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POLYTOPAL REALIZATIONS OF FINITE TYPE g-VECTOR FANS

CHRISTOPHE HOHLWEG, VINCENT PILAUD, AND SALVATORE STELLA

ABSTRACT. This paper shows the polytopality of any finite type g-vector fan, acyclic or not. In
fact, for any finite Dynkin type I, we construct a universal associahedron Asso,,, (I') with the
property that any g-vector fan of type I' is the normal fan of a suitable projection of Asso,,, (T").

1. INTRODUCTION

A generalized associahedron is a polytope which realizes the cluster complex of a finite type
cluster algebra of S. Fomin and A. Zelevinsky [FZ03b, FZ02, FZ03a]. Generalized associahedra
were first constructed by F. Chapoton, S. Fomin and A. Zelevinsky [CFZ02] using the d-vector fans
of [FZ03b]. Further realizations were obtained by C. Hohlweg, C. Lange and H. Thomas [HLT11]
based on the Cambrian lattices of N. Reading [Rea06] and Cambrian fans of N. Reading and
D. Speyer [RS09]. These constructions were later revisited by S. Stella [Stel3] using an approach
similar to the original one of [CFZ02], and by V. Pilaud and C. Stump [PS15a] via brick polytopes.

The realizations of [HLT11] start from an acyclic initial exchange matrix B,, and construct
a generalized associahedron Asso(B,) whose normal fan is the g-vector fan of the cluster alge-
bra A, (Bs) with principal coefficients at B,. They rely on a combinatorial understanding of the
g-vector fans as Cambrian fans [RS09]. A major obstruction in dropping the acyclicity assumption
in this approach is that this combinatorial description is only partially available beyond acyclic
cases [RS15]. Therefore, it remained a challenging open problem, since the appearance of general-
ized associahedra, to construct polytopal realizations of all finite type g-vector fans including the
cyclic cases. This paper answers this problem.

Theorem 1. For any finite type initial exchange matriz Bo, the g-vector fan F&(B,) with respect
to B, is the normal fan of a generalized associahedron Asso(B.,).

When we start from an acyclic initial exchange matrix, our construction precisely recovers the
associahedra of [HLT11, Stel3, PS15a]. These can all be obtained by deleting inequalities from
the facet description of the permutahedron of the corresponding finite reflection group. The main
difficulty to extend the previous approach to arbitrary initial exchange matrices lies in the fact
that this property, intriguing as it might be, is essentially a coincidence. First, the hyperplane
arrangement H supporting the g-vector fan is no longer the Coxeter arrangement of a finite
reflection group. Even worse, we prove that the generalized associahedron Asso(B,) usually cannot
be obtained by deleting inequalities in the facet description of any zonotope whose normal fan is .
This behavior already appears in type Ds.

To overcome this situation, we develop an alternative approach based on a uniform understand-
ing of the linear dependences among adjacent cones in the g-vector fan. In fact, not only we cover
uniformly all finite type initial exchange matrices, but we actually can treat them simultaneously
with a universal object.

Theorem 2. For any given finite Dynkin type ', there exists a universal associahedron Asso,, (T")
such that, for any initial exchange matriz B, of type T', the generalized associahedron Asso(B,) is
a suitable projection of the universal associahedron Asso,,(I'). In particular, all g-vector fans of
type T are sections of the normal fan of the universal associahedron Asso,,(T).

CH was supported by NSERC Discovery grant Cozxeter groups and related structures. SS is a Marie Curie -
Cofund Fellow at INdAAM. VP was partially supported by the French ANR grant SC3A (15 CE40000401).
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2 CHRISTOPHE HOHLWEG, VINCENT PILAUD, AND SALVATORE STELLA

This universal associahedron provides a tool to study simultaneously geometric properties of all
generalized associahedra of a given finite Dynkin type. For example, it is known that the vertex
barycenters of all generalized associahedra of [HLT11] lie at the origin. In type A, this property
was observed by F. Chapoton for J.-L. Loday’s realization of the classical associahedron [Lod04],
conjectured for all associahedra of C. Hohlweg and C. Lange in [HLO7], proved by C. Hohlweg,
J. Lortie and A. Raymond [HLR10] and revisited by C. Lange and V. Pilaud in [LP13]. For arbi-
trary acyclic finite types, it was conjectured by C. Hohlweg, C. Lange and H. Thomas in [HLT11]
and proved by V. Pilaud and C. Stump using the brick polytope approach [PS15b]. In the present
paper, we use the universal associahedron to extend this surprising property to all generalized
associahedra Asso(B,).

Theorem 3. The origin is the vertex barycenter of the universal associahedron Asso, (I'), and
thus of all generalized associahedra Asso(B,).

The paper is organized as follows. In Section 2, we collect all the definitions and properties
of finite type cluster algebras needed in this paper. In Section 3, we recall convenient criteria to
check that a collection of cones forms a polyhedral fan and that a simplicial fan is the normal
fan of a polytope. Based on a precise understanding of the linear dependences in g-vectors of
adjacent cones described in Section 4, we prove the polytopality of all finite type g-vector fans in
Section 5. Section 6 is devoted to two special cases: that of acyclic initial exchange matrices for
which our construction yields the same generalized associahedra as [HLT11, Stel3, PS15al, and
that of type A which presents several remarkable features. In particular we prove that the facet
description of the associahedron Asso(B,) is contained in the facet description of the correspond-
ing zonotope Zono(B,) for any initial exchange matrix B, of type A. Further properties of our
generalized associahedra are explored in Section 7, including their connection to green mutations
(Section 7.1), the construction of the universal associahedron (Section 7.2), its vertex barycenter
(Section 7.3), and a discussion on the relation between Asso(B,) and Zono(B,) (Section 7.4).

2. FINITE TYPE CLUSTER ALGEBRAS

We begin by recalling some standard notions on cluster algebras simplifying, whenever possible,
our notations to deal with the case at hand. This section can be used as a compendium of the
results concerning finite type that are scattered through the literature. We refer to [FZ07] for a
general treatment of cluster algebras.

2.1. Cluster algebras. We will be working in the ambient field Q(z1,..., 2z, p1,-..,Pm) of ra-
tional expressions in n + m variables with coefficients in Q and we denote by P,, its abelian
multiplicative subgroup generated by the elements {p;}icpm). Given p = Hie[m] pit € Py, we will
write

{p}+ = H p;nax(ai’o) and {p}_ = H p; min(a;,0)

i€[m] 1€[m]

-1
so that p = {p}, {p}_".
A seed X is a triple (B, P, X) consisting of an exchange matrix, a coefficient tuple, and a cluster:

e the exchange matrix B is an integer n x n skew-symmetrizable matrix, i.e., such that there
exist a diagonal matrix D with —BD = (BD)7T,

e the coefficient tuple P is any subset of n elements of P,,,

e the cluster X is a set of cluster variables, n rational functions in the ambient field that are
algebraically independent over Q(p1,...,pm)-

To shorten our notation we think of rows and columns of B, as well as elements of P, as being
labelled by the elements of X: we write B = (bgy)z yex and P = {p}zex. Moreover we say that
a cluster variable x (resp. a coefficient p) belongs to ¥ = (B, P, X) to mean z € X (resp. p € P).

Given a seed ¥ = (B, P,X) and a cluster variable x € X, we can construct a new seed (%) =
¥ = (B, P/, X’) by mutation in direction x, where:
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e the new cluster X’ is obtained from X by replacing x with the cluster variable 2’ defined
by the following exchange relation:

v ={p}, [] v+ ) J] v
yeX yeX
bay >0 by <0
and leaving the remaining cluster variables unchanged so that X \ {z} = X' ~ {2'}.
e the row (resp. column) of B’ indexed by 2’ is the negative of the row (resp. column) of B
indexed by x, while all the other entries satisfy:

By = bys + 5 (Byelbs + byalbrzl),
e the elements of the new coefficient tuple P’ are
P! if y =2/,
Py = py (P} ify #a’ and by, <0,
Py {Px it"y if y # 2" and by, > 0,

A straightforward computation shows that mutations are involutions, i.e., f./ (12 (%)) = X so they
define an equivalence relation on the collection of all seeds.

Fix a seed ¥, = (Bo, Po,X,) and call it initial. Up to an automorphism of the ambient field we
will assume that X, = {x1,...,2,} and drop X, from our notation.

Definition 4 ([FZ07, Def. 2.11]). The (geometric type) cluster algebra A(B,, P,) is the ZP,,-sub-
ring of the ambient field generated by all the cluster variables in all the seeds mutationally equiv-
alent to the initial seed Y.

Example 5. The simplest possible choice of coefficient tuple in the initial seed, namely m = 0 and
Po = {1}ign), gives rise to the cluster algebra without coefficients which we will denote by Ay (Bo).
Note that this algebra, up to an automorphism of the ambient field Q(z1,...,z,), depends only
on the mutation class of B, and not on the exchange matrix itself. The appearance of B, in the
notation Ag (B,) is just to fix the embedding inside the ambient field.

2.2. Finite type. We will only be dealing with cluster algebras of finite type i.e., cluster algebras

having only a finite number of cluster variables. As it turns out, being of finite type is a property

that depends only on the exchange matrix in the initial seed and not on the coefficient tuple.
The Cartan companion of an exchange matrix B is the symmetrizable matrix A(B) given by:

2 if z =y,
a =
i —|bgy| otherwise.

Theorem 6 ([FZ03a, Thm. 1.4]). The cluster algebra A(Bo,Po) is of finite type if and only if there
exists an exchange matriz B obtained by a sequence of mutations from B, such that its Cartan
companion is a Cartan matriz of finite type. Moreover the type of A(B) is uniquely determined
by B,: if B' is any other exchange matriz obtained by mutation from B, and such that A(B') is a
finite type Cartan matriz then A(B’) and A(B) are related by a simultaneous permutation of rows
and columns.

In accordance with the above statement, when talking about the (cluster) type of A(B,,P) or
B, we will refer to the Cartan type of A(B). We reiterate that the Cartan type of A(B,) need not
be finite: being of finite type is a property of the mutation class.

For a finite type cluster algebra A(B., P,), we will consider the root system of A(B,). To avoid
any confusion later on let us state clearly the conventions we use in this paper: for us simple
roots {ag}tzex, and fundamental weights {w,}.ex, are two basis of the same vector space V;
the matrix relating them is the Cartan matrix A(B,). Fundamental weights are the dual basis to
simple coroots {a) } zex,, while simple roots are the dual basis to fundamental coweights {w) }zex,;
coroots and coweights are two basis of the dual space VV and they are related by the transpose
of the Cartan matrix. This set of conventions is the standard one in Lie theory but it is not the
one generally used in the setting of Coxeter groups [BB05, Chap. 4].
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A finite type exchange matrix B, is said to be acyclic if A(B,) is itself a Cartan matrix of finite
type and cyclic otherwise. An acyclic finite type exchange matrix is said to be bipartite if each of
its rows (or equivalently columns) consists either of non-positive or non-negative entries.

2.3. Principal coefficients and g- and c-vectors. Among all the cluster algebras having a
fixed initial exchange matrix, a central role is played by those with principal coefficients. Indeed,
thanks to the results in [FZ07], they encode enough informations to understand all the other
possible choices of coefficients.

Definition 7 ([FZ07, Def. 3.1]). A cluster algebra is said to have principal coefficients (at the
initial seed) if its ambient field is Q(x1,...,2Zn,p1,...,pn) and the initial coefficient tuple consists
of the generators of Py, i.e., Po = {p;}ic[n). In this case we will write Ay, (B,) for A(BO, {pi}ie[n]),
and we reindex the generators {p;}icjn) of Pn by {pz}zex,-

In the above definition, it is important to specify that principal coefficients are with respect to a
specific exchange matrix, even though it is usually omitted. In other words A, (B,) and Ap(BY)
are in general different cluster algebras even when B, and B/ are related by mutations.

A notable property of cluster algebras with principal coefficients is that they are Z"-graded (in
the basis {wy }zex, of V). The degree function deg(B.,-) on A, (B,) is obtained by setting

deg(Bo, x) i=w, and deg(Bo, pe) = Z —byzwy
yeXo
for any x € X,. This assignment makes all exchange relations and all cluster variables in A, (B,)
homogeneous [FZ07] and it justifies the definition of the following family of integer vectors asso-
ciated to cluster variables.

Definition 8 ([FZ07]). The g-vector of a cluster variable x € A, (B,) is its degree
g(Bo,7) = deg(Bo,z) € V.

We denote by g(Bo,X):= {g(Bo,z) | © € X} the set of g-vectors of the cluster variable in the
seed 3 of Ap,(Bo).

The next definition gives another family of integer vectors, introduced implicitly in [FZ07], that
are relevant in the structure of A, (B,).

Definition 9. Given a seed ¥ in A, (B,), the c-vector of a cluster variable z € ¥ is the vector

c(Bo,z € X):= Z Cyz Oy €V
yeXo
of exponents of p, = [] cx, (Py)?. Let ¢(Bo,X):= {c(Bo,z € X) [z € X} denote the set of
c-vectors of a seed . Finally, let C(B,):= Js; ¢(Bo, X) denote the set of all c-vectors in Ap:(Bo).

It is worth spending few words here to emphasize the fact that, contrary to what happens for
g-vectors, c-vectors are not attached to cluster variables per se but depends on the seed in which
the given cluster variable sits.

An important features of c-vectors is that their entries weekly agree in sign. This is one of
the various reformulation of the sign-coherence conjecture of [FZ07] recently established in full
generality by [GHKK14]. In the setting of finite type cluster algebras, this result can also be
deduced in several ways from earlier works: one proof is to combine [DWZ10] with [Dem10];
another one is to use surfaces [FST08, FT12] and orbifolds [FST12] to study types Ay, By, Chp
and D,,, and to deal with exceptional types by direct inspection. Here we prefer to observe it as
a corollary of the following theorem that will be useful later on to justify our notation.

Theorem 10 ([NS14, Thm. 1.3]). The c-vectors of the finite type cluster algebra Ap(Bo) are
roots in the root system whose Cartan matriz is A(B,).

Again note that, since A(B,) may be not of finite type, the root system in this statement is,
in general, not finite. For example, for the cyclic type A3 exchange matrix, the Cartan compan-

ion A(B,) is of affine type Agl), see its Coxeter arrangement in Figure 5 (top right). More precisely,
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it is finite if and only if B, is acyclic. We will discuss in more details the relation of c-vectors with
root systems in Remark 21.

Another concequence of [NS14, Thm. 1.3] is that in a cluster algebra of finite type, there are
nh distinct c-vectors where h is the Coxeter number of the given finite type. We remind to our
reader that the same algebra has (h + 2)n/2 distincts g-vectors, one for each cluster variable.

Our next task in this section is to discuss a duality relation in between c-vectors and g-vectors.
A first step is to recall the notion of the cluster complex of A(B,, P,): it is the abstract simplicial
complex whose vertices are the cluster variables of A(B,,P,) and whose facets are its clusters.
As it turns out, at least in the finite type cases, this complex is independent of the choice of
coefficients, see [FZ03a, Thm. 1.13] and [FZ07, Conj. 4.3]. In particular this means that, up to
isomorphism, there is only one cluster complex for each finite type: the one associated to Ag(Bo).
We will use this remark later on to relate cluster variables of different cluster algebras of the
same finite type. Note also that, again when A(B,, P,) is of finite type, the cluster complex is a
pseudomanifold [FZ03a].

For a skew-symmetrizable exchange matrix B, the matrix BY := —BY is still skew-symmetrizable.
The cluster algebras A, (Bo) and A, (BY) can be thought as dual to each other. Indeed their
types are Langlands dual of each other. Moreover their cluster complexes are isomorphic: by
performing the same sequence of mutations we can identify any cluster variable x of Ay, (Bo) with
a cluster variable ¥ of Ap,(BY), and any seed ¥ in A, (Bo) with a seed XY in A, (BY). More
importantly the following crucial property holds.

Theorem 11 ([NZ12, Thm. 1.2]). For any seed ¥ of Apc(Bo), let £V be its dual in Ay (BY).
Then the g-vectors g(Bo, X) of the cluster variables in > and the c-vectors c(BY,XV) of the cluster
variables in XV are dual bases, i.e.,

<g(Bo,x) ‘ c(BY,yY e ©Y) > = 0p—y
for any two cluster variables x,y € X.

In view of the above results, and since A(BY) = A(B,)7, the c-vectors of a finite type cluster
algebra A, (BY) can be understood as coroots for A(B,) so that the g-vectors of Ay, (B,) become
weights. This justify our choice to define g-vectors in the weight basis.

2.4. Coefficient specialization and universal cluster algebra. We now want to relate, within
a given finite type, cluster algebras with different choices of coefficients. Pick a finite type exchange
matrix B, and let A(Bo,Ps) C Q(1,...,2n,p1,- - ., Pm) and A(Bo, Po) C Q(Z1, ..., %0, D1, - - -, D2)
be any two cluster algebras having B, as exchange matrix in their initial seed. As we said, cluster
variables and seeds in these two algebras are in bijection because their cluster complexes are
isomorphic. Let us write

T—T and pIREY
for this bijection. We will say that A(Bo,ﬁ) is obtained from A(B,, P,) by a coefficient special-
ization if there exist a map of abelian groups 7 : P,, — P, such that, for any p, in some seed X
of A(Bo,Po)
n({pet ) ={pz},  and  n({p.}_) = {pz}_
and which extends in a unique way to a map of algebras that satisfy

n(z) =7.
Note that this is not the most general definition (see [FZ07, Def. 12.1 and Prop. 12.2]) but it will

suffice here. Armed with the notion of coefficient specialization we can now introduce the last
kind of cluster algebra of finite type we will need.

Definition 12 ([FZ07, Def. 12.3 and Thm. 12.4]). Pick a finite type exchange matrix B,. The
cluster algebra with universal coefficients Aun(Bs) is the unique (up to canonical isomorphism)
cluster algebra such that any other cluster algebra of the same type as B, can be obtained from
it by a unique coefficient specialization.
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Let us insist on the fact that, in view of the universal property it satisfies, A,,(Bo) depends
only on the type of B, and not on the exchange matrix B, itself. We again keep B, in the notation
only to fix an embedding into the ambient field.

Rather than proving the existence and explaining the details of how such a universal algebra is
built, we will recall here one of its remarkable properties that follows directly from the g-vector
recursion [NZ12, Prop. 4.2 (v)] and that we will need in our proofs later on. Denote by X' (B,) the
set of all cluster variables in Ay, (Bo) and let {p[z]},cx(p,) be the generators® of Py, ).

Theorem 13 ([Real4, Theo. 10.12]). The cluster algebra Aun(Bo) can be realized over Pz,
The coefficient tuple P = {p, }zex at each seed ¥ = (B,P,X) of Aun(Bo) is given by the formula

T Ty T
Do = H (p[y])[g(B Y )z

yEX (Bo)

where we denote by [v; ] the x-th coefficient of a vector v in the weight basis (wy)zex. The bijection
of the elements of X (B,) with the cluster variables of Ap, (BT), appearing in the formula, is given
by an isomorphism of the corresponding cluster complexes similar to the one discussed above.

Remark 14. In view of this result, it is straightforward to produce the coefficient specializa-
tion morphism to get any cluster algebra with principal coefficients of type B, from Au,(Bo).
Namely, for any seed X, = (B,, P, X,) of Aun(Bs), we obtain A, (B,) by evaluating to 1 all the
coefficients ply] corresponding to cluster variables y not in %,.

We conclude this review giving an example: the cluster algebra of type By with universal
coefficients. We will do so in terms of “tall” rectangular matrices to help readers, not familiar with
the language we adopt here, recognize an hopefully more familiar setting. Indeed, to pass from
our seeds to the one consisting of extended exchange matrices and clusters with frozen variables,
it suffices to observe that each p € P,, can be encoded in a vector. In this way any n-tuple of
elements of P, corresponds to a m X n integer matrix and one gets an extended exchange matrix
by glueing it below the exchange matrix of the seed. The frozen variables are the generators of P,,
and the rules of mutations we discussed become then the usual mutations of extended exchange
matrices. We prefer to use the notation we set up here following [FZ03a, FZ07] because it makes
more evident the distinction in between coefficients and cluster variables, and because it is more
suited to deal with coefficient specializations.

Example 15. Consider the exchange matrix

0 1

B, = {_2 0} |
Any cluster algebra built from this matrix will contain 6 cluster variables. We will call them
X (Bo) = {x1,x2, 23, 24, 5,26 }. The corresponding cluster algebra with universal coefficients will
then be a subring of

Q(l‘1,l‘g,p[l‘1],p[$2],p[$3},p[$4],p[$5],p[$6]).
Namely it will be the cluster algebra
2
)= A, (R el 1)
plz3] plzalplzs]plze]

Figure 1 shows the exchange graph of this algebra listing all the seeds in terms of extended exchange
matrices.

One final computational remark: there is a simple algorithm to compute one of the rectangular
exchange matrices appearing in a cluster algebra of finite type with universal coefficients. Let B
be an exchange matrix of the given finite type having only non-negative entries above its diagonal;
it is acyclic and, by [YZ08, Eqn. (1.4)], it corresponds to the coxeter element ¢ = s1---$;, in
the associated Weyl group (note that the labelling of simple roots may not be the standard one

1A note to the reader that might be scared of a circular reasoning here: the set of generators {p[a’?]}zex(Bo) is
just a collection of symbols and its cardinality can be precomputed: it depends only on the type of the algebra and
not on its coefficients.
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Is Te I Te
x5 [ O 17 r 0 —17 x1
Te -2 0 2 0 Tg
plzi] | -1 0 1 0] pla]
plea) | 0 -1 0 —1| plrs)
plzs] | 1 -1 -1 0] plzs]
pla4] 2 —1 —2 1| plzd]
plzs] | 1 0 -1 1| plzs]
plze] L O 1. 0 11 plwe]
Is Xq I X9
x5 [ 0 —17 r 0 17 =1
T4 2 0 —2 0 xTo
plz1] |-1 0 1 0| plz]
plzo] |-2 1 0 1| plas]
plzs] |-1 1 -1 0| plzs]
plzd) | 0 1 0 —1| plwd
plas] | 10 1 =1 plas]
plzg] L 0 —1. L 2 =11 plz]
I3 Ty I3 T2
xz3 [ O 17 T 0 —17 z3
Tq -2 0 2 0 xI9
pla1] L -1 —1 1| plz4]
plea] | 2 1 0 1} plas]
plzs] | 1 0 1 0| plxs]
plza] | 0 1 0 —1| plad
plzs] |-1 0 -1 0| plzs]
plze] L 0 —1. =2 1] plze]

FIGURE 1. The exchange graph of type B with attached the rectangular matrices giving universal
coefficients. Highlighted in blue are the entries of the coefficient part that give the principal
coeflicient cluster algebra at the seed attached to the red node.

here). Let wo(c) denote the c-sorting word for w,, that is the lexicographically minimal reduced
expression of w, that appears as a subword of ¢>°. For each s; obtained reading from left to right
the word cw,(c), repeat the following two steps:

e add a row to the bottom of B whose only non-zero entry is a 1 in column

e replace B by its mutation in direction i.

The matrix obtained at the end of the procedure is the desired one.

3. POLYHEDRAL GEOMETRY AND FANS

The second ingredient of this paper is discrete geometry of polytopes and fans. We refer
to [Zie98] for a textbook on this topic.

3.1. Polyhedral fans. A polyhedral cone is a subset of the vector space V defined equivalently
as the positive span of finitely many vectors or as the intersection of finitely many closed linear
halfspaces. Throughout the paper, we write R>qA for the positive span of a set A of vectors of V.



8 CHRISTOPHE HOHLWEG, VINCENT PILAUD, AND SALVATORE STELLA

The faces of a cone C' are the intersections of C' with its supporting hyperplanes. In particular,
the 1-dimensional (resp. codimension 1) faces of C are called rays (resp. facets) of C. A cone is
simplicial if it is generated by a set of independent vectors.

A polyhedral fan is a collection F of polyhedral cones of V' such that

e if C € F and F is a face of C, then F' € F,
e the intersection of any two cones of F is a face of both.

A fan is simplicial if all its cones are, and complete if the union of its cones covers the ambient
space V. For a simplicial fan F with rays X, the collection {X C X' | R»¢X € F} of generating sets
of the cones of F defines a pseudomanifold (in other words, a pure and thin simplicial complex,
i.e., with a notion of flip). The following statement characterizes which pseudomanifolds are
complete simplicial fans. A formal proof can be found e.g., in [DRS10, Coro. 4.5.20].

Proposition 16. Consider a pseudomanifold A with vertex set X and a set of vectors {r(x)}xex
of V. For X € A, let r(X):={r(z) | x € X}. Then the collection of cones {R>or(X) | X € A}
forms a complete simplicial fan if and only if

(1) there exists a facet X of A such that v(X) is a basis of V' and such that the open cones R qr(X)
and Rsor(X") are disjoint for any facet X' of A distinct from X;
(2) for any two adjacent facets X, X' of A with X~{z} = X'~ {a'}, there is a linear dependence

yr(z) +~'r(@’) + Z dyr(y) =0
yEXNX/

on v(X UX') where the coefficients v and ' have the same sign. (When these conditions
hold, these coefficients do not vanish and the linear dependence is unique up to rescaling.)

3.2. Polytopes and normal fans. A polytope is a subset P of VV defined equivalently as
the convex hull of finitely many points or as a bounded intersection of finitely many closed affine
halfspaces. The faces of P are the intersections of P with its supporting hyperplanes. In particular,
the dimension 0 (resp. dimension 1, resp. codimension 1) faces of P are called vertices (resp. edges,
resp. facets) of P. The (outer) normal cone of a face F of P is the cone in V' generated by the outer
normal vectors of the facets of P containing F. The (outer) normal fan of P is the collection of
the (outer) normal cones of all its faces. We say that a complete polyhedral fan in V' is polytopal
when it is the normal fan of a polytope in VV. The following statement provides a characterization
of polytopality of complete simplicial fans. It is a reformulation of regularity of triangulations of
vector configurations, introduced in the theory of secondary polytopes [GKZ08], see also [DRS10].
We present here a convenient formulation from [CFZ02, Lem. 2.1].

Proposition 17. Consider a pseudomanifold A with vertex set X and a set of vectors {r(m)}wex

of V such that F := {RZOI‘(X) | X e A} forms a complete simplicial fan. Then the following are
equivalent:

(1) F is the normal fan of a simple polytope in V'V ;
(2) There exists a map h : X — Rsg such that for any two adjacent facets X, X' of A with
XAz} =X {2}, we have

yh(z) +4 h(z')+ Y 8,h(y) >0,
yEXNX!

where

yr(@) +9 @)+ Y d,r(y) =0

yexXnX’
is the unique (up to rescaling) linear dependence with v,~' > 0 between the rays of r(XUX').
Under these conditions, F is the normal fan of the polytope defined by

{veVY| (r(x)|v)<h(=x) forallz € X}.
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4. THE g-VECTOR FAN

We first recast a well known fact concerning the cones spanned by the g-vectors of a finite type
cluster algebra with principal coefficients. We insist on the fact that the following statement is
valid for any finite type exchange matrix B, acyclic or not.

Theorem 18. For any finite type exchange matrix B,, the collection of cones
F&(Bo) = {R>08(Bo, %) ‘ ¥ seed of Ap(Bo) },
together with all their faces, forms a complete simplicial fan, called the g-vector fan of B,.

There are several ways to find or deduce Theorem 18 from the literature. First, it was es-
tablished in the acyclic case in [RS09, YZ08, Stel3] (see Example 22). As already observed by
N. Reading in [Real4, Thm. 10.6], the general case then follows from the initial seed recursion on
g-vectors [NZ12, Prop. 4.2 (v)], valid thanks to sign-coherence. A second proof would be to use the
unique cluster expansion property of any vector in the weight lattice (following from the fact that
cluster monomials are a basis of A, (B,) in finite type), and to use approximation by this lattice
to show that any vector is covered exactly once by the interiors of the cones of the g-vector fan.
Note that contrarily to what sometimes appears in the literature, this approximation argument
is subtle as it relies on the integrity of the g-vectors?. Finally, another possible proof is to use
Proposition 16: the first point is a simplified version of the unique expansion property, and the
second point is a consequence of the following description of the linear dependence between the
g-vectors of two adjacent clusters, which will be crucial in the next section.

Lemma 19. For any finite type exchange matriz B, and any adjacent seeds (B, P, X) and (B, P/, X’)
in Apr(Bo) with XN\ {z} = X'~ {a'}, the g-vectors of XUX' satisfy precisely one of the following
two linear dependences

g(Bo,z) +8(Boa’) = > —buyg(Bo,y) or g(Bo,z) +8(Boi’) = D bayg(Bo,y).

yeXNX’ yeXNX’
bay <0 byy>0

Proof. This is a straightforward consequence of the definition of g-vectors together with sign
coherence. Indeed all exchange relations in A,,(B,) are homogeneous and

va' ={pz}, [ v"+{p=}- [] v

yeX yeX
by >0 bey <0

means that

deg(Bo, x) + deg(Bo, 2’) = deg(Bo, {ps}, ) + Z byy deg(Bo,y)
yeXNX’

bwy>0
= deg(Bo, {p.}_) + Z —bay deg(Bo, y).
yexnx’
bay <0
Now, by sign-coherence, exactly one of {p,}, and {p,} _is 1 so that its degree is 0. 0

Remark 20. Note that which of the two possible linear dependences is satisfied by the g-vectors
of XU X’ depends on the initial exchange matrix B,. In particular, the geometry of the g-vector
fan F&(B,) changes as B, varies within a given mutation class.

2For an illustration of the subtlety, consider the 8 cones in R3 defined by the coordinate hyperplanes, rotate
the 4 cones with > 0 around the z-axis by 7/4, and finally rotate all the cones around the origin by an irrational
rotation so that each rational direction belongs to the interior of one of the 8 resulting cones. Then any vector in Z3
belongs to a single cone, but the resulting cones do not form a fan (since the cones with z > 0 intersect improperly
those with z < 0).
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FIGURE 2. The dual c-vector fan F¢(BY) (thin red) and g-vector fan F&(B,) (bold blue) for the
type As (left) and type C3 (right) cyclic initial exchange matrices. Each 3-dimensional fan is inter-
sected with the unit sphere and stereographically projected to the plane from the pole (-1, -1, —1).
We use this drawing convention for all 3-dimensional fans in this paper.

For any finite type exchange matrix B,, the g-vector fan F8(B,) can be seen as a coarsening
of two other fans naturally associated to A(B,). Denote by FC°*(BY) the dual Coxeter fan
i.e., the fan of regions of the hyperplane arrangement given by the root system of A(BY). Similarly
let F¢(BY) be the dual c-vector fan i.e., the fan of regions of the arrangement of hyperplanes
orthogonal to all the c-vector of Ay, (BY). By Theorem 11, F&(B,) coarsens F¢(BY) which, in
turn, coarsens FC°*(BY) by Theorem 10. See Figure 5 for examples of these fans for different
exchange matrices of type As.

Remark 21. By further inspecting [NS14, Thm. 1.3] we can say more about F¢(BY). Indeed
its supporting hyperplane arrangement contains the hyperplanes associated to small roots in the
root system of A(BY). Therefore, it turns out that the dual c-vector fan F°(BY) intersected
with the Tits cone contains the Shi arrangement for the root system of A(BY) (see [HNW16,
Sect. 3.6 & Def. 3.18] for a review on the topic). In order to see that, it is enough to compare
the description of the possible supports of the c-vectors (in terms of simple roots) given in [NS14,
Thm. 1.3] with the description of the possible supports of small roots given in [Bri98].

Example 22. When the exchange matrix B, is acyclic, the g-vector fan is the Cambrian fan
constructed by N. Reading and D. Speyer [RS09], while the dual c-vector fan is the type A(BY)
Coxeter fan. Section 6.1 provides a detailed discussion of the acyclic case.

Example 23. Figure 2 illustrates the g-vector fans for the initial exchange matrices

0o -1 1 0o -1 2
1 0 -1 and 1 0 -2
-1 1 0 -1 1 0
(type Az cyclic) (type Cj3 cyclic)

Note that these matrices are the only examples of 3-dimensional cyclic exchange matrices (up to
duality and simultaneous permutations of rows and columns).
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5. POLYTOPALITY

In this section, we show that the g-vector fan F8(B,) is polytopal for any finite type exchange
matrix B,. As discussed in Section 6.1, this result was previously known for acyclic finite type ex-
change matrices [HLT11, Stel3, PS15a]. The proof of this paper, although similar in spirit to that
of [Stel3], actually simplifies the previous approaches.

We first consider some convenient functions which will be used later in Theorem 26 to lift the
g-vector fan. The existence of such functions will be discussed in Proposition 28.

Definition 24. A positive function h on the cluster variables of A(B,, P,) is exchange submod-
ular® if, for any pair of adjacent seeds (B,P,X) and (B’,P’,X’) with X \ {z} = X' ~ {2/}, it

satisfies
h(a:)+h(a:’)>max< Y bahly), Y bzyh(y)).
yeXnNX’ yexXnx’
bay <O by >0

Definition 25. Let i be a positive function on the cluster variables of A, (B,) we define:
(i) a point
p"(Bo,B) =Y h(z)c(BY,z¥ € xV) e VY
T€eX
for each seed ¥ of Ay (B.),
(i) a halfspace H (B, x) and a hyperplane H (B,,x) by

He (Bo,z) = {v e V" | (g(Bo,2) |v) <
and H’;(Bmm) ::{VEVV ‘ <g(Bo,x)‘v>=
for each cluster variable z of Ay, (B,).

The following statement is the central result of this paper. We refer again to Proposition 28 for
the existence of exchange submodular functions.

Theorem 26. For any finite type exchange matriz B, and any exchange submodular function h,
the g-vector fan F&(B,) is the normal fan of the Bo-associahedron Assoh(Bo) C VV equivalently
defined as

(i) the convex hull of the points p"(Bo,X) for all seeds ¥ of Ap(Bs), or

(i3) the intersection of the halfspaces H™ (Bo, x) for all cluster variables x of Apr(Bo).

Proof. Consider two adjacent seeds ¥ = (B,P,X) and ¥’ = (B', P/, X’) with X\ {z} = X'~ {z'}.
By Lemma 19, the linear dependence between the g-vectors of X U X’ is of the form

g(Bo,z) + g(Bo,a’) = > £(Bo, 2, %) byy 8(Bo, y)
yEXNX’
£(Bo,5,5) byy >0
for some €(Bo, X, %’) € {£1} (depending on the initial exchange matrix B,). However, by Defini-
tion 24, the function h satisfies

h(z) + h(z') > max ( S cbuhly), Y by h(y)) > 3 £(Bo,B.Y) by hly).
yexXnx’ yexnx’ yeXNX’
bay <O bay >0 £(Bo,5,%") bay >0
Applying the characterization of Proposition 17, we thus immediately obtain that the g-vector
fan F8(B,) is the normal fan of the polytope defined as the intersection of the halfspaces H2 (B,, z)
for all cluster variables = of Ay, (B.). -

3The term “exchange submodular” is inspired from a particular situation in type A (namely, when B, has 1’s on
the upper subdiagonal and —1’s on the lower subdiagonal), where such functions really correspond to the classical
submodular functions, i.e., functions h : 2I") — R such that h(X) + h(Y) > A(X UY) + h(X NY) for any distinct
non-trivial subsets X,Y of [n].
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Finally, to show the vertex description, we just need to observe that, for any seed ¥ of Ap.(B.),
the point p"(B,,Y) is the intersection of the hyperplanes H" (B,,z) for all z € . Indeed,
since g(B,,X) and ¢(BY,XY) form dual bases by Theorem 11, we have for any z € %

<g(Bo,x) |ph(BO,Z) > = Z h(y) <g(Bo,x) |c(B\o/,yv € Ev) > = Z h(y) dg=y = h(z). O

yeED yeS

Remark 27. By definition /—\ssoh(Bo) fulfills the following properties:

o the normal vectors are the g-vectors of all cluster variables of Ay, (B,),

e for any two adjacent seeds ¥ = (B, P,X) and &' = (B/, P/, X’) with X \ {z} = X' ~ {a'},
the edge of Asso”(B,) joining the vertex p"(B,, ) to the vertex p"(B,,Y') is a negative
multiple of the dual c-vector ¢(BY,z" € XV) = fc(BV "V e V). More precisely,

p"(B,, ') — p"(Bo, %) = (wah (') — h@;)) c(BY,zV € ),

where the sum runs over the variables y € ¥ N such that b,, has the same sign as the
c-vector ¢(By,z" € XV). Note that 3 by h(y) — h(z') — h(x) < 0 since h is exchange
sumodular.

Our next step is to show the existence of exchange submodular functions for any finite type
cluster algebra with principal coefficients. The important observation here is that the definition
of exchange submodular function does not involve in any way the coefficients of Ay, (Bs) so that
it suffices to construct one in the coefficient free cases. Indeed, if h is exchange submodular for
A(Bo), and 7 is the coefficient specialization morphism given by

n: Apr(BO) — Afr(Bo)
i — 1

one gets the desired map by setting

for any cluster variable = of A (B.).

Recall that, up to an obvious automorphism of the ambient field, there exists a unique cluster
algebra without coefficients for each given finite type [FZ07]. We can therefore, without loss of
generality, assume that B, is bipartite and directly deduce our result from [Stel3, Prop. 8.3]
obtained as an easy concequence of [CFZ02, Lem. 2.4] which we recast here in our current setting.

When B, is acyclic, the Weyl group of A(B,) is finite and has a longest element w,. A
point \V:= 3" .« A/ w,/ in the interior of the fundamental Weyl chamber of A(BY) (that is

x

to say AY > 0 for all x € X,,) is fairly balanced if wo(AY) = —AV.

Proposition 28. Let Ag(Bo) be any finite type cluster algebra without coefficients and assume
that B, is bipartite. To each fairly balanced point NV corresponds an exchange submodular function
hav on Ax(Bo).

Proof. To define hjyv, recall from the construction in [FZ03b, FZ03a] that the set of cluster variables
in Ag(B,) is acted upon by a dihedral group generated by the symbols 7, and 7_.

Each (74, 7_)-orbit of cluster variables meets the initial seed in either 1 or 2 elements. We will
define h)v to be constant on the orbits of this action: on any element in the orbit of the initial
cluster variable x the function hyv evaluates to the x-th coordinate of AV when written in the
basis of simple coroots. The requirement that AV is fairly balanced, as explained in the proof of
[Stel3, Thm. 6], is tantamount to say that hyv(z) = hyv(y) if = and y are initial cluster variables
in the same (74, 7_)-orbit.

The fact that the function hyv defined in this way is exchange submodular is then the content
of [CFZ02, Lem. 2.4] together with the computation following [Stel3, Prop. 8]. The only minor
thing to observe is that, there, this fuction appears as a piecewise linear function on the ambient
space of the root lattice and thus, instead of writing the cluster expansions of the two monomials
in the right hand side of the exchange relations as we do here, their total denominator vectors
appear. O
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Remark 29. Reading through [Stel3] one may have the impression, as the author did at the
time, that for a given AV a different exchange submodular function has been constructed for each
choice of acyclic initial seed. This is not the case. Indeed, if one unravels the definitions, it is easy
to see that the functions defined there only differ because the set of g-vectors they use as domain
are different. Taken as function on the cluster variables in the respective cluster algebras with
principal coefficients, under the specialization maps 7, they all correspond to the same function
on Ag(Bo).

A particular example of fairly balanced point is the point

pl= 2w
J)EXO
Note that pV is both the sum of the fundamental coweights and the half sum of all positive coroots
of the root system of finite type A(B,). In particular h,v is the half compatibility sum of =,
i.e., the half sum of the compatibility degrees

hv(2) =5 3wl )
yFx
over all cluster variables distinct from z. (See [FZ03b, CP15] for the definition and discussion
of the relevant properties of compatibility degrees.) The point pV is particularly relevant in
representation theory and its role in this context has already been observed in [CFZ02, Rem. 1.6].
We call balanced B,-associahedron and denote by Asso(B,) the B,-associahedron Asso’r (Bo) for
the exchange submodular function h,v.

Example 30. When B, is acyclic, the Bo-associahedron Asso(B,) was already constructed in
[HLT11, Stel3, PS15a]. It is then obtained by deleting inequalities from the facet description of
the permutahedron of the Coxeter group of type A(B,). Section 6.1 provides a detailed discussion
of the acyclic case.

Example 31. Following Example 23, we have represented in Figure 3 the Bo-associahedra Asso(B,)
for the same two initial exchange matrices

0O -1 1 0o -1 2
1 0 -1 and 1 0 -2
-1 1 0 -1 1 0
(type Az cyclic) (type Cs5 cyclic)

Note that the leftmost associahedron of Figure 3 appeared as a mysterious realization of the
associahedron in [CSZ15].

We sum up by stating the main result of this paper.
Corollary 32. For any finite type exchange matriz B,, the g-vector fan F8(B,) is polytopal.

6. TWO FAMILIES OF EXAMPLES

Before investigating more combinatorial and geometric properties of the Bs-associahedron
Asso(B,), we take a moment to study two specific families of examples, corresponding to initial
exchange matrices that are either acyclic (Section 6.1), or of type A (Section 6.2).

6.1. Acyclic case. We first consider an acyclic initial seed, i.e., with exchange matrix B, whose
Cartan companion A(B,) is itself a Cartan matrix of finite type. We denote by W (B,) the Weyl
group of type A(B,) and by w, its longest element. Note that the choice of an acyclic seed is
equivalent to the choice of a Coxeter element ¢ of W (B,).

We gather in the following list some relevant facts from the literature (some of which were
already observed earlier in the text). We refer to [Hoh12] for a detailed survey on these properties.

Roots and weights:

o the cluster variables of A, (B,) are in bijection with the almost positive roots of A(B,),
o the dual c-vectors of Ay, (B,) are all the coroots of A(B,),
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/

FIGURE 3. The associahedra Asso(B,) for the type As (left) and type Cs (right) cyclic initial
exchange matrices.

o the g-vectors of Ap(B,s) are some weights of A(B,).

Cambrian fan and Coxeter fan:

e the dual c-vector fan F¢(BY) coincides with the dual Coxeter fan FC€X(BY),
e the g-vector fan F&(B,) coincides with the c-Cambrian fan of N. Reading and D. Speyer [RS09)].

HLT associahedron and permutahedron: Consider any fairly balanced point AV := zeXs AJwy
in the fundamental chamber of A(BY). Then the B,-associahedron Asso™V(B,) coincides with the
c-associahedron Asso)‘v(c) constructed by C. Hohlweg, C. Lange and H. Thomas [HLT11] and later
revisited by S. Stella [Stel3] and by V. Pilaud and C. Stump [PS15a] in the context of brick poly-
topes. In particular, Asso)‘v(c) is defined by the inequalities normal to the g-vectors of A, (B,) in
the facet description of the B,-permutahedron

Perm)‘v(Bo) = conv {w(\") | w € W(B,)}
={veVV| (wwy)|v) <A forall z € Xo,w € W(B,)}.

See [Hoh12] for more details on the relation between Perm)‘v(Bo) and AssoAv(c).

Cambrian lattice and weak order: When oriented in the direction — " W,

rz€Xo
e the graph of the B,-permutahedron is the Hasse diagram of the weak order on W (B,),
e the graph of the B,-associahedron is the Hasse diagram of the c-Cambrian lattice of

N. Reading [Rea06], which is a lattice quotient and a sublattice of the weak order on W (B,).

Vertex barycenter: For any fairly balanced point AV, the origin is the vertex barycenter of both
\ \2
the Bo-permutahedron Perm? (Bo) and the B,-associahedron Asso™ (Bo):

> w(W) =Y p*(B.. ) =0.
weW (Bo) z

In type A, this property was observed by F. Chapoton for J.-L. Loday’s realization of the clas-
sical associahedron [Lod04] and conjectured for arbitrary Coxeter element by C. Hohlweg and
C. Lange in [HLO7] in the balanced case. It was later proved by C. Hohlweg, J. Lortie and A. Ray-
mond [HLR10] and revisited by C. Lange and V. Pilaud in [LP13]. Both proofs use an orbit
refinement of this property. For arbitrary finite types, it was conjectured by C. Hohlweg, C. Lange
and H. Thomas in [HLT11] and proved by V. Pilaud and C. Stump using the brick polytope
approach [PS15b].

We will see in Section 7 how these properties of the B,-associahedron Assoh”(Bo) for finite
type acyclic initial exchange matrices B, extend to arbitrary initial exchange matrices.
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6.2. Type A. We now consider an initial exchange matrix of type A. It is well known that the
vertices of the type A associahedron are counted by the Catalan numbers and are therefore in
bijection with all Catalan families. We use in this paper the classical model by triangulations of
a convex polygon [FZ03b], that we briefly recall now.

Triangulation model for type A cluster algebras. Consider a convex (n + 3)-gon ,. A
dissection is a set of pairwise non-crossing internal diagonals of €2,,, and a triangulation is a maximal
dissection (thus decomposing €, into triangles). A triangulation T defines a matrix B(T) = (b4s)
whose rows and columns are indexed by the diagonals of T and where

1 if -y follows ¢ in counter-clockwise order around a triangle of T,
bys = ¢ —1 if v precedes ¢ in counter-clockwise order around a triangle of T,

0 otherwise.

A flip in a triangulation T consists in exchanging an internal diagonal « by the other diagonal v/
of the quadrilateral formed by the two triangles of T containing it. The reader can observe that
the exchange matrix B(T') of the resulting triangulation T/ = T A {v,+'} is obtained from the
exchange matrix B(T) by a mutation in direction v (as defined in Section 2).

Moreover, note that if the triangulation T has no internal triangle, then we can order linearly
its diagonals 71, ...,7y, such that b, ..., = &1 and b,, 5, = 0 if [ — j| # 1, so that the Cartan
companion A(B(T)) is precisely the type A Cartan matrix. The reciprocal statement clearly
holds as well: any exchange matrix whose Cartan companion is the type A Cartan matrix is the
exchange matrix B(T) of a triangulation T with no internal triangle. Therefore, the flip graph on
triangulations of £2,, completely encodes the combinatorics of mutations in type A.

The choice of a type A initial exchange matrix B, is thus equivalent to the choice of an initial
triangulation T, of €,,. The cluster algebra A (B(T,)) has a cluster variable x5 for each (internal)
diagonal of the polygon €,. Recall that if §,d’ are the two diagonals of a quadrilateral with
edges K, A, u, v in cyclic order, then the corresponding cluster variables are related by the exchange
relation xs5x5 = .2, + xaz,. (Here and elsewere it is understood that if « is a boundary edge,
then x, = 1 and similarly for A\, x, and v.)

The compatibility degree in type A is very simple: for v # 0, we have (z, ||zs) =1 if v and ¢
cross, and 0 otherwise. In particular, the function h, is given by h,(z,) = i(n —2 —i)/2 for a
diagonal v with ¢ vertices of €2,, on one side and n — 2 — ¢ on the other side.

Finally, note that since the exchange matrix B(T,) is skew-symmetric, the algebra A, (B(T,))
and its dual Ap,(B(T,)") coincide. We therefore take the freedom to omit mentioning duals in all
this type A discussion.

Shear coordinates for g- and c-vectors. We now provide a combinatorial interpretation for the
g- and c-vectors in a type A cluster algebra in terms of the triangulation model. Our presentation
is a light version (for the special case of triangulations of a disk) of the shear coordinates of [FST08,
FT12] developed to provide combinatorial models for cluster algebras from surfaces.

We consider 2n+-6 points on the unit circle labeled clockwise by 1o, 24, ..., (2n 4+ 5), (21 + 6),.
We say that 1,3.,...,(2n+5), are the hollow vertices and that 24,4, ..., (2n+6), are the solid
vertices. We simultaneously consider hollow triangulations (based on hollow vertices) and solid
triangulations (based on solid vertices), but never mix hollow and solid vertices in our triangula-
tions. To help distinguishing them, hollow vertices and diagonals appear red while solid vertices
and diagonals appear blue in all pictures. See e.g., Figure 4.

Let T be a hollow (resp. solid) triangulation, let 6 € T, and let v be a solid (resp. hollow)
diagonal. We denote by Q(é € T) the quadrilateral formed by the two triangles of T incident to 4.
When v crosses ¢, we define (6 € T,~) to be 1, —1, or 0 depending on whether v crosses Q(é € T)
asa Z asa \, or in a corner. If v and § do not cross, then we set e(6€T,~) = 0.

Fix once and for all a reference triangulation T, of the hollow polygon and let (ws,)s, e,
and (as,)s,eT, denote dual bases of RTe. The reference triangulation T, of the hollow poly-
gon defines an initial triangulation T, := {(i — 1)e(j — 1)e | (40, o) € To} of the solid polygon,
with B(T,) = B(T, ). The cluster algebra Ay, (B(T,)) has one cluster variable x5, for each solid
internal diagonal d,. For a diagonal d, and a triangulation T, with d, € T,, we write g(Ts, de)
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FIGURE 4. Examples of twisted red and blue triangulations.

and c(T,,de € T,) for the g- and c-vectors of the variable x5, computed from the initial seed
triangulation T, . We denote by C(T,) the set of all c-vectors of Ap.(B(T,)).
The following statement provides a combinatorial interpretation of the g- and c-vectors.

Proposition 33. For any diagonal d and a triangulation T4 with §e € T, we have

g(To,60) = Y c(0€To,b60)ws,  and  ¢(To, b0 € To)i= Y  —£(8s€Te,b5) s, .
(SOETO 6O€TO

Intuitively, the g-vector of d, is given by alternating +1 along the zigzag of de in T, (the
diagonals of T, that cross opposite edges of Q(d, € T,)) and the c-vector of Je in T4 is up to a
sign the characteristic vector of the diagonals of T, that cross opposite edges of Q(de € Th).

For example, the solid diagonal 2,10, in the triangulation T4 of Figure 4 (left) has g-vector
g(To, 2.10.) = W3,15, — W9, 15, and c-vector C(To, 24104 € T{) = —Q5,15, — X9, 15, while the blue
diagonal 4414, in the triangulation T% of Figure 4 (right) has g-vector g(To,4e14e) = w5, 15, and
c-vector ¢(To,4e14e € T},) = 5,15, + 9,15, -

Note that there is one g-vector g(Ts, de) for each internal diagonal d,. In contrast, many d, € T
give the same c-vector ¢(To,ds € Ts). For a diagonal de = uevs, let AJ (resp. AL) denote the
edges of T, crossed by d, and not incident to the vertices uo + 1 or v, + 1 (resp. uo — 1 or v, — 1).
Define ™ (0s) == — 35 ca- ws, and ct(de):= >_5,ea+ ws,- The negative (resp. positive) c-vectors
of C(T,) are then precisely given by the vectors c™(d,) (resp. ¢t (d,)) for all diagonals d, not
i Ty = {(i— 1)a(j — o | (iorjo) € To} (resp. TS = {(i +1)alji+ Lo | (ioro) € To}).

Specializing Theorem 18, the simplicial complex of dissections of €2,, is realized by the g-vector
fan F&(T,):= {g(To,Ds) | De dissection of Q,,}, which coarsens the c-vector fan F¢(T,) (defined
by the arrangement of hyperplanes orthogonal to the c-vectors of C(T,)), which in turn coarsens
the Coxeter fan F€°*(T,) (defined by the Coxeter arrangement for the Cartan matrix A(B(T,))).
These fans are illustrated in Figure 5 for various initial hollow triangulations T,

T,-zonotope, T,-associahedron and T,-parallelepiped. Using these g- and c-vectors, we
now consider three polytopes associated to T:

(1) The T,-zonotope Zono(T,) is the Minkowski sum of all c-vectors:

Zono(T,):= Z c.
ceC(Ty)
Its normal fan is the fan given by the arrangement of the hyperplanes normal to the
c-vectors of C(T,).
(2) The T,-associahedron Asso(T,) is the polytope defined equivalently as
(i) the convex hull of the points p(To,Ts) = Y 5. cp, ho(de) €(To, s € Ts) for all solid
triangulations T,
(ii) the intersection of the hyperplanes H_ (T, d,) := {v € RT°
for all solid diagonal d,.
The normal fan of Asso(T,) is the g-vector fan F&(T,).

(8(To00) [ V) < hp(de) }
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]_-Cox (To )

F(To)

F&(Ts)

FOOX(T,)

o) S
N =

FIGURE 5. Stereographic projections of the Coxeter fan FC°%(T,), the c-vector fan F¢(T.,),
and the g-vector fans F8(T,) for various reference triangulations T,. The 3-dimensional fan is
intersected with the unit sphere and stereographically projected to the plane from the pole in
direction (—1,—1,—1).
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(3) The T,-parallelepiped Para(T,) is the parallelepiped defined as
Para(To):={v e R™ | [(ws, | V)| < hy((i — 1)a(j — 1)a) for all 6 = icjo € To}.

Its normal fan is the coordinate fan, defined by the coordinate hyperplanes.

These polytopes are illustrated in Figure 6 for various initial hollow triangulations T,. Note that
the T,-zonotope Zono(T,) is not simple in general. To simplify the presentation, we restricted
the definition to the balanced exchange submodular function h,, but similar definitions would of
course hold with any exchange submodular function.

These three polytopes are strongly related: not only their normal fans, but even their inequality
descriptions, refine each other, as stated in our next proposition. This property is quite specific
to type A as shown in Section 7.4.

Proposition 34. All facet defining inequalities of Para(Ts) are facet defining inequalities of Asso(T,),
and all facet defining inequalities of Asso(T,) are facet defining inequalities of Zono(T,).

Proof. The first part of the sentence is immediate since for any initial diagonal d, = i,j,, we have
g(TO’(i_l)'(j_]-)') = W5, and g(Tov(i—i_l)'(j"_l)') = —Ws, -

For the second part of the statement, let k(y,) denote the maximum of { g(Ts, e )| v ) over Zono(T,).
As Zono(T,) is the Minkowski sum of all c-vectors, we have

k(ve) = > (g(To,7e) | ).

ceC(T,)
(8(To,ve) |€)>0

To compute this sum, recall that the g-vector g(T,,~,) has alternating +1 along the zigzag Z,
of 7 in T,. Choose a c-vector ¢ € C(T,) and let 4 € To be such that ¢ = c(To,de € T).
Since all diagonals of Z, that traverse Q(de € Ts) cross it in the same way (either all as X or
all as Z), we have (g(Ts,7.)|c) € {—1,0,1}. We thus want to count the c-vectors ¢ € C(T,)
for which (g(Ts,7e)|c) > 0. It actually turns out that it is more convenient and equivalent
(since C(T,) = —C(T,)) to count the c-vectors ¢ € C(T,) for which (g(Ts,7.)|c) < 0.

Decompose the zigzag Z, into Z, = ZF U Z7 such that g(To,ve) = D5 ezt Woo — g ez W
For a diagonal d, = uevs, let A7 (resp. AT) denote the edges of T, crossed by d, and not incident
tous +1orve + 1 (resp. uo — Lorve —1). Let €™ (da) = — 325 ca- ws, and c(8y) = D5 e At Woo-
Recall that the negative (resp. positive) c-vectors of C(T,) are then precisely given by the
vectors ¢ (d,) (resp. ct(d,)) for all diagonals e not in Ty := {(i — 1)e(j — 1)e | (i0,Jo) € To}
(resp. TS = {(i+ 1)a(j 4+ 1)e | (i0,Jo) € To}). We leave it to the reader to check that:

(i) If v, and d, do not cross and have no common endpoint, both |Z, N A7 | and |Z, N AZ| are
even. Thus (g(Ts,7s) |7 (0e)) = (&(To,7e) [€T(da)) = 0.

(ii) If -, and de have a common endpoint, and v,de form a counterclockwise angle, then |Z, N A7 |
is even while Z, N A7 is empty or starts and ends in ZF. Thus (g(To,7e)| ¢ (ds) ) = 0 while
(g(To,7e) | ct(de)) > 0. The situation is similar if y4de form a clockwise angle.

(iii) If v, and de cross, Z, N AT and Z, N AT are empty or start and end both in Z3 or both
in ZF. Thus, either {g(To,7e)|c™ (de)) <0 and (g(To,7e)|cT(de)) > 0 or conversely.

This shows that there are as many c-vectors ¢ € C(T,) for which (g(Ts,7e) | c) < 0 as diagonals de
crossing 7. In other words, k(ve) = hy(7e).

Finally, we obtained that the inequality (g(To,7ve)|V) < k(7e) defines a face F(v,) of the
zonotope Zono(T,). This face F(~,) is the Minkowski sum of the c-vectors of C(T,) orthogonal
to g(To,7e). Theorem 11 ensures that any triangulation T, containing v, already provides n — 1
linearly independent such c-vectors ¢(To, de € T4) for de € Te . {7e}. We obtain that F(v,) has
dimension n — 1 and is therefore a facet of the zonotope Zono(T,). O

Vertex barycenter. We now use this (type A) interpretation of the To-associahedron Asso(T,)
to show that its vertex barycenter is also at the origin. Our approach is independent, and somewhat
simpler than the previous proofs of this property for type A acyclic associahedra [HLR10, LP13].
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Zono(T,)

Asso(T,)

Para(T,)

Zono(T,)
Asso(T,)
Para(T,)

FIGURE 6. The zonotope Zono(T,), associahedron Asso(T,) and parallelepiped Para(T,) for dif-
ferent reference triangulations T,. The first column is J.-L. Loday’s associahedron [Lod04], the
second column is one of C. Hohlweg and C. Lange’s associahedra [HL07], the third column appeared
in a discussion in C. Ceballos, F. Santos and G. Ziegler’s survey on associahedra [CSZ15, Fig. 3.
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Proposition 35. For any initial triangulation T, the origin is the vertex barycenter of the T,-
zonotope Zono(T,), the To-associahedron Asso(T,) and the To-parallelepiped Para(T,).

Proof. Assume that we started from a regular (2n + 6)-gon with alternative hollow and solid
vertices. Consider a diagonal §, of T, and let ¥ denote the reflexion of the plane which stabilizes ..
Note that ¥ sends solid diagonals (resp. triangulations) onto solid diagonals (resp. triangulations).
Moreover, a diagonal d, crosses d, if and only if its image W(de) crosses d,. Since ¥ reverses the
orientation, we therefore obtain that

£(6e €Te, o) = —£(V(ds) € ¥(T),d5),

for any d, € T,o. Finally, ¥ preserves the length of a diagonal de, so that h,(¥(de)) = h,(de).
Summing over all diagonals in all solid triangulations, we obtain that the do-coordinate of the
vertex barycenter of Asso(T) is given by

(ZP(TO,T.))6 =3 3" () e(To,00 € Ta))y == > hy(da)e(d0€Ta,6) =0
T, ® Te S4€Te Te 50€Ts

since the contribution of d, € T, is balanced by that of ¥(ds) € ¥(T,). Since this holds for

any 0, € To, we conclude that the vertex barycenter of Asso(T,) is the origin. It is immediate for

the other two polytopes Zono(T,) and Para(T,) since they are centrally symmetric. O

Proposition 35 will be generalized in Section 7.3 for arbitrary seeds in arbitrary finite types and
for arbitrary fairly balanced point A.

7. FURTHER PROPERTIES OF Asso(B,)

In this section, we discuss further geometric properties of the Bs-associahedron Assoh(Bo),
motivated by the specific families of examples presented in Section 6. We also introduce the uni-
versal associahedron mentioned in Theorem 2, a high dimensional polytope which simultaneously
contains the associahedra Asso™(B,) for all exchange matrices B, of a given finite type.

7.1. Green mutations. Motivated by Section 6.1, we consider a natural orientation of muta-
tions introduced by B. Keller in the context of quantum dilogarithm identities [Kelll]. For two
adjacent seeds ¥ = (B,P,X) and ¥’ = (B/,P’,X’) of A,,(B,) with X \ {z} = X'\ {2'}, the mu-
tation ¥ — ¥ is a green mutation when the dual c-vector ¢(BY,z" € XV) = —¢(BY, 2’V € ¥'V) is
positive. The directed graph G(B,) of green mutations is known to be acyclic, and even the Hasse
diagram of a lattice when the type of B, is simply laced, see [GM15, Coro. 4.7] and the references
therein. Further lattice theoretic properties of G(B,) are discussed in [GM15].

Example 36. For an acyclic initial exchange matrix B,, the lattice of green mutations is the
c-Cambrian lattice of N. Reading [Rea06] (where ¢ is the Coxeter element corresponding to B.).

It turns out that this green mutation digraph G(B,) is apparent in the B,-associahedron. Indeed,
the following statement is a direct consequence of Remark 27.

Proposition 37. For any finite type exchange matriz B,, the graph of the associahedron Assoh(Bo),
oriented in the linear direction — ) x ws, is the graph G(Bo) of green mutations in Ap(Bo).

Proof. Consider two adjacent seeds ¥ = (B, P, X) and ¥’ = (B, P’,X') of A, (Bo) with X~ {z} =
X'\ {2'}. By Remark 27, we have

ph(Bo,E/) - ph(BmZ) = _'YC(B;/J;V € EV)
for some positive v € Ry . Therefore,

(= 2 we[P"(Bo,X) = p"(Bo %) ) =7 ( D wefe(B,2¥ €3Y))

r€Xo r€Xo

is positive if and only if ¢(BY,z" € V) is a positive c-vector. O
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7.2. Universal associahedron. For each initial exchange matrix B, of a given type, we con-
structed in Section 5 a generalized associahedron Assoh(Bo) by lifting the g-vector fan using an
exchange submodular function h on the cluster variables of Ay, (Bs). As already observed though,
the function h is independent of the coefficients of A, (Bs), so that all g-vector fans can be lifted
with the same function h. This motivates the definition of a universal associahedron.

For this, consider the finite type cluster algebra A, (B,) with universal coefficients, and let X'(B,)
denote its set of cluster variables. Consider a |X(B,)|-dimensional vector space U with ba-
sis {Be }rcx(B,) and its dual space UY with basis {8\ },vex(sy). As before, the cluster variables
of Ayn(Bo) and A,,(BY) are related by z <+ z¥. For X C X(B,), we denote by Hx the coordinate
subspace of U spanned by {8, }zex.

Given a seed ¥ in Ay, (Bs), the u-vector of a cluster variable x € 3 is the vector

u(Bo,z € ¥):= Z Uye By €U
yEX(Bo)
of exponents of p, = [, ¢ X(Bo)(p[y])“ym. Remark 14 then reformulates geometrically in terms of

u- and c-vectors as follows. Choose a seed X, = (By, Py, X,) in Aun(Bs) that you want to make
initial. Then, for any cluster variable z in a seed X, the c-vector ¢(B,,z € X) is the orthogonal
projection of the u-vector u(B,,z € X) on the coordinate subspace Hx,. (Here and elsewhere we
identify Hx, with V' and Hxv with V¥ in the obvious way.)

We are now ready to define the universal associahedron.

Definition 38. For any finite type exchange matrix B, and any exchange submodular function A,
the universal B,-associahedron is the polytope Assoﬁn(Bo) in U defined as the convex hull of the
points

pin(Bo, )= Y h(z)u(BY,2Y € BY) €UV
reEX
for each seed X of A, (Bo).

Note that Assoﬁn(Bo) does not depend on B, but only on its cluster type. We keep B, in the
notation since it fixes the indexing of the spaces U and U".

Example 39. We illustrate Definition 38 on the type C exchange matrix:

0 2
B, = {_1 O} |
The cluster algebra A, (Bs) has 6 cluster variables that we denote by X' (B,) = {x1, 22, x3, 4, T5, T6 }.
It is straightforward to verify that to the point 2p¥ corresponds the function hg,v with value 3

on z1,r3,x5 and 4 on s, x4, xg. The u-vectors we need to compute our polytope are those as-
sociated to the algebra A,,(BY) that appears in Example 15. (Notationally one should think of

cluster variables in Example 15 as {z)}.) Using Figure 1 we then get that Assoﬁﬁ”v(Bo) is the
convex hull of the 6 points

(3,4,-3,-4,-1,2),  (3,—4,-3,-2,1,4),  (1,4,3,—4,-3,-2),
(—3,-4,-1,2,3,4), (—1,2,3,4,-3,-4), (—3,-2,1,4,3,—-4).
These are in general position so Assoﬁf{’v(Bo) is a 5-dimensional simplex embedded in RS.
Our interest in Asso™ (B,) comes from the following property.

Theorem 40. Fix a finite type exchange matriz B, and an exchange submodular function h. For
any seed (B, P, X,) of Aun(Bo), the orthogonal projection of the universal associahedron Asso” (Bo)
on the coordinate subspace Hxy of U spanned by {8\ }ovexy is the B, -associahedron Asso™ (B,).

Proof. Denote by mxy the orthogonal projection on Hxy. We already observed that
c(BY,z¥ € ¥Y) = mxyv (u(B/,z" € &)
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dimension of . . . .
" | ambient space dimension | # vertices | # facets | # vertices / facet | # facets / vertex
1 2 1 2 2 1 1
2 ) 4 ) ) 4 4
3 9 8 14 60 9<-<10 30<-<42
4 14 13 42 8960 14 <. <28 3463 < - <4244

TABLE 1. Some statistics for the universal associahedron of type A,, for n € [4].

for any cluster variable = in any seed X. It follows that
p" (B.. %) = mxy (Pl (Bo, X))
for any seed ¥. We conclude that
Asso” (B,) = conv {p" (B,,2) | ¥ seed in Ay, (Bo)}
= conv {mxv (p, (B, %)) | © seed in Aun(Bo)}
= mxv (conv {pl, (B,, %) | ¥ seed in Aun(Bo)}) =: mxv (Assoﬁn(Bo)). O

Remark 41. Consider the normal fan F of the universal B,-associahedron Asso™ (B,). Then for
any seed X, = (By, Py, X,) in Ay, (Bo), the section of F by the the coordinate subspace Hx, of U
spanned by {f;}zex, is the g-vector fan F&(B,). We therefore call universal g-vector fan the
normal fan F& (B,) of the universal B-associahedron Asso,,(B,).

We now gather some observations on the universal Bo-associahedron Asso” (B,):

e The universal associahedron Assoﬁn(Bo) is a priori defined in UY. However, computer
experiments indicate that it has codimension 1. The linear space containing Assoﬁn(Bo)
seems to be expressed naturally in terms of the Cartan matrix of type B, and h.

e As an immediate consequence of Theorem 40, we obtain that the vertices of the universal
associahedron Asso”, (B,) are precisely the points p!, (Bo,¥) for all seeds & of Aun(Bo),
and that the mutation graph of the cluster algebra Ay, (Bs) is a subgraph of the graph
of Asso™ (B,). However, this inclusion is strict in general.

e In general Assoﬁn(Bo) is neither simple nor simplicial. Table 1 presents some statistics for
the number of vertices per facet and facets per vertex in the universal associahedron of
type A,, for n € [4].

e Computer experiments indicate that the face lattice (and thus the f-vector) of the universal
B,-associahedron Asso!’, (B,) is independent of .

To conclude, let us insist on the fact that Theorem 40 describes the projection of the universal
associahedron Asso” (B,) on coordinate subspaces corresponding to clusters of Ay, (Bo). It turns
out that the projections on coordinate subspaces corresponding to all faces (not necessarily facets)
of the cluster complex create relevant simplicial complexes, fans and polytopes [Chal6, GM16,
MP17]. This naturally raises the question to understand all coordinate projections of the universal
associahedron Asso” (B.).

7.3. Vertex barycenter. As mentioned in Section 6.1, the vertex barycenters of all associahedra
constructed by C. Hohlweg, C. Lange and H. Thomas in [HLT11] coincide with the origin. This
intriguing property observed in [HLT11, Conj. 5.1] was proved by V. Pilaud and C. Stump [PS15b].
We show in this section that it also extends to all associahedra Asso” (B,) for any initial exchange
matrix B, and any exchange submodular function h. In fact, it is a consequence of the following
stronger statement.

Theorem 42. For any finite type exchange matriz B, and any exchange submodular function h,

the origin is the vertex barycenter of the universal Bo-associahedron Assoﬁn(Bo).



POLYTOPAL REALIZATIONS OF FINITE TYPE g-VECTOR FANS 23

Our proof of this theorem relies on its validity in the acyclic case [PS15b], and on the following
observation.

Lemma 43. Fiz a finite type exchange matriz B, and an exchange submodular function h. For any
seed (By, Py, Xy) of Aun(Bo), the vertex barycenter of the By-associahedron Assoh(B*) is the image
of the vertex barycenter of the universal associahedron Assoﬁn(Bo) by the orthogonal projection on
the coordinate subspace Hxy of UY spanned by {5 }ovexy .-

Proof. Denote by mxv the orthogonal projection on Hxyv. Since 7xy is linear, we have
Z p" (BM E) = Z TXY (pﬁn (Bo, E)) = TXY (Z pﬁn (Bm E)) )
> > >

where ¥ runs over all seeds of A, (Bs). The result follows since these seeds index the vertices of
both Asso™(B,) and Asso” (B,). O

Proof of Theorem 42. Consider a cluster variable z of A,,(Bs). Let (B, Py, X,) be an acyclic
seed of Ay, (Bo) containing z (such a seed exists, we could even require that it is bipartite). Since
by [PS15b] the vertex barycenter of Asso”(B,) is at the origin, we obtain by Lemma 43 that the -
coordinate of the vertex barycenter of the universal associahedron Assoﬁn(Bo) vanishes. Applying
the same argument independently for all cluster variables x of Ay, (Bo) concludes the proof. O

Corollary 44. For any finite type exchange matriz B, and any exchange submodular function h,
the origin is the vertex barycenter of the B,-associahedron /—\ssoh(Bo).

Proof. This is an immediate consequence of Theorem 42 and Lemma 43. O

7.4. Zonotope. Motivated by the specific families presented in Section 6, it is natural to investi-
gate whether there exists a zonotope Zonoh(Bo) whose facet description contains all inequalities
of the associahedron Assoh(Bo). In this section, we show that such a zonotope does not always
exist in general.

A first naive option. Mimicking Section 6, the natural choice is to consider the zonotope
Zono(B,) := Zcec(BOV) c. Indeed, we have seen in Section 6 that all inequalities of Asso(B,) are
inequalities of Zono(B,) when B, is either acyclic or of type A.

However, this property already fails for the type Cj cyclic initial exchange matrix

0o -1 2
Bo=|1 0 -2
-1 1 0

FIGURE 7. The zonotope counter-example in type C3. The B,-associahedron Asso(B,) (left),
the B,-zonotope Zono(B,) (middle), and their superposition (right) for the type Cs cyclic initial
exchange matrix B,. The hyperplanes supporting the shaded facets of Asso(B,) are parallel to
but do not coincide with the hyperplanes supporting the shaded facets of Zono(B,).
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j

e

FIGURE 8. The polytope defined by the inequalities of Zono(B,) defining facets whose normal vec-
tors are g-vectors of Ay, (B,) (left), and a zonotope whose facet description contains all inequalities
of Asso(B,) (right).

One indeed checks that in the direction of the g-vectors (—1,1,0) and (1,—1,0), the right hand
sides of the inequalities are 4 in Asso(B,) and 3 in Zono(B,). This is visible in Figure 7 where the
facets of Asso(B,) and Zono(B,) orthogonal to the g-vectors (—1,1,0) and (1, —1,0) are shaded.

Figure 8 (left) shows that the polytope defined by the inequalities of Zono(B,) defining facets
whose normal vectors are g-vectors of Ay, (Bo) is not an associahedron of type C3 (it is not even
a simple polytope).

Note by the way that the two g-vectors (—1,1,0) and (1,—1,0) are opposite (thus correspond
to parallel facets of Asso(B,)). This should sound unusual as the only pairs of opposite g-vectors
in both situations of Section 6 are the pairs of opposite coordinate vectors {w,, —w, } for x € X,.

General approach. For any tuple v:= (7c)cec(y) of positive coefficients, we consider the zono-
tope
Zono"(B,):= Z Ve €
ceC(BY)
By definition, its normal fan is F¢(BY). For any ray g of this fan, the inequality defining the facet
normal to g is given by (g|v) < k(g) where

k(g)= Y. 7 (glc).
ceC(BY)
(gle)>0
The facet description of the zonotope Zono” (B,) thus contains all inequalities of the associahe-
dron Asso”(B,) if and only if v = ~(h) is a positive solution to the system of linear equations

Z Ye (&(Bs, ) |c) = h(x) for all cluster variable = of Ay, (B.).
ceC(BY)
(8(Bo,z)[c)>0

For example, such a solution exists for the type Cj cyclic initial exchange matrix, as illus-
trated in Figure 8 (right). Note that we had to pick different coefficients for different elements of
C(BY) (leading to unnaturally narrow faces) since we already observed in Figure 7 that constant
coefficients are not suitable.

In contrast, a quick computer experiment shows that this system has no solution for the type D5
cyclic initial exchange matrix

0 1 0 0 -1
-1 0 1 0 0
Bo=|0 -1 0 1 0
0o 0 -1 0 1
1 0o 0 -1 0
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FIGURE 9. An obstruction to the existence of a centrally symmetric zonotope whose facet de-
scription would contain that of the associahedron Asso(B,) for a cyclic initial seed B, in type Ds.
The two arcs v, (left) and ~, (right) have opposite g-vectors but different compatibility sums.

and the balanced exchange submodular function h,v. Rather than showing the detailed linear
system, we prefer to convince the reader that there is no solution under the natural assumption
that 7. = v_c for any ¢ € C(BY), i.e., that the zonotope Zono” (B,) is centrally symmetric. To
see that no such solution exists, consider the classical punctured pentagon model for the type Ds
cluster algebra [FSTO08]. Recall that

(i) cluster variables correspond to internal arcs up to isotopy (with the subtlety that an arc
incident to the puncture can be tagged or not),
(ii) g-vectors can be read by shear coordinates [FT12] in a similar way as in Section 6.2, and
(iii) the compatibility degree between two arcs is the (minimal) number of crossings between them.

We therefore obtain that the arcs v, connecting 1, to 3, in Figure 9 (left) and the arc 7, connect-
ing 44 to 5e in Figure 9 (right) satisfy:

g(Bo,z,) = (-1,0,1,0,0) and h,v(z,y,) =7,

g(Bo,z,,) =(1,0,—1,0,0) and h,v(z,,) =9.
In other words, we exhibited two cluster variables with opposite g-vectors while belonging to

distinct (74, 7_)-orbits. Since a centrally symmetric zonotope would have the same right-hand-
sides on opposite normal vectors, this shows that no such polytope exists.
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