leads to a flow-through boundary (we use this value rather than 10−5248

because the resolution of radial modes is more computationally demanding as Φ249

decreases, while the overturn timescale is not affected as shown in the results).250

For the Earth, these two values are also considered at the bottom of the solid,251

accounting for the possible presence of a basal magma ocean (BMO, Labrosse252

et al., 2007). For Mars and the Moon, we do not consider the possibility of a253

BMO and the bottom interface is hence non-penetrative, ur(R
−) = 0. Rather254

than being realistic, these extreme constant values are used to study how the255

possibility of melting and freezing at the interface affects the stability of the256

solid, both in terms of onset time of overturn and preferred mode of motion.257

The estimated nominal value being Φ ∼ 10−5, we expect the real system should258

be closer to the flow-through case than to the classical non-penetrative case.259

2.5. Determination of overturn timescale260

We start from a completely molten primitive mantle (R+ = R− and T + =261

T −). We numerically integrate eq. (2.10) to obtain R+ as a function of time (the262

potential surface temperature Tp and the surface temperature Ts are computed263

using eq. (2.8) and eq. (2.9)).264

At each timestep of this integration, we compute the reference tempera-265

ture and composition profiles in the solid as shown in section 2.1 as well as266

the dimensionless numbers Ra(t), Rc(t), W (t) and Γ(t). Using a Chebyshev-267

collocation approach (e.g. Guo et al., 2012; Canuto et al., 1985), the set of lin-268

earized equations around the reference state is written as an eigenvalue problem269

(see appendix B). Solving numerically this problem yields the growth rate and270

shape of the most unstable mode of overturn. The inverse of that growth rate271

is the timescale for convection to set in in the solid shell. We compute this272

10



timescale at each timestep of the evolution of the SMO. By comparing this273

timescale with the corresponding time in the evolution of the SMO, we can as-274

sess whether convection is able to take place before the entire magma ocean is275

crystallized. Three different models are considered for the bulk of the solid:276

1. full model: compositional, thermal, and moving frame terms are taken277

into account;278

2. thermal model: compositional terms are left out, modeling the ideal case279

where no fractional crystallization occurs and the sources of instability280

are purely thermal (eq. (2.14) and the corresponding buoyancy term in281

eq. (2.12) are ignored);282

3. frozen-time model: moving frame terms (right-hand-side of eqs. (2.13)283

and (2.14)) are left out, resulting in a frozen-time approach where all284

long term evolution terms are ignored when studying the stability of the285

system at a given instant.286

We also compare the timescale obtained by linear stability analysis with the287

Stokes time τStokes = ηL2/(ΔρgL3
M ) computed at each time to check whether288

this time is a relevant proxy of the stability of the solid mantle.289

3. Results290

The destabilization timescales for the Earth, Mars, and the Moon with var-291

ious boundary conditions along with the time needed to crystallize the remain-292

ing SMO are shown on Figure 2. Comparison of the destabilization timescales293

obtained for various bulk setups and boundary conditions yields information re-294

garding their contribution to the destabilization of the solid.295

The simplest cases are the one neglecting the compositional effects on den-296

sity. For such cases, the destabilization timescale tends to infinity for a given297

non-zero thickness of crystallized mantle. This thickness corresponds to the one298

needed for instabilities to overcome diffusion of perturbations of the reference299

state. In other words, it corresponds to the thickness above which the Rayleigh300

number in the solid part is above the critical Rayleigh number. For the Moon,301

this thickness is never reached and the Moon’s mantle stays stable with respect302

to purely thermal convection. For the Earth and Mars, this thickness is reached303

rather early, after ∼ 500 km of solid mantle is formed. As crystallization pro-304

gresses, the thickness and the temperature contrast between the top and the305

bottom of the solid mantle increase. The available buoyancy in the system there-306

fore increases. This leads to a strong decrease of the destabilization timescale,307

which becomes much shorter than the time needed to crystallize the remaining308

surface magma ocean (up to 6 orders of magnitude, depending on which bound-309

ary conditions are considered). This suggests that even in the purely thermal310

case, solid-state convection sets in before the mantle is completely crystallized311

for planets larger than Mars.312

The cases taking compositional effects on density into account are always313

unstable. This contrasts with the purely thermal cases and is due to the fact314

11
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Figure 2: Growth time of the most unstable mode as a function of the crystallized mantle
thickness for the Earth, Mars, and the Moon. The solid black line is the time necessary to
crystallize the remaining surface magma ocean. Colors represent different boundary condi-
tions: both horizontal boundaries non-penetrative (blue); flow-through boundary condition
between the solid and the surface magma ocean to model the possibility of melting and freez-
ing (see section 2.4 for details) (green); and flow-through boundary conditions for both hori-
zontal boundaries assuming the presence of a basal magma ocean (red). Linestyles represent
different approximations regarding compositional effects (fractional crystallization and effect
on density) and moving frame contributions: both are taken into account (solid lines), compo-
sitional effects are neglected (dash-dotted lines), or moving frame terms are neglected (dotted
lines). The black dashed line is the Stokes time for each thickness, given for comparison.

that diffusion of the composition field is neglected. There is no mechanism315

to damp perturbations around the reference state, the latter is hence always316

unstable. Similarly to what is observed for the thermal cases, the destabilization317

timescale drops dramatically as the solid mantle thickens. For the Earth and318

Mars, the destabilization timescale ends up being shorter than the crystallization319

time of the remaining SMO by several orders of magnitude. The case where320

moving frame terms are neglected exhibits a shorter destabilization time scale321

at small thickness. The moving frame terms play a stabilising role only at the322

begining of mantle crystallization for the Earth and Mars but are significant323

through the entire Moon’s mantle crystallization. The stabilising effect of the324

moving terms can be understood from the energy conservation eq. (2.13). Taking325

a temperature perturbation θ > 0 and the associated velocity perturbation326

ur > 0, one can notice there is a competition between the advection term327

ur∂rT̄ < 0 and the moving frame term W (r − 1)∂rθ whose average is negative.328

The same reasoning can be made with a negative perturbation and on the iron329

conservation eq. (2.14).330

For the Moon, the destabilization timescale is always greater than the time331

needed to crystallize the SMO. However, it should be noted that in this study332

the time to crystallize the SMO is computed assuming a well-mixed SMO with a333

surface behaving like a black body. The formation of a light solid crust enriched334

in plagioclase when around 80% of the SMO is crystallized is expected to slow335

down the solidification of the SMO by a few million years (e.g. Elkins-Tanton336

et al., 2011). This would leave enough time for convection to set in in the solid337
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Φ+ = ∞
Φ− = ∞

(a) classical case

Φ− = ∞
Φ+ = 10−2

(b) flow-through at top

Φ+ = 10−2

Φ− = 10−2

(c) flow-through at top and
bottom

Figure 3: Most unstable convection modes for the Earth when a 1700 km thick mantle has
crystallized, for different boundary conditions represented by the values of the Φ parameters
at the top and the bottom, as indicated. The dark zones represent negative temperature
anomalies while the bright zones represent positive temperature anomalies. The stream-
lines are superimposed. Note that the linear stability analysis offers no constraint on the
orientation and amplitude of these modes, only their harmonic degree and radial shape. (a):
both boundaries non-penetrative, the convection rolls have an aspect ratio approximatively
equal to 1; (b): flow-through top boundary, the flow pattern is of spherical harmonic degree
one, the streamlines go through the top boundary but go around the central part; (c): flow-
through conditions at both boundaries, the flow pattern is of spherical harmonic degree one,
the streamlines go through both boundaries, resulting in a translation mode of convection.
Similar behavior is obtained for the other bodies.

since the destabilization timescale we find is much shorter than that.338

The three boundary conditions exhibits different destabilization timescales.339

The case where both boundaries are non-penetrative (which is the case classi-340

cally considered) needs more time to destabilize than the case where the bound-341

ary between the surface magma ocean and the solid allows melting and freezing.342

Convective patterns obtained with a flow-through boundary are substantially343

different than the classical ones (Figure 3). Aspect-ratio-1 rolls are obtained344

with classical boundary conditions. However, when the top boundary allows345

phase change, a spherical-harmonic-degree-1 near-translation mode develops.346

Matter freezes on one side of the spherical shell, goes around the core or basal347

magma ocean, and melts on the other side. In the case with a basal magma348

ocean and its boundary with the solid of flow-through type, matter also crosses349

the inner boundary of the spherical shell, resulting in a true translation mode.350

These two translation modes involve very little or no deformation of the solid351

compared to the classical case, and therefore less viscous forces acting against352

convection. This explains the smaller destabilization timescale associated with353

these modes as well as the lower critical thickness in the purely thermal case.354

Figure 4 shows the transition between the non-penetrative and the flow-355

through regime occurs over a rather short range of values of the phase change356

number. Φ+ � 1 leads to near-translation while Φ+ � 100 leads to classical357

aspect-ratio-one rolls.358

A notable feature on Figure 2 is the steep decrease of the destabilization359
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Figure 4: Destabilization timescale of several harmonics degree (l = 1 to 15) as a function of
the phase change number value for the Earth. The bottom boundary is non-penetrative. Top:
833 km are crystallized (mid-radius r̄ ∼ 4288 km), bottom: 1667 km are crystallized (mid-
radius r̄ ∼ 4704 km). The most unstable mode is the one with the shortest destabilization
timescale. One can notice that in the non-penetrative case (Φ+ → ∞), the most unstable
mode corresponds to aspect-ratio-1 rolls. The typical roll size of the most unstable mode (r̄π/l)
is roughly 900 km for the top case (l = 15) and 1850 km for the bottom case (l = 8). However,
with a flow-through boundary (Φ+ → 0), the most unstable mode is the near-translation
mode for both cases.
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Figure 5: Ratio between the destabilization timescale obtained for the purely compositional
case τC (thermal terms are left out) and the timescale obtained for the purely thermal case τT
(compositional terms are left out). When this ratio is above one, it means the thermal reference
profile is more unstable than the compositional reference profile. The Moon is not shown
here since the purely thermal case is never unstable (τT → ∞). The colors are the same as in
Figure 2, blue: non-penetrative condition for both horizontal boundaries (Φ± = ∞); green:
flow-through condition at the boundary between the solid and the surface magma ocean; and
red: flow-through condition at both horizontal boundaries.

timescales at the end of the crystallization when compositional terms are taken360

into account. That decrease is due to the strong (i.e. very unstable) compo-361

sitional gradient appearing at the end of the crystallization. It does not affect362

the destabilization timescale obtained with non-penetrative boundary condi-363

tions; this can be explained by the fact that the strong compositional gradient364

is in a very thin layer at the top of the domain where vertical velocities vanish,365

and therefore does not contribute to the driving of the down- and up-welling366

currents.367

A comparison between the purely thermal and purely compositional cases for368

the Earth and Mars is shown on Figure 5. The ratio between the destabilization369

timescales for theses two cases is 0 before the critical thickness for the purely370

thermal case is reached. For Mars, the compositional profile is always more371

unstable than the thermal profile and controls the destabilization timescale of372

the system. For the Earth, however, the ratio between the two cases is fairly373

close to 1 for a large part of the crystallization history: neither the thermal nor374

the compositional profile dominates the destabilization timescale of the system.375

Figure 6 shows that the destabilization timescale τLSA is proportional to the376

Stokes time τStokes = ηL2/(ΔρgL3
M ). Two effects alter this relation: moving377

frame terms whose effects are not included in the Stokes time, and the strong378

compositional gradient at the end of the crystallization whose effects depend379
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Figure 6: Growth time of the most unstable mode versus the Stokes time for the Earth,
Mars, and the Moon. The solid line is the destabilization timescale obtained with the linear
stability analysis τLSA (case with all terms accounted for). The dashed lines correspond to
τLSA ∝ τStokes. Composition, temperature and moving frame terms are all taken into account.
The colors are the same as in Figure 2, blue: non-penetrative condition for both horizontal
boundaries (Φ± = ∞); green: flow-through condition at the boundary between the solid and
the surface magma ocean; and red: flow-through condition at both horizontal boundaries.

on the boundary condition. It should be noted that the ratio τLSA/τStokes de-380

pends on the body and the boundary conditions considered. Notably, permeable381

boundary conditions lead to a decrease of τLSA.382

4. Discussion383

We showed for the Earth and Mars that the growth timescale of convective384

instabilities in a crystallizing mantle from the bottom up is several orders of385

magnitude smaller than the time needed to fully crystallize that mantle. This386

holds even without taking into account fractional crystallization and the un-387

stable density gradient it induces. This contrasts with the assumptions made388

in several studies (Hess and Parmentier, 1995; Elkins-Tanton et al., 2003; Tosi389

et al., 2013) where the overturn is assumed to take place because of the compo-390

sitionally induced density gradient after the entire mantle is crystallized. The391

numerical simulations performed by Ballmer et al. (2017) for Earth-like objects392

lead to a destabilization of the solid after a few Myr, and those performed by393

Maurice et al. (2017) for Mars-like objects lead to a destabilization after roughly394

1 Myr. These times are not easily comparable to the timescales we compute via395

linear stability analysis since the physical problems are different in non-trivial396

ways: the simulations of Ballmer et al. (2017) are in a 2D aspect-ratio-1 carte-397

sian box, those of Maurice et al. (2017) are in cylindrical geometry with a vari-398

able viscosity, a melt extraction mechanism and a solidus temperature that de-399

pends only on pressure. However, despite these differences, the destabilization400

time uncovered by these simulations are rather similar to the one we predict for401

the non-penetrative cases: of the order of 1 Myr for the Earth and 0.5 Myr for402
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Mars. This confirms the linear growth rate of instabilities is a relevant proxy403

for the timescale at which convection sets in.404

Moreover, allowing transfer of matter via melting and freezing at the inter-405

face between the solid and the surface magma ocean reduces dramatically the406

timescale with which solid-state convection can set in. It also changes the shape407

and harmonic degree of the most unstable mode: a degree-one translation mode408

is preferred. Therefore, the possibility of melting and freezing at the interface409

should be accounted for when studying the overturn of the primitive mantle of410

planetary bodies. For example, the case of the Moon is an interesting potential411

application. This body has a strong dichotomy: the near-side presents more412

mare basalts, more KREEP material, and a thinner crust than the far-side.413

Wasson and Warren (1980) already proposed that such features could be due to414

a slower cooling of the lunar magma ocean on the near side than on the far-side.415

A permeable boundary would allow the solid mantle to overturn with a domi-416

nant degree-one before the entire crystallization of the mantle (keeping in mind417

that the end of the crystallization is much slower than what we predict with418

our simple model, see Elkins-Tanton et al. (2011)). The mechanisms proposed419

to build a degree 1 at the scale of the Moon involve the dynamics of an entirely420

crystallized lunar mantle (e.g. Parmentier et al., 2002; Zhong et al., 2000). The421

possibility to form a degree one while the crystallization of the magma ocean422

is still ongoing is therefore worth exploring with more complete models to test423

whether this dominant degree-one can be conserved after crystallization of the424

magma ocean and/or helps the development of degree-one instabilities such as425

the ones predicted in the aforementioned studies. It is also tempting to asso-426

ciate the degree-one feature of Mars (the Marsian dichotomy) to the same pro-427

cess but, as explained above, the first degree-one overturn of the solid mantle428

is expected to happen long before its complete crystallization. Secondary over-429

turning instabilities are possible after the first one that we cannot investigate430

with the tools presented above. A more complete study investigating the finite431

amplitude dynamics is necessary to understand the implications of this work to432

planets larger than the Moon.433

It should be noted that several parameters involved in the problem are badly434

constrained. The viscosity of the solid mantle and even its rheology is such a pa-435

rameter. It is highly dependent on how close the temperature in the solid is from436

the solidus and could easily vary by a few orders of magnitude (e.g. Solomatov,437

2015). Since the destabilization timescale scales as the Stokes time (Figure 6),438

it is directly proportional to the viscosity and could therefore vary by a few or-439

ders of magnitude. The strong relation between the viscosity of the cumulate440

and the overturn scaling has been investigated by Ballmer et al. (2017): their441

numerical experiments confirm the overturn onset scales as the Stokes time. It442

should be noted that our flow-through boundary conditions does not affect this443

result, it only reduces the proportionality factor between the Stokes time and444

the growth time of instabilities (Figure 6). This validates the general approach445

proposed by Boukaré et al. (2018) to assess whether solid-state convection sets446

in before the magma ocean is entirely crystallized: they compare the Stokes447

time with the time needed to crystallize the magma ocean and their numeri-448
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Figure 7: Thickness of the solid cumulate at which the destabilization timescale equals the
time needed to crystallize the rest of the SMO for several values of the partition coefficient,
D ∈ [0.01, 0.99]. The Moon is not shown here since the destabilization timescale is greater
than the time needed to crystallize the SMO. The colors are the same as in Figure 2, blue:
non-penetrative condition for both horizontal boundaries (Φ± = ∞); green: flow-through
condition at the boundary between the solid and the surface magma ocean; and red: flow-
through condition at both horizontal boundaries.
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cal experiments yields that syn-crystallization convection is possible when the449

ratio between these two times exceeds ∼ 5× 104. This value however was de-450

termined with non-penetrative boundary conditions, the actual threshold should451

be a few orders of magnitude higher (meaning syn-crystallization convection452

is allowed for shorter solidification timescales) since the flow-through bound-453

ary condition leads to a faster destabilization of the cumulate for the same454

Stokes time. Another aspect that deserves care is that for Earth-sized bodies,455

the Stokes time should incorporate both the thermal and compositional density456

constrasts. Boukaré et al. (2018) compare the “compositional” Stokes time with457

the solidification timescale; while this is perfectly valid for the Moon and Mars458

for which the thermal density contrast is much smaller than the compositional459

one, this does not hold for the Earth where both terms have similar magnitudes460

(Figure 5). The tremendous importance of the viscosity is why a viscosity of461

1018 Pa s is assumed in this study since it is a higher bound for the near-solidus462

viscosity (see Solomatov, 2015, and references therein) and gives the most con-463

servative estimate for the destabilizing time. The viscosity could be significantly464

lower if the melt fraction is important in the cumulate, Solomatov (2015) sug-465

gests 1014 Pa s as a lower bound at 40% melt fraction (roughly the rheological466

transition). Another potential effect of viscosity that is neglected in the study is467

dynamical: since solid state convection occurs during the crystallization of the468

magma ocean, the temperature in the solid departs from the solidus tempera-469

ture profile and as a result the viscosity increases. Moreover, the compositional470

profile becomes gravitationally stable with iron-enriched heavy material being471

transported from the top to the bottom of the solid. These two effects com-472

bined may lead to the stopping of the solid state convection (Solomatov, 2015).473

Depending on the size of the magma ocean considered, it could then be possible474

either that the magma ocean crystallizes completely before convection may start475

again in the solid, or that convection sets in again in the solid before it is en-476

tirely crystallized. Studying this scenario requires a more complex method that477

a simple linear stability analysis since it involves a non-linear feedback between478

the dynamics of the solid part and its viscosity, temperature, and compositional479

fields.480

Another unconstrained parameter is the partition coefficient of iron between481

the solid and liquid. An exploration of this parameter shows that the effect482

of the partition coefficient is rather limited for the Earth, and slightly more483

important for Mars (Figure 7). This is in agreement with Figures 2 and 5484

showing the difference between the purely thermal case (corresponding to the485

extreme value D = 1) and the purely compositional case is rather small for the486

Earth but more important for Mars.487

Finally, our choice of a constant emissivity results in a roughly constant488

solidification rate, whereas more sophisticated cooling models including an at-489

mosphere predict most of the mantle crystallizes quickly, and the solidification490

slows down when only a shallow magma ocean remains. Although such effects491

are important to build realistic solidification models, they should not affect dra-492

matically our results. Indeed, a faster crystallization at the beginning would lead493

to a destabilization of the solid mantle at a larger thickness, but we expect this494
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difference to be small since the destabilization timescale is rapidly much lower495

than the solidification timescale.496

5. Conclusions497

Upward crystallization of the silicate mantle of planets within a magma498

ocean is expected to produce a unstably stratified situation, because of both499

temperature and composition. In this study, we have addressed the question500

of whether the overturning instability develops faster than the time it takes to501

crystallize the magma ocean. To that end, we have developed a linear stability502

analysis tool to compute the growth rate of the fastest overturning mode and503

studied systematically the effect of the most important parameters: the planet’s504

size (Moon to Earth size), the partition coefficient and the type of boundary505

condition between the solid and the liquid. In particular, we have introduced a506

boundary condition that accounts for the possibility of melting and freezing at507

the interface between the solid mantle and the magma ocean.508

This study shows convection is likely to start in the solid mantle of the509

Earth, Mars and the Moon before the entire crystallization of the surface magma510

ocean. Evolution models of the primitive mantle of planetary bodies should511

therefore account for convection and the associated mixing in the solid part of512

the crystallizing mantle.513

This result holds for the Earth and Mars even without fractional crystalliza-514

tion and the unstable compositional gradient it creates in the cumulate. The515

value of the partition coefficient is found to have little impact on the timing of516

mantle overturn.517

The timescale at which convection sets in scales as the Stokes time. Specifi-518

cally, it is proportional to the viscosity of the solid. However, it should be kept519

in mind that these results are obtained assuming a newtonian rheology and a520

constant viscosity in the solid mantle. Given the central role of viscosity in this521

problem, better knowledge of the viscosity and rheology of the primitive solid522

mantle is of primary importance to study its dynamics.523

Finally, the possibility of exchange of matter between the solid mantle and524

the magma ocean(s) should be accounted for in dynamical models of the primi-525

tive mantle since it greatly alters the pattern of convection as well as the desta-526

bilization timescale. It could even be a way of producing degree-one structures527

such as the ones observed on the Moon and Mars.528
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A. Composition profile resulting from the fractional crystallization628

of the surface magma ocean629

Conservation of the heavy component implies that630

d

dt

�� R+

R−
C(r)r2dr +

1

3

�
RT

3 −R+3
�
Cl

�
= 0, (A.1)

where no compressibility effect on density is considered, allowing the bulk den-631

sity to drop out of the equation. Using eq. (2.1) and Ċl = Ṙ+
dCl

dR+
, assuming632

Ṙ+ > 0 at all time and R− constant:633

1

Cl

dCl

dR+
= 3(1−D)

R+2

RT
3 −R+3 . (A.2)

Using eq. (2.1), eq. (A.2) can be written for C:634

1

C

dC

dR+
− 1

D

dD

dR+
= 3(1−D)

R+2

RT
3 −R+3 . (A.3)

Since C(r) does not depend on time, this equation holds for any r � R+(t) (i.e.635

everywhere in the solid) and can be written as:636

1

C

dC

dr
− 1

D

dD

dr
= 3(1−D)

r2

RT
3 − r3

. (A.4)
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Equation (A.4) is general and allows to take into account variations of D.637

However, it is useful to consider the limiting case of a constant partition coeffi-638

cient D. In that case, a solution to this equation is639

C = C0

�
RT

3 −R−3

RT
3 − r3

�1−D

, (A.5)

with C0 = DCl0 the mass fraction of FeO in the first solid formed.640

Note that eq. (A.5) diverges when r → RT but is in fact only valid as long641

as C < 1 and Cl < 1. When Cl reaches 1, the solid formed has the same642

composition as the liquid. The complete solution therefore is643

C =




C0

�
RT

3−R−3

RT
3−r3

�1−D

if r < Rs

1 if r > Rs,
(A.6)

with644

Rs =

�
(R−)3C

1
1−D

0 +RT
3

�
1− C

1
1−D

0

��1/3

(A.7)

the value of R+(t) such that Cl(t) = 1.645

B. Linear Stability646

Since the solid is considered isoviscous and no source of toroidal flow is
imposed at the boundaries, the velocity field can be expressed in terms of the
scalar poloidal potential P: u = ∇×∇×(Pr) (e.g. Ricard and Vigny, 1989; Ribe,
2007). Linearizing eqs. (2.11) to (2.14) around the reference state (u = 0; T̄ ; C̄)
gives:

Q = ∇2P (B.1)

∇2Q = Ra
Θ− �Θ�
r + λ

+Rc
c− �c�
r + λ

(B.2)

Γ2 ∂Θ

∂t
+

∂ T̄

∂r

L2P
r + λ

−∇2Θ = W

�
(r − 1)

∂Θ

∂r
+

�
∂ T̄

∂r

�+

Θ

�
(B.3)

Γ2 ∂c

∂t
+

∂C̄

∂r

L2P
r + λ

= W (r − 1)
∂c

∂r
. (B.4)

The boundary conditions on the temperature and composition perturbations
are trivial:

Θ± = 0, (B.5)
c± = 0. (B.6)

24



The boundary condition eq. (2.16) and the free-slip boundary condition are
written in term of the poloidal potential as:

±Φ± 1

r + λ
L2P +

∂

∂r

�
2

r + λ
L2P − (r + λ)Q

�
= 0 (B.7)

∂2P
∂r2

+ (L2 − 2)
P

(r + λ)2
= 0. (B.8)

λ = R−/L − 1 is a curvature term due to the definition of the dimensionless647

radius. L2 is the horizontal laplacian: L2• = ∂r((r+λ)2∂r•)−(r+λ)2∇2•. The648

quantity Q is introduced to ease the formulation of this system as an eigenvalue649

problem involving square matrices.650

The perturbations P, Q, Θ and c are developed using spherical harmonics,651

e.g.652

P =
∞�

l=1

l�

m=−l

Pl(r)Y
m
l (θ,φ)eσlt (B.9)

where l andm are the spherical harmonics degree and order and σl is the growth653

rate associated to the harmonic degree l. The system is laterally degenerated654

and m does not affect the growth rate of the perturbation nor the shape of the655

radial modes Pl(r), Ql(r), Θl(r) and cl(r). These radial modes are discretized656

using a Chebyshev collocation approach (e.g. Guo et al., 2012; Canuto et al.,657

1985). Each radial mode is expressed as a vector whose components are the658

values at the N + 1 Chebyshev nodal points (respectively denoted P, Q, T659

and C). Radial derivatives evaluated at the nodal points ri = 1
2

�
3 + cos iπ

N

�
660

can then be expressed with a differentiation matrix d, e.g. ∂rP(ri) = (dP)i. We661

formulate the system of linearized equations along with the associated boundary662

conditions as663

LX = σlRX (B.10)
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with

X =







P 0 : N
Q 0 : N
T 1 : N − 1
C 1 : N − 1

(B.11)

L =

0 : N 0 : N 1 : N − 1 1 : N − 1


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d2 + (l2 − 2)r−2
λ 0 0 0 0

D2 −1 0 0 1 : N − 1
d2 + (l2 − 2)r−2

λ 0 0 0 N
l2(Φ

+r−1
λ − 2r−2

λ + 2r−1
λ d) −(1+ rλd) 0 0 0

0 D2 −Rar−1
λ −Rcr−1

λ 1 : N − 1
l2(−Φ−r−1

λ − 2r−2
λ + 2r−1

λ d) −(1+ rλd) 0 0 N
−(∂rT̄ )l2r

−1
λ 0 D2 +W+

�
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�

0 1 : N − 1
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(B.12)

R =

0 : N 0 : N 1 : N − 1 1 : N − 1





0 0 0 0 0 : N
0 0 0 0 0 : N
0 0 Γ21 0 1 : N − 1
0 0 0 Γ21 1 : N − 1

(B.13)

where 1 is the identity matrix, rij = ri1ij , rλ = r + λ1, l2 = l(l + 1) and664

D2 = d2 + 2r−1
λ d − l2r

−2
λ The extra row and column on top and right of the665

matrices are respectively the column and row indices of each of the submatrices.666

For example, the top left submatrix of the matrix L is only the first row (hence667

the 0 on the extra column) of the matrix d2 + (l2 − 2)r−2
λ .668

At a given instant during the crystallization, all the dimensionless numbers669

W , λ, Γ, Ra and Rc appearing in the matrices L and R are known. For any670

harmonic degree l of the perturbation, finding its growth rate σl and associated671

vertical mode X is an eigenvalue problem. The largest eigenvalue is the growth672

rate, and the associated eigenvector represent the vertical modes. At a given673

instant, we look for the harmonic degree l with the highest growth rate σl, which674

is then used to compute the dimensional destabilization time scale L2
M/(κσ).675
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