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We developed a numerical method for the set of equations governing fully compressible
convection in the limit of infinite Prandtl numbers. Reduced models have also been
analyzed, such as the anelastic approximation and the anelastic liquid approximation.
The tests of our numerical schemes against self-consistent criteria have shown that our
numerical simulations are consistent from the point of view of energy dissipation, heat
transfer and entropy budget. The equation of state of an ideal gas has been considered in
this work. Specific effects arising because of the compressibility of the fluid are studied,
like the scaling of viscous dissipation and the scaling of the heat flux contribution due
to the mechanical power exerted by viscous forces. We analyzed the solutions obtained
with each model (full compressible model, anelastic and anelastic liquid approximations)
in a wide range of dimensionless parameters and determined the errors induced by each
approximation with respect to the full compressible solutions. Based on a rationale on
the development of the thermal boundary layers, we can explain reasonably well the
differences between the full compressible and anelastic models, in terms of both the heat
transfer and viscous dissipation dependence on compressibility. This could be mostly
an effect of density variations on thermal diffusivity. Based on the different forms of
entropy balance between exact and anelastic models, we find that a necessary condition
for convergence of the anelastic results to the exact solutions is that the product εq
must be small compared to unity, where ε is the ratio of the superadiabatic temperature
difference to the adiabatic difference and q is the ratio of the superadiabatic heat flux
to the heat flux conducted along the adiabat. The same condition seems to be also
associated with a convergence of the computed heat fluxes. Concerning the anelastic
liquid approximation, we confirm previous estimates by Anufriev et al. (2005) and find
that its results become generally close to those of the full compressible model when αTD
is small compared to one, where α is the isobaric thermal expansion coefficient, T the

temperature (here αT = 1 for an ideal gas) and D the dissipation number.

Key words: compressible convection, thermal convection, anelastic approximation,
anelastic liquid approximation.
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1. Introduction

Convection plays an important role for heat transfer in the deep interior of planets
and stars, thus controlling their evolution. Many factors must be taken into account
when modelling planetary and stellar convection: composition, rheology, heterogeneity
of viscosity... Among them, in these large objects where the variation of density with
pressure (or depth) is much larger than with temperature, compressibility lies at the heart
of convection models and is strongly connected to the choice of a necessary convection
approximation. It is sometimes not possible to use the original governing equations in a
numerical model because they produce the whole class of acoustic waves, even though
one is only interested in the much slower convection motion generated by buoyancy.
The drastically simplified Oberbeck or Boussinesq model (Oberbeck 1879; Boussinesq
1903) suppresses the acoustic waves, which is favorable for numerical simulations, but
fails to retrieve the so-called adiabatic temperature gradient in a nearly hydrostatic
convecting fluid domain (except in Spiegel & Veronis (1971) in the case of a small
adiabatic gradient). Intermediate sound-proof models have been proposed, in particular
the anelastic (Ogura & Phillips 1961; Braginsky & Roberts 1995; Lantz & Fan 1999) and
anelastic liquid (Anufriev et al. 2005) models. Our objective here is to better understand
the exact governing equations, and describe and analyse the differences between the
results obtained using these equations and those obtained using an anelastic or anelastic
liquid model.

The question of the interplay between acoustic waves and convection is often taken
as the key factor, although not the only one, for the applicability of the anelastic
approximation (see for instance Verhoeven et al. 2015). This depends highly on the value
of the Mach number, ratio of the typical convection speed to the acoustic wave celerity.
However, the anelastic approximation differs from the full compressible model in different
ways, and we concentrate in this paper on factors other than the question of the acoustic
waves and the Mach number. This point of view is driven by geophysical applications:
convection in the mantle, core and atmosphere of the Earth is characterized by a Mach
number ranging from tiny to small. In the Earth’s mantle, seismic P (acoustic) waves
propagate at velocities of order 10 km s−1 while typical velocities are 0.1 m yr−1, hence
the Mach number is of order 10−12. In the liquid outer core of the Earth, the typical
velocities inferred from geomagnetic variations are of order 10−4 m s−1 and seismic P
waves have the same typical celerity of 10 km s−1: the Mach number in the Earth’s outer
core is of order 10−8. In the atmosphere, sound velocities of a few 100 m s−1 compared to
wind velocities of a few 10 km s−1 lead to Mach numbers of order 10−2. On the contrary,
the situations that we consider do not apply to the upper atmosphere of Jupiter or
Saturn, or to the surface of the Sun where convective velocities of several km s−1 imply
Mach number close to unity. To ensure a small Mach number, we have chosen to study
the case of infinite Prandtl number convection: as shown in section 4, an infinite Prandtl
number implies that the Mach number is zero.

In this paper, we make a further assumption that the equation of state is that of
ideal gases. This equation of state introduces only one dimensionless parameter in the
problem of convection, namely the ratio of heat capacities γ. We cannot argue that an
ideal gas with infinite Prandtl number corresponds to a physical realization in geophysics
or astrophysics. What we aim for is a coherent set of equations for convection, as simple
as possible, so that approximate models of convection can be tested extensively and that
some analytical predictions can be made. Although the ideal gas equation of state is a
particular case, we believe that our results on the structure of compressible flows and on
the validity of anelastic approximations remain useful for other equations of state. For
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instance, the relative influence of pressure and temperature on density depends simply
on the dissipation parameter and on the ratio of heat capacities (Alboussière & Ricard
2017), and those parameters can be specified arbitrarily using an ideal gas equation of
state.

Within this simplified framework (no sound waves, ideal gas equation of state), com-
pressible convection is governed by a few dimensionless numbers: a Rayleigh number,
a dissipation parameter, a ratio of hot to cold imposed temperatures and a ratio of
heat capacities. A first objective of this paper is to understand the specific role of
compressibility (the dissipation parameter) in key outcomes, such as the heat flux
transferred or the amount of energy dissipated by viscous stress. The second objective
concerns the anelastic approximation models: when the temperature field is close to
the adiabatic temperature profile, we would like to understand what is the parameter
(or combination of the parameters listed above) indicating when an anelastic model
is supposed to lead to results similar to those from the complete set of governing
equations. Is that only related to the superadabatic parameter (ratio of superadiabatic
temperature difference to the adiabatic temperature difference) or does it also involve
the superadiabatic Rayleigh number?

The article is organized as follows. Section 2 describes the physical set-up and provides
the governing equations as well as a detailed characterization of the adiabatic solution.
Section 3 introduces the simplifications related to the choice of the perfect gas equation
of state. Section 4 is devoted to a discussion of the Mach number at infinite Prandtl
number and to the timescale of the viscous relaxation replacing sound waves. In section
5, we briefly introduce the numerical methods used to obtain the solutions, we list the
different forms of viscous energy dissipation, and obtain some estimates of the numerical
errors. In section 6, we show snapshots of the superadiabatic temperature field for various
values of the governing parameters to give an idea of the different regimes explored in
this study. The averaged temperature profiles are shown in section 7, followed by a
rationale in section 8 allowing us to make predictions on boundary layer thicknesses,
heat transfer and entropy sources. The numerical results for different approximations are
presented and compared in section 9 in terms of heat transfer and in section 10 in terms
of viscous dissipation. Section 11 is devoted to entropy. In section 11.1, we show that the
global entropy balance takes a different form in anelastic models, compared to the exact
entropy balance. In section 11.4, we obtain upper and lower bounds for the “conduction”
and “viscous dissipation” parts of the entropy sources in the anelastic approximation.
Finally, we discuss the validity criteria for each approximation in section 12.

2. Physical set-up and governing equations

The physical set-up consists in a two dimensional rectangular fluid layer Ω with
uniform (dynamical) viscosity η, thermal conductivity k, and gravity g parallel to two
sides (see Fig. 1) pointing towards the bottom of the page. The bottom and top sides, of
length L, are maintained at constant temperatures, Tbot and Ttop respectively, and are
subjected to free-slip, impermeable boundary conditions. The vertical sides, of length d,
satisfy periodic boundary conditions. The geometry is defined through the aspect ratio
Γ = L/d. The value Γ = 4 will be most often used. Coordinates (x, z) are defined such
that x is the horizontal coordinate (0 6 x 6 L) and z the upward vertical coordinate
(0 6 z 6 d), while t is the variable of time. The average density in the rectangular domain
is set to a value ρ0 and an equation of state (see section 3) needs to be chosen for the fluid.

The exact governing equations in the framework of continuum mechanics are those of
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continuity, Stokes equation (infinite Prandtl number makes inertia negligible), entropy
evolution and equation of state, for the density ρ, velocity field v, specific entropy s,
pressure P , temperature T :

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

0 = −∇P + ρg + ∇ · τ, (2.2)

ρT

[
∂s

∂t
+ v ·∇s

]
= ε̇ : τ + ∇ · (k∇T ) , (2.3)

T = T (ρ, s), P = P (ρ, s), (2.4)

where the deformation rate tensor ε̇ and stress tensor τ are defined as follows

ε̇ij =
1

2
(∂jvi + ∂ivj) , τij = η

(
∂jvi + ∂ivj −

2

3
δij∇ · v

)
, (2.5)

using Stokes hypothesis of zero bulk viscosity.

In stable cases (see Alboussière & Ricard 2017), a motionless steady diffusive solution
exists, characterized by a linear temperature profile Tb(z), a hydrostatic pressure profile
Pb(z) and a density profile ρb(z) such that

Tb(z) = Tbot −
z

d
∆T,

dPb
dz

= −ρbg, (2.6)

where ∆T = Tbot − Ttop is the imposed temperature difference. For a given equation of
state, a unique solution is obtained under the mass constraint:

ρ0 =
1

d

∫ d

0

ρb(z)dz. (2.7)

We also define an adiabatic (or isentropic) profile of temperature, pressure, density,
coefficient of thermal expansion, heat capacity at constant pressure, Ta(z), Pa(z), ρa(z),
αa(z) and cpa(z), characterized by a uniform entropy sa and hydrostatic conditions

dTa
dz

= −αagTa
cpa

,
dPa
dz

= −ρag. (2.8)

The adiabatic profile must also satisfy the equation of state. We prescribe the
adiabatic profile to satisfy the mass constraint (2.7), with ρa instead of ρb. This
is however not sufficient to define a unique profile, so we make the additional
choice of equal superadiabatic departures from the thermal boundary conditions:
Tbot − Ta(0) = Ta(d)− Ttop. In highly convective cases, it is expected that the solutions
should converge toward the adiabatic profile, although we will see that the actual
temperature may be shifted away from a profile with symmetrical superadiabatic
temperature differences. Independently of these expectations, this adiabatic profile will
be used as a reference to expand thermodynamic quantities in the anelastic models:
T = Ta + T ′ and similarly for the other variables of state. The adiabatic temperature
difference across the layer is denoted ∆Ta = Ta(0) − Ta(d), while the superadiabatic
temperature difference is denoted ∆Tsa = ∆T −∆Ta = Tbot − Ta(0) + Ta(d)− Ttop.

Let us now express a dimensionless version of the problem. We choose the arithmetic
average of top and bottom temperatures, T0 = (Ttop+Tbot)/2 as a reference temperature.
We have already defined ρ0 as the average density of the fluid layer. Through the
equation of state, we can then obtain a reference value, denoted with a subscript 0,
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for any thermodynamic quantity: pressure P0, heat capacity at constant pressure cp0,
coefficient of thermal expansion α0... The variables of time t, spatial coordinates (x, z),
velocity v, temperature T , pressure P , entropy s, deformation tensor ε̇, stress tensor τ
are made dimensionless using the following scales respectively, ρ0cp0d

2/k, d, k/(ρ0cp0d),
T0, ρ0cp0T0, cp0, k/(ρ0cp0d

2) and kη/(ρ0cp0d
2). Basically, the timescale is that of thermal

diffusion across the height d of the cavity (the lengthscale), velocity and tensor of
deformation rate are scaled using that timescale and lengthscale. The scale for the stress
tensor is obtained by multiplying the scale of deformation tensor rate by viscosity. It
could also have been the pressure scale, however the scale for pressure is built from that
of temperature T0 (mean value of top and bottom temperatures) as a thermal energy per
unit volume ρ0cp0T0. Entropy is simply scaled by the specific heat cp0. The governing
equations (2.1), (2.2), (2.3), (2.4) and (2.5) are now written in a dimensionless form:

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.9)

0 = −Rα̂D ∇P −Rρez + ∇ · τ, (2.10)

ρT

[
∂s

∂t
+ v ·∇s

]
=
D
Rα̂

ε̇ : τ +∇2T, (2.11)

T = T (ρ, s), P = P (ρ, s), (2.12)

ε̇ij =
1

2
(∂jvi + ∂ivj) , τij = ∂jvi + ∂ivj −

2

3
δij∇ · v, (2.13)

where the dimensionless numbers R, α̂ and dissipation number D are defined as follows:

R =
ρ20cp0gd

3

kη
, (2.14)

α̂ = α0T0, (2.15)

D =
α0gd

cp0
. (2.16)

We also need to define an extra dimensionless number to set the temperature boundary
condition. We choose the temperature ratio r between the bottom and top boundaries:

r =
Tbot
Ttop

. (2.17)

The dimensionless thermal boundary conditions can then be expressed as:

Tbot =
2r

1 + r
Ttop =

2

1 + r
. (2.18)

The dimensionless parameters introduced so far, R, α̂, D and r are enough to describe the
physical problem, although other parameters may appear when an equation of state is
specified, like for instance γ = cp0/cv0 the ratio of specific heat capacities at the reference
conditions.

The dimensionless number R can be related to the proper superadiabatic Rayleigh
number Rasa based on the superadiabatic temperature difference ∆Tsa. It can also be
related to the adiabatic temperature difference ∆Ta or to ∆T , using another dimension-
less parameter ε measuring the relative amplitude of the superadiabatic to the adiabatic
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temperature difference:

ε =
∆Tsa
∆Ta

=
δTsa
δTa

, (2.19)

Rasa = Rα̂δTsa = Rα̂εδTa = Rα̂
ε

1 + ε
δT, (2.20)

where δTa = ∆Ta/T0, δTsa = ∆Tsa/T0, δT = ∆T/T0 are the dimensionless adiabatic,
superadiabatic and total temperature differences. The dimensionless temperature differ-
ence is easily related to the temperature ratio: δT = 2(r − 1)/(r + 1). It is also equal to
the dimensionless temperature gradient of the conduction profile (with constant thermal
conductivity), which was called a in a previous paper (Alboussière & Ricard 2017), so
that the dimensionless counterpart of the temperature profile in (2.6) is

Tb(z) = 1− δT
(
z − 1

2

)
= 1− a

(
z − 1

2

)
. (2.21)

For any general equation of state, the dimensionless adiabatic temperature difference is
of the order of the dissipation number D and for ideal gases one has exactly δTa = D. In
physical terms, the dissipation parameter D is related to adiabatic heating (resp. cooling)
on compression (resp. decompression). It is a measure of the temperature difference due
to the adiabatic gradient over the height of the system, divided by the mean temperature.
With the definitions above, it is hence possible to specify Rasa instead of R, or ε instead
of r in the list of dimensionless parameters as R = Rasa/(α̂εD) and r = [2 + D(1 +
ε)]/[2 − D(1 + ε)]. As a final point on dimensionless parameters, it must be noted that,
for a fixed temperature ratio r, there exists a maximal value of the dissipation number
Dmax above which the fluid is stably stratified, and ε can be expressed as a function of
D (and conversely)

Dmax = 2
r − 1

r + 1
, (2.22)

ε =
Dmax −D
D , (2.23)

D =
Dmax
1 + ε

. (2.24)

For instance, when r = 3, we have Dmax = 1, and when D approaches this maximum
value, ε approaches zero.

The governing equations presented above (2.9), (2.10), (2.11), (2.12) and (2.13) are
those derived from the general dynamical and thermodynamical principles applied to
a fluid, which we call here the full compressible model FC. We are also writing, on
table 1, the governing equations associated with approximate models of those general
equations: the anelastic approximation AA (Ogura & Phillips 1961; Braginsky & Roberts
1995; Lantz & Fan 1999), anelastic liquid approximation ALA (Anufriev et al. 2005) and
Boussinesq model B (Oberbeck 1879; Boussinesq 1903). In this work, we shall compare
the results of the full compressible FC, anelastic approximation AA and anelastic liquid
approximation ALA. The anelastic equations AA and ALA have been obtained using the
same scales as those used to obtain the dimensionless equations of the full compressible
model FC. The Boussinesq model B is shown here for comparison, although we shall
not run Boussinesq numerical calculations: temperature is scaled using the total imposed
temperature difference Tbot−Ttop for this model only. Notice that the limit of the FC, AA
or ALA approximations when D tends to zero is not the Boussinesq approximation. The
latter implies in addition that the temperature difference across the convecting domain
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Figure 1. Rectangular, 2D, physical setup Ω. The boundary conditions are periodic in the
horizontal x direction. Stress-free, impermeable conditions apply on bottom and top boundaries,
held at imposed hot Tbot and cold Ttop temperatures.

is negligible compared to the average thermodynamic temperature which is not the
case in our simulations. The order of these limits matter: the Boussinesq approximation
corresponds to lim

r→1
lim
D→0

(see also Alboussière & Ricard (2017)).

It is worth noting that the ratio r is irrelevant in anelastic models (AA and ALA).
This can be proven by changing the dimensional scales for temperature, pressure and
entropy fluctuations T ′, P ′ and s′ for ∆Tsa, ρ0cp0∆Tsa and cp0∆Tsa/T0 (instead of
T0, ρ0cp0T0 and cp0). Then, Rasa and D are the only dimensionless parameters in the
Stokes and entropy equations. Moreover, the dimensionless thermal boundary conditions
become simply T ′ = ±1/2 at z = 0 and z = 1. Hence the anelastic solutions are
independent of r. This result can also be inferred from the original derivation of the
anelastic equations Ogura & Phillips (1961), since they are obtained by linearization
of the thermodynamic functions about the hydrostatic adiabatic state: the role of the
superadiabatic temperature difference ∆Tsa is only to contribute to the superadiabatic
Rayleigh number.

3. Equation of State

The equation of state of ideal gases, P/ρ = RT/M , where R is the universal gas
constant and M the molar mass of the gas, with cp = cp0 , cv = cv0 and γ = cp0/cv0
constants, is written using our dimensionless variables

ρ =
P

(1− γ−1)T
. (3.1)

From this equation of state, P and T in terms of ρ and s take the following dimensionless
forms

T = exp (γs) ργ−1, (3.2)

P = (1− γ−1) exp (γs) ργ . (3.3)
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continuity entropy momentum

FC ∂ρ
∂t + ∇ · (ρv) = 0 ρT Ds

Dt = D
Rα̂ ε̇ : τ +∇2T −Rα̂D ∇P − Rρez + ∇ · τ = 0

AA
∇ · (ρav) = 0

ρaTa
Ds′
Dt = D

Rα̂ ε̇ : τ +∇2T −Rα̂D ρa∇
(
P ′
ρa

)
+ Rα̂αaρaTacpa

s′ez + ∇ · τ = 0

ALA ρa
D(cpaT

′)
Dt = −DαaρavzT ′ + D

Rα̂ ε̇ : τ +∇2T −Rα̂D ρa∇
(
P ′
ρa

)
+ Rα̂αaρaT

′ez + ∇ · τ = 0

B ∇ · v = 0 DT
Dt = ∇2T −∇P + RasaTez + ∇2v = 0

Table 1. Dimensionless equations. FC Full compressible model; AA Anelastic approximation
model; ALA Anelastic Liquid approximation model; B Boussinesq approximation model. D/Dt
stands for ∂t + v ·∇.

We can also express entropy from temperature and pressure

s = lnT − (1− γ−1) ln

(
P

1− γ−1
)
, (3.4)

where the dimensionless entropy has been set arbitrarily to zero for the reference condi-
tions ρ = 1 and T = 1. This equation of state implies also that the product αT is unity:
α̂ = α0T0 = 1.

In the anelastic approximations, we need to derive the expression for the adiabatic
reference profile and to express the perturbations of thermodynamical variables in terms
of the variables chosen to describe the state of the fluid, namely s and ρ for the general
anelastic approximation and T for the anelastic liquid approximation. The adiabatic (or
isentropic) profile, as defined by the equations of the adiabatic gradient and hydrostatic
equilibrium (2.8) takes the following dimensionless expression for ideal gases:

Ta(z) = 1−D
(
z − 1

2

)
, (3.5)

ρa(z) =
D/
(
1− γ−1

)
(1 +D/2)

γ
γ−1 − (1−D/2)

γ
γ−1

Ta(z)
1

γ−1 , (3.6)

Pa(z) =
D

(1 +D/2)
γ
γ−1 − (1−D/2)

γ
γ−1

Ta(z)
γ
γ−1 . (3.7)

As stated in section 1 this profile satisfies not only the hydrostatic adiabatic conditions,

but also the mass constraint
∫ 1

0
ρa(z)dz = 1 and the condition of equal superadiabatic

temperature difference at the top and bottom of the cavity. When Gibbs equation Tds =
cpdT − ρ−1dP is made dimensionless and linearized around the adiabatic profile, linear
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relationships can be derived between the perturbations of thermodynamical variables

s′ = γ−1
T ′

Ta
− (1− γ−1)

ρ′

ρa
, (3.8)

s′ =
T ′

Ta
− (1− γ−1)

P ′

Pa
, (3.9)

ρ′ = −ρas′ + γ−1
ρa
Pa
P ′, (3.10)

T ′ = Tas
′ + (1− γ−1)

Ta
Pa
P ′. (3.11)

4. The Mach number at infinite Pr number

The Mach number is the ratio between the fluid velocity and the celerity of sound
waves. There may be some arbitrariness in the particular choice of velocity or celerity of
sound but we shall see here that it will always lead to a Mach number equal to zero for
an infinite Prandtl number. Let us first make clear that we are not just considering large
values of the Prandtl number, but its infinite limit. In terms of dimensional parameters,
the governing parameters R, α̂ and D can be determined using finite values of the
dimensional parameters except for the thermal conductivity k and viscosity η. For these
last two parameters, only their product is assumed to be finite. Then their ratio η/k
(or rather Pr = ηcp/k) is made larger and larger, i.e. its limit towards infinity is taken.
The consequence of this choice is to eliminate inertia in the momentum equation. The
infinite Prandtl number is not in the list of parameters and a numerical calculation of the
velocity field will result in a finite factor times the velocity scale. The celerity of sound
waves is

√
(γ − 1)cpT0 for a perfect gas. Then, irrespectively of its exact definition, the

Mach number will be a finite factor times the following scale M :

M =
k/ (ρ0cpd)√
(γ − 1)cpT0

= Pr−1/2
( D

(γ − 1)R

)1/2

. (4.1)

As R, γ − 1 and D are finite and Pr infinite, the Mach number M is zero.
Sound waves are thus absent from numerical solutions at infinite Prandtl number.

However, it does not mean that the only relevant timescale is imposed by advection. Let
us consider a fluid with uniform properties T0, P0, ρ0 in a medium without gravity, and
a localized perturbation T ′, P ′, ρ′. This perturbation that we assume for simplicity to
be only a function of x, relaxes and its evolution is controlled by the mass conservation
(2.9)

∂ρ′

∂t
+ ρ0

∂vx
∂x

= 0, (4.2)

and the momentum equilibrium

−P ′ + 4

3
η
∂vx
∂x

= 0. (4.3)

Let us further assume that the relaxation is fast enough to be adiabatic so that

0 =
P ′

P0
− γ ρ

′

ρ0
. (4.4)

Using (4.2), (4.3) and (4.4), we obtain that the perturbation decreases as

∂ρ′

∂t
= −ρ

′

tr
with tr =

4

3

η

γP0
. (4.5)
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The viscous isentropic relaxation timescale tr is the time necessary to expand (resp. con-
tract) regions of excess (resp. deficit) pressure against viscous constraints. The timestep
used in explicit numerical schemes must be shorter than this relaxation timescale to
avoid the appearance and amplification of spurious fluctuations. The assumption of an
adiabatic relaxation can now be checked by comparing tr to a thermal diffusion timescale
td = l2ρ0cp/k for a lengthscale l. The ratio of the diffusion timescale to the relaxation
time tr can be expressed using our dimensionless parameters

td
tr

=
3

4
(γ − 1)

R

D

(
l

d

)2

. (4.6)

When R is large, or D small, there exists a range of lengthscales l (from the large scale
d down to a minimum scale lmin corresponding to td/tr ∼ 1) for which the diffusion
time is larger than the relaxation time, hence justifying the adiabatic assumption. For a
given Rayleigh number, full compressible computations at small D take much more time
than at large D as they must be performed with a time step small enough to resolve this
viscous isentropic relaxation.

5. Numerical methods

To test the differences between different approximations, the equations are solved using
a finite volume discretization on a staggered grid. The numerical methods used for the
different approximations that appear at Table 1 have some differences, so we will explain
the scheme for the fully compressible case and then give some pointers to solve the others.

For the full compressible case, at each time-step, the density ρ and entropy s are
updated according to the continuity (2.9) and entropy (2.11) equations, using the velocity
and temperature fields (vx, vz) and T from the previous time-step. The time-stepping
method is the ADI method (Alternating Direction Implicit). The equations are discretized
in two steps, where each step solves for one direction alone, first in the x direction, then
in the z direction. The advantage of this method is that the equations in each step have
a simpler structure and can be solved efficiently with a tridiagonal matrix algorithm.
The boundary conditions for entropy are set from the physical boundary conditions
on temperature T and from the value of pressure P at the previous time-step. Then,
pressure P and temperature T are computed from the new density ρ and entropy s
using the equation of state for ideal gases (3.3) and (3.2). Finally, the velocity field
(vx, vz) is updated knowing P and ρ by solving Stokes’ equation (2.10). This is achieved
using UMFPACK (Unsymmetric MultiFrontal method, Davis 2004, 2006). This modern
inversion package allows this inversion to be extremely fast without the requirement to
save all the pre-inversion coefficients and then all the elements of the resulting sparse
matrix. Moreover, on a fixed grid with a constant dynamic viscosity, the LU factorisation
has to be performed only once at the beginning, the solve step remaining at each time
step being performed very efficiently.

The numerical scheme for the anelastic approximation model is subtly different because
the general continuity equation is replaced by its zeroth-order expansion which does not
depend on time. Therefore the scheme in this case is as follows at each time-step: first,
we obtain the entropy perturbation s′ by solving the entropy equation from the previous
time-step using, as before, the ADI method for the time discretization. Temperature
boundary conditions are imposed on s′ (expressed from (3.9)), using the pressure field
P ′ from the previous timestep. Secondly, we solve the linear system composed of Stokes
and continuity equations in order to compute simultaneously the velocity vector field
(vx, vz) and pressure perturbations P ′. The source term is the entropy perturbation s′
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obtained just before. However, the solution to the pressure perturbation is not unique
because only the gradient of P ′/ρa is relevant. There is a single free parameter that we
have to specify and we use this opportunity to enforce mass conservation: the pressure
perturbations P ′ and the previously computed entropy perturbations s′ must be such
that ∫

Ω

ρ′(x, z, t)dxdz = 0, (5.1)

using the linearized equation of state, whereby ρ′ is a function of s′ and P ′. Stokes, conti-
nuity and (5.1) are solved simultaneously as a single linear system. Finally, temperature
T ′ and density ρ′ perturbations are updated knowing s′ and P ′ using equations (3.10)
and (3.11).

The numerical scheme for the Anelastic Liquid approximation is simpler because we
only need to compute P ′, T ′ and the velocity vector field, i.e. we only need the equation
of state to impose that the mass remains constant according to equation (5.1). Here, T ′

is calculated from the entropy equation using the velocity field (vx, vz) at the previous
time-step. Then, to compute the velocity vector field (vx, vz) and P ′, we solve the linear
system composed of the Stokes and continuity equations using the new T ′. Again, the
field P ′/ρa is defined up to an additive constant from Stokes equation. This is precisely
where the mass constraint (5.1) is used: that additive constant is adjusted such that the
integral of ρ′ (computed using the linearized equation of state from P ′ and T ′) vanishes.
This determination of P ′ is only useful if we need that field, as it does not affect the
determination of the other fields (contrary to the case of the AA approximation).

Our simulations can only reach moderate superadiabatic Rayleigh numbers from
critical to 1000 times critical where we use a maximum number of 256 vertical nodes
and 1024 horizontal nodes.

In order to assess the good performance and consistency of this numerical method
with theoretical results (Hewitt et al. 1975a; McKenzie & Jarvis 1980; Verhoogen 1980)
the code is tested against self-consistent criteria of energy dissipation (Alboussière &
Ricard 2013). In the full compressible model FC, the following expressions of the viscous
dissipation can be found to be equal, from the Stokes (2.10) and entropy (2.11) equations:

D
R
〈ε̇ : τ〉 = 〈v · ∇P 〉 = 〈P∇ · v〉 = −

〈
DP

Dt

〉
=

〈
ρT

Ds

Dt

〉
= −

〈
ρs
DT

Dt

〉
(5.2)

where 〈·〉 denotes time-averaged volume integral. These equalities hold for any statisti-
cally steady solution of the equations, when the time-average is taken over a sufficiently
long duration. Figure 2 shows that although these equalities are not imposed in the
numerical simulations the relative differences between them turn out to be small in all
cases, of order 10−6.

In the anelastic approximation AA, remembering α̂ = 1 for an ideal gas, the integrated
viscous dissipation can be expressed as

〈ε̇ : τ〉 =R 〈ρavzs′〉 = R〈αaρavzT ′〉 −R 〈αavzP ′〉 , (5.3)

while in the anelastic liquid approximation ALA, this becomes simply

〈ε̇ : τ〉 =R 〈αaρavzT ′〉 . (5.4)

The expressions are shown to be numerically equivalent (see Fig. 2) within a relative
error always smaller than 10−5.
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(a) Full compressible model (b) Anelastic Approximation

(c) Anelastic Liquid Approximation

• |DR 〈ε̇ : τ〉 − 〈v · ∇P 〉|
|DR 〈ε̇ : τ〉| • |DR 〈ε̇ : τ〉 − 〈ρT Ds

Dt 〉|
|DR 〈ε̇ : τ〉|

• |DR 〈ε̇ : τ〉 − 〈P∇ · v〉|
|DR 〈ε̇ : τ〉| • |DR 〈ε̇ : τ〉 − 〈ρsDT

Dt 〉|
|DR 〈ε̇ : τ〉|

• |DR 〈ε̇ : τ〉+ 〈DP
Dt 〉|

|DR 〈ε̇ : τ〉| • |〈ε̇ : τ〉 −R〈ρavzs′〉|
|〈ε̇ : τ〉|

• |〈ε̇ : τ〉 −R(〈αaρavzT
′〉 − 〈αavzP

′〉)|
|〈ε̇ : τ〉|

• |〈ε̇ : τ〉 −R(〈αaρavzT
′〉 − 〈αavzP

′〉)|
|〈ε̇ : τ〉|

Figure 2. Computed differences between equivalent expressions for the viscous dissipation given
by equation (5.2) for full-compressible solutions and by equations (5.3) and (5.4) for anelastic
solutions, for r = 3, γ = 1.4 and D = 0.8 (ε = 0.25).

We also test our numerical methods against self-consistent criteria of heat transfer.
Integrating horizontally and time-averaging (2.11), using (2.9), (2.10) and Gibbs equation
dh = Tds+ dP/ρ, it can be shown that the dimensionless heat flux,

Q(z) = ρhvz −
D
R
vjτzj − ∂zT , (5.5)

is conserved along the vertical direction, where · denotes time-averaged horizontal
integral and h is the specific enthalpy or Gibbs free energy (simply cp0T for an ideal
gas), made dimensionless using cp0T0. The heat flux is the sum of three components:
transport of enthalpy ρhvz, shear-stress power −D/Rvjτzj and conduction −∂zT . The
first two components together form the ‘convective flux’. In the anelastic and anelastic
liquid approximations the heat flux takes the form

Q(z) = ρah′vz −
D
R
vjτzj − ∂zT , (5.6)

which only differs from (5.5) because ρah
′ replaces ρh in the first term (the perturbation

of enthalpy h′ is simply T ′ for an ideal gas). The computed heat flux is indeed constant
in z, and its value simply denoted Q, is shown, for the full compressible case, when
the dissipation number D is varied; see Figure 3. However this value is slightly different
depending on the model that has been used to calculate the solution as can be seen in
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(a) Several D (Full compressible model) (b) Several models (D = 0.5)

Figure 3. Heat flux profile along the vertical direction, averaged over the horizontal direction
x and time, for r = 3 and Rasa = 10000.

Figure 3 (≈ between 5% and 10% lower when approximate equations are used). This fact
will be used to compare the solutions obtained with different methods in section 9.

6. Visualization of convection numerical models

Before we analyze quantitatively the outcomes of our numerical models in the following
sections, let us first look at temperature and velocity fields obtained using different models
and approximations, and for different values of the governing parameters: small and large
superadiabatic Rayleigh numbers, small and large values of the dissipation parameter.

Some snapshots of the convection are shown in Fig. 4 for two values of the superadia-
batic Rayleigh number, D = 0.6, r = 3, γ = 1.4 and full compressible model FC, anelastic
approximation AA and anelastic liquid approximation ALA. Small arrows indicate the
velocity field while the background color corresponds to temperature minus the adiabatic
profile (3.5). At Rasa = 2×104, all flows are steady with two convective cells of the same
size in the 2D cavity of aspect ratio 4. This pattern is denoted by a full black dot.
Full symbols denote steady convection. These symbols, full or empty, black or colored,
will be used later to refer to the various convection patterns in several phase diagrams.
However, there are subtle differences between FC, AA and ALA even at Rasa = 2× 104:
the background temperature is hotter for AA (and ALA to a lesser extent). This is most
probably due to the asymmetry of the thermal boundary layers, as discussed in section
8. At Rasa = 4 × 104, the pattern is unchanged for the FC flow but it has changed for
AA (two convective cells of different size, full blue dot) and ALA (one big cell, full green
dot). That change in pattern implies also a change in heat transfer. At slightly larger
Rasa the transition to unsteady convection will also occur for different values of Rasa
depending on the model of convection.

Full compressible calculations at larger values of the Rayleigh number, Rasa = 3.2 ×
105 and Rasa = 1.28 × 106, and for two values of the dissipation number, D = 0.2
and D = 0.9, are shown in Fig. 5, for a temperature ratio r = 3 and γ = 1.4. The
corresponding solutions are all unsteady. The structures of temperature become thinner
and more chaotic at large Rasa. It can be seen also that the bulk of the fluid is shifted
toward hot values of superadiabatic temperature for D = 0.9, with a strong thick cold
boundary layer at the top and a weak hot boundary layer at the bottom.
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Rasa = 2× 104 Rasa = 4× 104

• Full compressible •

• Anelastic Aproximation •

• Anelastic liquid approximation •

Figure 4. Comparison of the structure of the patterns of convection in full compressible FC,
anelastic AA and anelastic liquid ALA approximations, for r = 3, γ = 1.4 and D = 0.6 (ε = 5/3).
Black dots indicate the presence of two symmetricals convective cells, blue dot two asymmetrical
cells and green dot a single cell.

Figure 5. Structure of the plumes for the superadiabatic temperature Tsa in the full
compressible model for r = 3 and γ = 1.4

7. Average temperature profiles

A selection of time-averaged and horizontally-averaged temperature profiles are shown
in Figs. 6 and 7. On Fig. 6, the average profiles are those obtained with the full
compressible model FC, for a heat capacity ratio equal to γ = 1.4 and a temperature
ratio r = 3 between the bottom and top imposed temperatures. It can be observed
that the profiles follow more or less the adiabatic reference profile in the bulk of the
cavity with boundary layers where the temperature profiles bend to match the boundary
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Figure 6. Average temperature profiles from the full compressible model FC, for γ = 1.4 and a
temperature ratio r = 3. The value of the dissipation number is D = 0.2 (ε = 4) on the left-hand
side and D = 0.8 (ε = 0.25) on the right-hand side. The profiles are shown for various values of
the superadiabatic Rayleigh number (reference adiabatic profile shown as dashed line).

Figure 7. Average temperature profiles obtained from the full compressible FC, anelastic AA
and anelastic liquid ALA models, for Rasa = 320000, γ = 1.4 and r = 3. The value of the
dissipation number is D = 0.2 (ε = 4) on the left-hand side and D = 0.8 (ε = 0.25) on the
right-hand side (reference adiabatic profile shown in dashed line).

conditions. As the superadiabatic Rayleigh number is increased, the thickness of the
boundary layers is reduced. On the left-hand side, corresponding to a dissipation number
D = 0.2, the profiles are all close to the reference adiabatic profile in the bulk of the fluid.
It is reminded here that the adiabatic reference profile is such that the superadiabatic
differences with the top and bottom temperatures are equal. On the contrary, on the
right-hand side, corresponding to D = 0.8, the profiles follow a line parallel to, but
distinct from, the adiabatic reference profile in the bulk of the flow. This means that the
profiles still possess a temperature gradient in accordance to the adiabatic gradient, but
that the actual profile is shifted by a constant temperature offset: a connected observation
is that the temperature jump in the thermal boundary layers are not equal at the top
and at the bottom since Qtop = Qbot (see equation (5.6)). More often, the temperature
jump across the upper boundary is larger than that across the lower boundary layer.
This point will be discussed in section 8.

In Fig. 7, the profiles obtained from different models (FC, AA and ALA) are shown
for comparison. The superadiabatic Rayleigh number is equal to 320000, γ = 1.4 and
r = 3. Similarly to Fig. 6, the dissipation number is equal to 0.2 on the left-hand
side and to 0.8 on the right-hand side. For D = 0.2, on the left-hand side, the three
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Tbot

T

z

Ttop

δTsat

δt

T (z)

Tbl(z)

δTsab

z = 0

z = 1

Ta(z)

T0
β

δb

Figure 8. Typical horizontally-averaged temperature profile T (z), reference adiabatic profile
Ta(z), shifted adiabatic temperature profile Ta(z) + β and boundary layer amplitudes (δTsab at
the bottom, δTsat at the top), and thicknesses (δb at the bottom, δt at the top). The dashed
broken-line profile Tbl(z) is an idealized piecewise linear profile, with linear core and linear
boundary layers.

profiles corresponding to the full compressible FC model, anelastic AA and anelastic
liquid ALA approximations, do not follow the same adiabat in the bulk of the flow.
The full compressible profile has nearly no temperature offset compared to the adiabatic
reference profile, while the anelastic approximation has a significant positive temperature
offset, and the anelastic liquid a smaller offset. On the right-hand side, for D = 0.8,
all three profiles follow the same adiabat, which is offset compared to the adiabatic
reference profile. It is indeed expected that the anelastic approximations do a better
job at reproducing the full compressible results when the dissipation number is large
and close to its maximum (D = 1 for r = 3), because the superadiabatic temperature
difference is small compared to the adiabatic temperature difference, thus reducing the
uncertainty on the possible shift of the adiabatic profile.

Another feature of the average temperature profile is that it shows overshoots at the
outer part of the boundary layers. This is more clearly visible in the case of D = 0.2 in
Figs. 6 and 7. It can also be seen that the overshoots depend on the numerical model used
(see Fig. 7): the anelastic profile AA has nearly no overshoot close to the top boundary
layer while it is larger than its full compressible FC counterpart near the bottom boundary
layer.

In order to understand analytically our numerical results, we consider a simplified
representation of the average temperature profile, under the form of a piecewise linear
function of z, one linear part in each boundary layer and a third one in the bulk of the
fluid. This function, denoted Tbl(z) (for ‘boundary layers’) is shown in Fig. 8. The bulk
linear part follows the adiabatic gradient (slope D), while the linear parts in the boundary
layers are such that the total average heat flux is conducted along their gradient (slope
Q). This schematic profile captures indeed the typical temperature profiles of convecting
compressible fluids whatever the approximations which are used (see Fig. 6 or 7) with the
exceptions of the slight temperature overshoots that occur at the transitions between the
conductive boundary layers and the adiabatic bulk. The profile must be anchored at the
boundary conditions on temperatures (2.18) set by the ratio r. The last free parameter is
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the temperature offset β of the adiabat in the core of the fluid. The analytical expression
of this empirical profile is as follows

0 < z < δb Tbl(z) = 1 +
δT

2
− zQ,

δb < z < 1− δt Tbl(z) = 1 + β −D(z − 1/2), (7.1)

1− δt < z < 1 Tbl(z) = 1− δT

2
−Q(z − 1),

where δT = 2(r − 1)/(r + 1). The expressions for the thickness of the boundary layers
are obtained by continuity of the temperature profile

δb =
(δT −D) /2− β

Q−D , δt =
(δT −D) /2 + β

Q−D . (7.2)

Those expressions can be further simplified when using the notations δTsa = δT −D and
Qsa = Q − D, for the total superadiabatic temperature difference and superadiabatic
heat flux respectively. The total superadiabatic temperature difference δTsa is the sum
of the superadiabatic temperature differences occurring across the bottom and the top
boundary layers δTsa = δTsab + δTsat

δb =
δTsa/2− β

Qsa
, δt =

δTsa/2 + β

Qsa
. (7.3)

We will see in section 8 that various numerical results will be recovered from this simple
profile when we will derive an analytical expression of the offset β as a function of the
parameters r and D.

8. An empirical rationale

Let us consider the general asymmetry of the temperature profile. We attempt here to
derive a rationale to explain the relative difference between the top and bottom boundary
layer thicknesses. We shall then infer the consequences of this asymmetry on dissipation,
entropy sources and heat flux. The ratio of the boundary layer thicknesses x = δt/δb is
also equal to the ratio of superadiabatic temperature jumps x = δTsat/δTsab (because
the thermal conductivity is uniform, see Fig. 8) and takes the following expression

x =
δt
δb

=
δTsat
δTsab

=
(δT −D) /2 + β

(δT −D) /2− β , (8.1)

We have determined the average temperature profile of our numerical simulations and
found the closest adiabat followed in the bulk of the fluid. This provides both the offset
β and the ratio x of the thicknesses of top to bottom boundary layers. This value is
plotted in Fig. 9 as a function of the dissipation number for different sets of parameters
and different approximations. Contrary to the incompressible finite Prandtl experiments
described in Wu & Libchaber (1991), the values of the ratio x are mainly larger than
unity. As we shall see below, the relative thickness of the boundary layers might be due
to the relative thermal diffusivity, hence due to density in our simulations with uniform
thermal conductivity (and heat capacity cp0 for ideal gases). In the paper of Wu and
Libchaber, density was affected by temperature only, hot at the bottom, cold at the top,
producing a lower density at the bottom than at the top. In our case, pressure effects
dominate (except for small values of D): large pressure at the bottom, low pressure at
the top leads to a larger density at the bottom than at the top.

Now, we are going to use an empirical rule – a rationale – along with the piecewise
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Figure 9. The ratio of boundary layers thicknesses x is plotted against the dissipation number:
crosses × correspond to full-compressible calculations, circles ◦ to anelastic modelling. Blue
points correspond to r = 3, γ = 1.4 and different superadiabatic Rayleigh numbers, brown points
to r = 3, γ = 5/3 and Rasa = 320000, black points to r = 10, γ = 5/3 and Rasa = 320000,
finally yellow points correspond to r = 10, γ = 1.4, Rasa = 104, Rasa = 105 and Rasa = 106.

linear profile defined above, that will enable us to model some of our numerical results.
In fact, we are going first to test three different rationales against the numerical results
and select the most satisfactory. This is inspired by the work of Wu & Libchaber (1991),
where they also tested different hypotheses against experimental results in the context
of non-Boussinesq, nearly incompressible Rayleigh-Bénard convection.

The first hypothesis consists in assuming that the Rayleigh number of each boundary
layer is critical: for our purpose, we simply assume that they take always the same value.
The second hypothesis is to be found in Wu & Libchaber (1991)’s paper (where they
also tested the constant Rayleigh hypothesis) and consists in assuming that the top and
bottom potential temperature differences are equal: the potential temperature difference
is such that it makes the Rayleigh number critical. Finally, we introduce a third rationale,
consisting in assuming that the timescale of the development of the boundary layers is
identical at the top and bottom.

The ratio of top, Rat, to bottom, Rab, boundary layer Rayleigh numbers is now
evaluated considering that both thermal conductivity and viscosity are uniform

Rat
Rab

=
αtρ

2
t δTsatδ

3
t

αbρ2bδTsabδ
3
b

=

(
Pt
Pb

)2(
Tb
Tt

)3

x4, (8.2)

where all values evaluated at the top have a subscript t and those at the bottom a
subscript b. As we want to compare different rationales, we also make the choice to
compare quantities simply proportional to x, so that we shall take the expression (8.2)
to the power one fourth. Hence, the following function R1 corresponds to the ratio of the
Rayleigh numbers to the power one fourth

R1 =

(
Pt
Pb

)1/2(
Tb
Tt

)3/4

x. (8.3)
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From our numerical calculations, if we can define the top and bottom pressures and
temperatures, which we discuss later, and evaluate x by fitting the average temperature
profile with the closest adiabat line, we can then compute R1 and values close to unity
would indicate that the first rationale is a good representation of the simulations and
values departing from 1 that the Rayleigh numbers are not equal in both boundary layers.

We follow a similar path for the second rationale. The ratio of potential temperature
differences can be written

θb
θt

=
αtρ

2
t δ

3
t

αbρ2bδ
3
b

=

(
Pt
Pb

)2(
Tb
Tt

)3

x3, (8.4)

leading to the following function R2 for the second rationale

R2 =

(
Pt
Pb

)2/3
Tb
Tt
x. (8.5)

If those ratios are close to unity, then potential temperature differences for both boundary
layers are indeed nearly equal.

In the third rationale, we consider that the top and bottom boundary layers develop
over the same time-scale τ . So that their typical diffusion thickness δ ∼ √κτ (where κ
is the thermal diffusivity) depends explicitly on density δ ∼

√
k/(ρcp)τ . Hence the ratio

of boundary layer thicknesses is inversely proportional to the square root of the density
ratio. From this point, we can build the function R3 corresponding to this rationale

R3 =

(
ρt
ρb

)1/2

x =

(
Pt
Pb

)1/2(
Tb
Tt

)1/2

x. (8.6)

Again, values close to unity for these functions is a validation of the third rationale, based
on a constant development duration for the thermal boundary layers.

Like Wu & Libchaber (1991), we consider the average within a boundary layer when
we need to evaluate a physical property relative to that boundary layer. However, the full
compressible case FC and an anelastic model (AA or ALA) are treated differently: for
anelastic models, all quantities are evaluated on the adiabatic reference profile, so that
physical quantities in a particular boundary layer must be evaluated at the conditions of
the adiabatic reference profile using (3.5) and (3.7). In addition, we consider their value
at the boundaries, which is only very slightly different from their value in the middle of
the thin boundary layers so that, for the AA and ALA models, we can consider that

Tt = 1−D/2
Tb = 1 +D/2

Pt/b =
D

T
γ
γ−1

b − T
γ
γ−1

t

T
γ
γ−1

t/b .

(8.7)

From our anelastic computations and using those expressions for the top and bottom
pressures and temperature we can can therefore evaluate theR1A,R2A andR3A following
(8.3), (8.5) and (8.6), where we add the subscript A for anelastic.

In the case of full compressible results FC, we take into account the thermal boundary
layers to evaluate temperatures Tb and Tt, but we can safely approximate the exact
pressure by the pressure along the adiabat. In addition, we now need to take the offset β
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Figure 10. The three quantities corresponding to the three different rationales are plotted
against the dissipation number: crosses × correspond to full-compressible calculations, circles ◦
to anelastic modelling. Blue points correspond to r = 3, γ = 1.4 and different superadiabatic
Rayleigh numbers, brown points to r = 3, γ = 5/3 and Rasa = 320000, black points to r = 10,
γ = 5/3 and Rasa = 320000, finally yellow points correspond to r = 10, γ = 1.4, Rasa = 104,
Rasa = 105 and Rasa = 106.

into account. Instead of the anelastic estimates (8.7), for the FC case, we must now use

Tt =
1

2

(
1 + β −D/2 +

2

r + 1

)
Tb =

1

2

(
1 + β +D/2 +

2r

r + 1

)
Pt =

D
(1 + β +D/2)

γ
γ−1 − (1 + β −D/2)

γ
γ−1

(1 + β −D/2)
γ
γ−1

Pb =
D

(1 + β +D/2)
γ
γ−1 − (1 + β −D/2)

γ
γ−1

(1 + β +D/2)
γ
γ−1 .

(8.8)

where β is obtained from x by inverting equation (8.1)

β =
δT −D

2

x− 1

x+ 1
. (8.9)

The pressure expressions are computed along the adiabat taking into account the appro-
priate β-offset of the temperature (in agreement with (3.7)).

All functions R1, R1A, R2, R2A, R3 and R3A are plotted in Fig. 10. It can be seen
that the rationale 3 is slightly better than 2 or 1: all points (AA and FC) are closer to
unity in the range of our numerical simulations. Hence, in the following, we are going to
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use the third rationale, based on a constant timescale of boundary layer development,
i.e. deduce x from

x =

(
ρb
ρt

)1/2

=

(
Pb
Pt

)1/2(
Tt
Tb

)1/2

(8.10)

in the anelastic and full compressible cases using (8.7) or (8.8), to derive conclusions
regarding the dependency of the heat flux and viscous dissipation versus the dissipation
number. In the anelastic case, the expression (8.10) provides x explicitly in terms of D and
γ, however this is not the case for the full compressible expression due to the presence of
β which is itself linked to x by equation (8.9): one can use an iterative numerical method
in order to obtain finally x as a function of D, γ and r.

The dependency of the Nusselt number versus the dissipation number (the numerical
results are found in Figs. 12 and 13) can be derived from our rationale. Because the
isentropic (or adiabatic) profile represents an equilibrium state of the fluid in terms of
buoyancy, we decompose the total heat flux in a flux conducted along the adiabat, Qa =
∆Ta = D, and a so-called superadiabatic heat flux, Qsa = Q − Qa. The superadiabatic
heat flux is driven by the superadiabatic temperature difference ∆T − ∆Ta and we
introduce a superadiabatic Nusselt number defined as the ratio of the superadiabatic
heat flux to the flux conducted by the superadiabatic temperature difference:

Nusa =
Qsa
∆Tsa

, (8.11)

From Fig. 8, the dimensionless superadiabatic heat flux Qsa can be written

Qsa =
δTsat
δt

. (8.12)

Using the definition of x, from equation (8.1), and expressing the total dimensionless
superadiabatic temperature difference δTsa = δTsat + δTsab, we have

δTsat =
x

1 + x
δTsa. (8.13)

Furthermore, we adopt an extended version of our rationale. We now assume that
the timescale for the development of top and bottom boundary layers depends on the
superadiabatic Rayleigh number only (and not on the dissipation number D, nor γ, nor
r). This implies that the boundary layer thickness is inversely proportional to the square
root of density, so that equations (8.12) and (8.13) lead to

Nusa =
Qsa
δTsa

= 2
x

1 + x

√
ρtNu0, (8.14)

where Nu0 is the Nusselt number of the anelastic calculation AA at small dissipation
number D ∼ 0 and same Rayleigh number (for which density is unity everywhere,
including in the top boundary layer). This last expression can be made symmetrical
since the superadiabatic heat flux can be expressed in terms of the bottom parameters
Qsa = δTsab/δb. This would lead to

Nusa = 2
1

1 + x

√
ρbNu0. (8.15)

Taking the geometric average of (8.14) and (8.15) and inserting the definition of x (see
(8.10)), gives the following symmetrical expression:

Nusa = 2

√
ρbρt√

ρb +
√
ρt
Nu0 =

2√
1− γ−1

√
PbPt√

PbTt +
√
PtTb

Nu0. (8.16)
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Figure 11. Superadiabatic Nusselt number Nusa = Qsa/∆Tsa, divided by Ra
1/3
sa , as a function

of Rasa for full compressible calculations (solid lines), anelastic approximation (dashed lines)
and anelastic liquid approximation (dotted lines), for r = 3, γ = 1.4 and a range of values of
the dissipation number D.

Now, the expression above (8.16) is evaluated differently for anelastic calculations
NusaAA (where pressures and temperatures are given by (8.7)) and for fully compressible
calculations NusaFC for which we use (8.8). We will see in section 9 that the rationale
describes indeed correctly the variation of the Nusselt number with the dissipation
number.

9. Heat flux

We now analyse the outcome of the numerical calculations in terms of global heat flux
transferred through the layer. We have run calculations for a temperature ratio r = 3 and
some others for r = 10. The ratio of heat capacities has been set to γ = 1.4, corresponding
to diatomic gases. Ranges of the other two available dimensionless numbers, D and
Rasa have been investigated. Convection can only occur when the conductive gradient
a = 2(r − 1)/(r + 1) corresponding to the difference of the imposed temperatures (2.18)
is larger than the adiabatic gradient D. Equivalently, for a given value of r, the value
of D must lie within the interval [0;Dmax], where Dmax has been defined in equation
(2.22). For r = 3 the dissipation number D is comprised in [0; 1]. For r = 10, this interval
is [0; 18/11]. When D exceeds Dmax, the fluid is stably stratified and no convection can
develop. The range of Rasa is limited by resolution and calculation time.

9.1. Full compressible FC versus Anelastic approximation AA results

The value of the heat flux is compared between the full compressible calculations and
the corresponding anelastic approximation. For convection at infinite Pr number, it is

believed that Nusa ∝ Ra1/3sa in the Boussinesq approximation (Malkus 1954; Grossmann
& Lohse 2000) and we shall plot our compressible results relative to the same scaling.

In Fig. 11, we plot the superadiabatic Nusselt number scaled with Ra
1/3
sa , for different

values of the dissipation number D. The results for the full compressible and anelastic
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Figure 12. Superadiabatic Nusselt number Nusa = Qsa/∆Tsa as a function of D for full
compressible calculations (solid lines) and anelastic approximation (dashed lines), for r = 3,
γ = 1.4 and a range of values of the superadiabatic Rayleigh number Rasa. The black lines
correspond to the “rationale” expression (8.16) derived in section 8 for the full-compressible
case (full lines (8.8)) and anelastic approximation (dashed lines (8.7)). The free parameter Nu0

is chosen such that the anelastic profile has the best fit with the anelastic numerical results.

approximation are plotted together, for an imposed temperature ratio r = 3. The scaling

Nusa ∼ Ra
1/3
sa is roughly correct for all values of D, up to the maximum D = 1 for

r = 3. More precisely, we identify a transition, near Rasa = 105, with a decrease of the

prefactor of 25% in the Ra
1/3
sa scaling. This corresponds to the change from a steady to an

unsteady convection regime (see below). This transition, observed here in 2D calculations,
is likely to occur for lower Rayleigh numbers in 3D calculations. The same results of
superadiabatic Nusselt numbers are plotted in Fig. 12, as a function of D, for several
values of the superadiabatic Rayleigh number Rasa. The values of Nusa are constant at
small D and decline for larger D by approximately 40% when D = 1. The effect of the
dissipation number seems to be independent of the superadiabatic Rayleigh number. We
also plot in Figs. 11 and 12 the predictions (8.16) for full-compressible (using 8.8) and for
the anelastic approximation (using 8.7), obtained from the heuristic reasoning developed
in section 8, based on the relative development of the top and bottom boundary layers.
The numerical Nusselt numbers follow quite well the predictions of this rationale. The
values of Nusa for r = 10 has a similar behavior as can be seen in Fig. 13 where the
Nusa is represented as a function of D up to the maximum D = 2(r− 1)/(r+ 1) for the
anelastic calculations.

On both Figs. 11 and 12, we can observe that the Nusselt numbers computed with
the full compressible method are larger than those computed using the anelastic ap-
proximation. This is made clear in Fig. 14 on which we represent the relative difference
in the superadiabatic Nusselt numbers (NuFCsa − NuAAsa )/NuFCsa on a color scale in the
plane D–Rasa, where NuFCsa is the superadiabatic Nusselt number obtained with the full
compressible method, while NuAAsa is obtained using the anelastic approximation. Nearly
all values are positive (red color) and indicate that the heat flow is 10-20% larger than
what is obtained by the anelastic approximation. Moreover, we also indicate the points
in this parameter space D–Rasa where numerical calculations have been performed. Full
circles indicate a regime of steady convection, empty circles an unsteady regime, for full
compressible results FC and anelastic results AA, left and right symbols respectively.
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Figure 13. Superadiabatic Nusselt number Nusa = Qsa/∆Tsa as a function of D for the
anelastic approximation with different values of γ and a range of values of the superadiabatic
Rayleigh number Rasa. Black curves correspond to the analytic expression (8.16), using (8.7).

The color of the points depends on the spatial structure of convection as in Fig. 4: two
symmetric rolls (black), two asymmetric rolls (blue), one large convection roll (green),
or indefinite (gray). A region of maximum relative difference (intense red, positive) of
the Nusselt number corresponds to the line Ra = 8 × 104, just below 105. It basically
corresponds to the region where the anelastic results have already undergone transition to
unsteady convective rolls (empty symbols), while full compressible results are still steady
(full symbols). This is also visible in Fig. 11 where the transition to a smaller prefactor
occurs at a smaller Rayleigh number for anelastic solutions compared to full compressible
solutions. That transition is dependent on the 2D nature of the simulations and would
likely occur at small Rayleigh numbers in 3D. Conversely, regions where the relative
difference is small or slightly negative (white background or slightly yellow) corresponds
to regions of the parameter space where the structure of convection is similar between
full compressible and anelastic results.

Let us now consider the specific question of the convergence of the anelastic AA to the
full compressible FC results in terms of heat fluxes. This convergence is expected when
ε is very small, or equivalently when the dissipation parameter approaches its maximum
value (see equations (2.22), (2.23) and (2.24)). It can be seen in Fig. 14, that the red
color has a tendency to fade out at small epsilon, so that the relative difference of the
heat fluxes between anelastic AA and full compressible FC results is rather small near
the maximum value of D (Dmax = 1 for r = 3). This is particularly clear at small
values of the superadiabatic Rayleigh number but is obscured between Rasa ∼ 4 × 104

and Rasa ∼ 8 × 104: our understanding is that the transition from two to one rolls of
convection depends on very small details of the mathematical model and may require a
tiny value of ε to be visible. This convergence can be seen again to a lesser extent at
larger values of Rasa. However, we will see in section 11 about the entropy balance, that
the convergence of AA results towards FC results necessitates smaller and smaller values
of ε as the superadiabatic Rayleigh number Rasa becomes larger and larger.
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Figure 14. The color scale shows the relative difference
(
NuFC

sa −NuAA
sa

)
/NuFC

sa of the
superadiabatic Nusselt number Nusa = Qsa/∆Tsa as a function of D and Rasa between full
compressible FC and anelastic AA calculations, for r = 3, γ = 1.4. The circles indicate the
actual values of the parameters where a numerical solution has been computed, full-compressible
FC or anelastic AA corresponding to the symbol on the left-hand side and on the right-hand
side, respectively. The circles denote unsteady statistically stationary solutions (open symbols)
or steady solutions (full symbols). The color of the circles show two symmetric convection rolls
(black), two asymmetric rolls (blue) or one convection roll (green), while gray symbols correspond
to a not well defined geometry of the convection (see Fig. 4 for examples).

Figure 15. Relative difference
(
NuFC

sa −NuALA
sa

)
/NuFC

sa of the superadiabatic Nusselt number
Nusa = Qsa/∆Tsa as a function of D and Rasa between full compressible FC and anelastic liquid
ALA calculations, for r = 3, γ = 1.4. The points (colored circles) follow the same code as in
Fig. 14, except they correspond now to the full compressible (FC, left symbols) and anelastic
liquid (ALA, right symbols) numerical calculations.
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Figure 16. Relative difference
(
NuAA

sa −NuALA
sa

)
/NuAA

sa of the superadiabatic Nusselt number
Nusa = Qsa/∆Tsa as a function of D and Rasa between full anelastic AA and anelastic liquid
ALA calculations, for r = 3, γ = 1.4. The points (colored circles) follow the same code as in
Fig. 14, except they correspond now to the anelastic (AA, left symbols) and anelastic liquid
(ALA, right symbols) numerical calculations.

9.2. Full compressible FC versus Anelastic liquid approximation ALA results

We now compare the full compressible FC and anelastic liquid approximation ALA
results. Figure 15 shows the relative difference of the superadiabatic Nusselt numbers
between the full compressible and anelastic liquid results. It is built similarly to Fig. 14
where full compressible results were compared to anelastic results. This color plot is
also positive in the region of the parameter space we have investigated (0 < D < 1
and 5 × 103 < Rasa < 1.28 × 106), with values even larger than in Fig. 14. The full
compressible heat flux is always larger than the anelastic liquid heat flux, by about 30%
when the supercritical Rayleigh number is above 2 × 104. Moreover, we can see a global
trend, the relative difference increasing with D and possibly with Rasa. Like in Fig. 14,
there is also a region with enhanced positive relative difference along Ra = 4×104 where
the ALA approximation predicts unsteady convection before the FC case.

9.3. Anelastic AA versus Anelastic liquid ALA approximation results

Fig. 16 provides a comparison of the heat flux computed with the AA and ALA
approximations. In most cases, the anelastic AA heat flux is larger than the corresponding
anelastic liquid approximation ALA value. The effect of the early transition of ALA
convection patterns with respect to the AA case is visible around Ra ∼ 4 × 104, but
in addition we can see a global trend of linear increase with D of the flux difference
between AA and ALA results. This is consistent with the estimate provided by Anufriev
et al. (2005), stating that the anelastic liquid approximation ALA should be valid when
αTD << 1 (see their equation (2.17a)).

9.4. The compressible contribution to the heat flux

Expressions (5.5) for the full compressible case and (5.6) for the anelastic case can be
used to evaluate the contribution of heat transfer due to shear-stress power (D/R)vjτzj ,
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in addition to the usual conduction term and enthalpy transport term. Integrating the
heat flux over the vertical coordinate (unit dimensionless distance) leads to

Q = 〈ρhvz〉 −
D
R
〈vjτzj〉+ (Tbot − Ttop). (9.1)

Using the Newtonian rheology (2.5), integrating by parts, and using the boundary
conditions, we can express the integrated flux as follows

Q = 〈ρhvz〉+
5

3

D
R
〈vz∇ · v〉+ (Tbot − Ttop). (9.2)

It is expected that the shear-stress power contribution to the heat flux is positive: in
general, when a parcel of fluid goes up (vz > 0), it experiences an expansion (∇ · v > 0),
while conversely a descending fluid particle (vz < 0) is associated with compression
(∇·v < 0). However, this is not necessarily true for each fluid parcel: pressure fluctuations
can locally cancel this effect, through a so-called ’buoyancy braking’ effect (Hurlburt et al.
1984). Nevertheless, when an anelastic approximation is used, the integrated heat flux
takes a simpler form, using the continuity equation ∇ · (ρav) = 0:

Q = 〈ρhvz〉 −
5

3

D
R

〈
d ln ρa

dz
v2z

〉
+ (Tbot − Ttop). (9.3)

Now, as d ln ρa/dz < 0, the shear-stress power contribution (middle term at the right-
hand side of (9.3)) to the integrated heat flux is necessarily positive everywhere. There
is no classical result concerning the magnitude of the shear-stress power contribution
to the heat flux. In the Boussinesq approximation, this contribution is exactly zero as
can be seen from (9.2) because the divergence of the velocity field vanishes, or from
(9.3) because the reference density ρa is uniform. In the anelastic approximation, we
show here that the magnitude of the shear-stress power contribution to the heat flux
is quadratic in the dissipation parameter D near D = 0. For small values of D, the
velocity field v is nearly equal to its value at D = 0. Considering the expression (3.6),
we obtain d ln ρa/dz = −D/((γ − 1)Ta). We can thus conclude from equation (9.3) that
the shear-stress power contribution to the heat flux scales as the square of D. This result
holds near D = 0 and for the anelastic approximation. In that case, we can also apply
a model of convection that Jimenez & Zufiria (1987) obtained in the Boussinesq limit
which states that vz ∼ Ra2/3. Since our parameter R is proportional to Rasa, the scaling
for the shear-stress power contribution to the heat flux is found to be proportional to

Ra
1/3
sa , which is also the case for the global convective flux.

In Fig. 17, we plot the ratio of the compressible contribution of the convective flux
to the whole convective flux (transport of enthalpy and compressible contribution). We
can check that this ratio is quadratic in D for small values of D. This is also nearly
the case for the full compressible results, although it is not expected that the anelastic
approximation should be particularly good for small values of D. At larger values of D,
the ratio falls progressively below the quadratic trend. In terms of the Rayleigh number,
although a scaling with Ra1/3 is hardly seen in Fig. 17, our results are consistent with a
weak dependence with Rasa.

10. Dissipation

The differences between the different approximations of compressible convection can
also be examined in terms of the total amount of viscous dissipation compared to the
convective heat flux. The Boussinesq approximation is such that the ratio of dissipation to
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Figure 17. Relative weight of the shear-stress power contribution to the convected heat flux
−D/R 〈vjτzj〉 / (〈ρhvz〉 − D/R 〈vjτzj〉) divided byD2 for the full compressible (solid lines) versus
anelastic (dashed lines) calculations, for r = 3, γ = 1.4 and a range of values of the superadiabatic
Rayleigh number Rasa.

the convective flux can be shown to be a constant equal to the dissipation number, for all
Rayleigh numbers (see Malkus (1964); Hewitt et al. (1975b) for an asymptotic derivation
and for instance Doering & Constantin (1996) for a proof within the Boussinesq model):

Dissipation

Convective Flux
=
D
R 〈ε̇ : τ〉
Q− δT = D. (10.1)

At larger values of D, the ratio of viscous dissipation to the convective heat flux can
be different from D. This is now examined, depending on the nature of the model: FC,
AA and ALA. We have not attempted to derive analytic expressions for this ratio for
finite values of D because they would be derived from our results obtained on entropy
sources (see sections 8 and 11.4) with an extra approximation concerning the value of
temperature where dissipation occurs. Those analytical results would necessarily be more
questionable than those on entropy sources.

10.1. Dissipation: FC versus AA

For the anelastic approximation and for the full compressible modelling, we plot in
Fig. 18 the ratio of viscous dissipation to convective heat flux divided by D obtained
from numerical simulations. The value we obtain is close to unity corresponding to
the Boussinesq limit. Globally there is a decrease of this ratio with D of the order
of 20% for the maximal value of D = 1. Notice that near D ≈ 0 we do not get the
Boussinesq ratio of 1 because even in this case we are far from a Boussinesq condition,
as the temperature difference driving convection is of the same order of magnitude as
the average temperature. There is no clear dependence on the superadiabatic Rayleigh
number. Similarly as for the heat flux, we now plot in Fig. 19 the relative difference of
the ratio of viscous dissipation to convective heat flux between the full compressible and
anelastic approximation. We observe a general trend of decrease of the relative difference
from slightly positive at small D to negative at D = 1.
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Figure 18. Ratio of the integral of viscous dissipation to the convective heat flux as a function
of D for the full compressible (solid lines) versus anelastic (dashed lines) calculations, for r = 3,
γ = 1.4 and a range of values of the superadiabatic Rayleigh number Rasa.

Figure 19. Relative difference of the ratio of the total viscous dissipation to the convective
heat flux ((ratioFC − ratioAA)/ratioFC) between the full compressible model and the anelastic
approximation, in the D-Rasa plane, for r = 3, γ = 1.4. The points (colored circles) follow the
same code as in Fig. 14.

10.2. Dissipation: FC versus ALA

The relative difference of the ratio of viscous dissipation to convective heat flux between
full compressible and anelastic liquid approximation is shown in Fig. 20. The figure is
rather similar to Fig. 19, so that the ratio of dissipation to heat flux is close for anelastic
AA and anelastic liquid ALA approximations.
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Figure 20. Relative difference of the ratio of the total viscous dissipation to the convective
heat flux ((ratioFC − ratioALA)/ratioFC) between the full compressible and anelastic liquid
approximations, in the D-Rasa plane, for r = 3, γ = 1.4. The points (colored circles) follow the
same code as in Fig. 14.

Figure 21. Relative difference of the ratio of the total viscous dissipation to the convective heat
flux ((ratioAA − ratioALA)/ratioAA) between the anelastic and anelastic liquid approximations,
in the D-Rasa plane, for r = 3, γ = 1.4. The points (colored circles) follow the same code as in
Fig. 14.

10.3. Dissipation: AA versus ALA

Although the computed heat fluxes are significantly larger for the anelastic approxima-
tion compared to the anelastic liquid approximation (see Fig. 16), the amount of relative
viscous dissipation is surprisingly close between AA and ALA calculations, as shown in
Fig. 21.
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11. Entropy sources

We now turn to the entropy sources, because they are building blocks of the entropy
balance (see section 11.1). Evaluating the entropy sources due to conduction can even-
tually provide an estimate for the entropy sources due to viscous dissipation. This is
how dissipation (viscous or ohmic) has been inferred for the Earth’s core (Braginsky &
Roberts 1995). In this section, we evaluate the difference of entropy sources obtained
with anelastic and full compressible models, and derive bounds for the entropy sources
(in section 11.4) in the anelastic approximation.

11.1. Entropy balance

From the point of view of the entropy equation (2.11), it may seem that the anelastic
approximation (see Table 1) is justified as long as T and ρ become close to Ta and ρa.
This condition on T is easily expressed using the parameter ε defined in equation (2.19),
as ε � 1. It has been shown, for viscous flows (Bercovici et al. 1992; Ricard 2015),
that the corresponding condition on ρ can be expressed as M2PrRa−1sa � 1. This last
expression is indeterminate with an infinite Prandtl number and zero Mach number.
However, using a viscous velocity estimate from Stokes equation, v ∼ (ρ0gα0∆TsaL

2)/η,
using the expression of the sound velocity

√
Ks/ρ0 and Mayer’s equation cp − cv =

(α2KsT )/(ργ), that condition for small relative density fluctuations can be expressed as

εα̂2D2/(γ − 1)� 1, (11.1)

which can be evaluated from our set of dimensionless numbers, but which is independent
of the superadiabatic Rayleigh number.

However, the perspective is changed when the global entropy balance is considered.
From (2.11), dividing by T and integrating over the volume and time leads to the following
entropy balance in statistically stationary cases: the left-hand side integrates to zero and
the last term on the right-hand side is integrated by parts, providing the ’reversible’
entropy exchange with heat sources and the ’irreversible’ entropy source due to thermal
conduction.

Q

(
1

Ttop
− 1

Tbot

)
=
D
R

〈
ε̇ : τ

T

〉
+

〈∇T · ∇T
T 2

〉
, (11.2)

where Q denotes the average dimensionless heat flux across the layer, Q = −∂zT z=0 =
−∂zT z=1, which is exactly the same heat flux Q as defined in equation (9.1). Now, when
the anelastic entropy equation (see Table 1) is divided by Ta and integrated over volume
and time, a different equation emerges:

Q

(
1

Ta(d)
− 1

Ta(0)

)
=
D
R

〈
ε̇ : τ

Ta

〉
+

〈∇Ta · ∇T
T 2
a

〉
, (11.3)

Those two expressions of entropy balance are different. One aspect of that difference is
related to the denominator temperatures, but obviously this aspect becomes negligible as
ε becomes very small compared to one, ε� 1. Even when this is the case, the expressions
for the source of entropy due to thermal conduction are different: the exact expression
(11.2) contains the integral of the square of superadiabatic temperature gradients, while
the anelastic expression (11.3) does not.

11.2. Viscous entropy sources

We plot in Fig. 22 (respectively 23) the ratio of the integral of viscous entropy sources
D〈ε : τ/T 〉/R to D times the heat flux using the temperature T (respectively Ta), i. e.
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Figure 22. Ratio of total viscous entropy sources, D/R 〈(ε̇ : τ)/T 〉 (using temperature T ) to
the convective heat flux, divided by D as a function of D for the full compressible (solid lines)
versus anelastic (dashed lines) calculations, for r = 3, γ = 1.4 and a range of values of the
superadiabatic Rayleigh number Rasa. Black curves correspond to the anelastic (dashed) and
full compressible (solid) analytical expressions (11.7) and (11.8).

〈ε : τ/T 〉/(RQsa) (respectively 〈ε : τ/Ta〉/(RQsa)). For small values of D it is expected
that this last ratio will converge to 1, as the viscous entropy source becomes identical to
viscous dissipation (as Ta converges everywhere to 1). This can indeed be seen in Fig. 23.
The viscous entropy sources of the full compressible model are slightly larger than those
of the anelastic model at small D (for the same convective flux). This changes above
D = 0.2 (or 0.3) in Fig. 23 (or 22) where the full compressible viscous entropy sources
are smaller than their anelastic counterparts. Near the maximum value of D, we observe
a convergence of the full compressible and anelastic curves, but the ratio is not equal to
one and depends on the superadiabatic Rayleigh number. This convergence is somehow
expected, as the anelastic approximation is at its best when the adiabatic gradient is
responsible for the largest possible part of the temperature difference between the top
and bottom. Equivalently, this means that the superadiabatic temperature departures
are very small compared to the temperatures of the adiabatic profile.

Using the simplified temperature profile (7.1), the entropy balances (anelastic and full
compressible) and our rationale, we can also retrieve some features of the numerical
solutions regarding the viscous source of entropy. From this profile, we can determine the
conduction entropy sources (∇T ·∇T )/T 2 and (∇T ·∇Ta)/T 2

a (FC and AA). In fact
at high superadiabatic Rayleigh number, one has δt � 1, δb � 1, Q � D and therefore
only the gradients in the boundary layers of equation (7.1) contribute to these terms,〈

∇T ·∇T

T 2

〉
≈ 4QδT

4− δT 2
+

Q

1 + δT/2− δbQ
− Q

1− δT/2 + δtQ
, (11.4)〈

∇T ·∇Ta
T 2
a

〉
≈ 4QD

4−D2
+

Q

1 +D
(
1
2 − δb

) − Q

1−D
(
1
2 − δt

) . (11.5)

From these expressions and from the entropy balances (FC and AA in equations (11.2)
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Figure 23. Ratio of the integral of viscous entropy sources, D/R 〈(ε̇ : τ)/Ta〉 (using the adiabatic
temperature profile Ta), to the convective heat flux divided by D as a function of D for the full
compressible (solid lines) versus anelastic (dashed lines) calculations, for r = 3, γ = 1.4 and a
range of values of the superadiabatic Rayleigh number Rasa.

and (11.3) respectively), we obtain the viscous dissipation entropy sources (FC and AA).

D
R

〈
ε̇ : τ

T

〉
/Qconv

∣∣∣∣
FC

' − 1

1 + δT/2− δbQ
+

1

1− δT/2 + δtQ
, (11.6)

D
R

〈
ε̇ : τ

Ta

〉
/Qconv

∣∣∣∣
AA

' − 1

1 +D/2 +
1

1−D/2 , (11.7)

where the limit of large Nusselt number (δt << 1, δb << 1 and Qconv = Q−δT ≈ Q) has
been taken. As Q = δTsab/δb = δTsat/δt, using (8.1) and (8.13), with δT = 2(r−1)/(r+1)
and δTsa = δT −D, we can also express the viscous source of entropy dissipation for the
full compressible case, as

D
R

〈
ε̇ : τ

T

〉
/Qconv

∣∣∣∣
FC

' − 1

1 + r−1
r+1

x−1
x+1 + D

1+x

+
1

1 + r−1
r+1

x−1
x+1 − Dx

1+x

. (11.8)

These expressions (solid and dashed lines in Figs. 22 and 23) basically mimic the
behaviour of the numerical results. In particular the fact that the FC curve does not
converge towards unity as D converges towards zero is due to the asymmetry of the
temperature profile x 6= 1 (see expression (11.8)).

11.3. Entropy balance and convergence criterion for anelastic models

Now, all terms in equation (11.2) and (11.3) can be evaluated for a numerical calcula-
tion, should it be full compressible or obtained using an anelastic model. It is expected
that (11.2) will be satisfied by full compressible calculations and (11.3) by anelastic
calculations. The other equation is, in general, not satisfied and will now be used to
build an intrinsic measure of the distance between the full compressible and anelastic
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models. Let us defined the following functionals:

dFC =
Q
(

1
Ttop
− 1

Tbot

)
− DR

〈
ε̇:τ
T

〉
−
〈∇T ·∇T

T 2

〉
Q
(

1
Ttop
− 1

Tbot

) , (11.9)

dAA =
Q
(

1
Ta(d)

− 1
Ta(0)

)
− DR

〈
ε̇:τ
Ta

〉
−
〈
∇Ta·∇T
T 2
a

〉
Q
(

1
Ta(d)

− 1
Ta(0)

) . (11.10)

Suppose that some numerical calculation AA is done with the anelastic model: we
expect dAA(AA) = 0 up to the numerical errors. Moreover dFC(AA) provides an
intrinsic measurement of the discrepancy of the numerical solution to an ideal full
compressible solution. A necessary condition for the anelastic results to be considered
a good representation of full compressible convection is that they nearly satisfy the full
compressible entropy balance, i.e. that dFC(AA) is small. This is an intrinsic measure
of the quality of the anelastic approximation, because no numerical solution of the full
compressible equations is needed. The converse is true actually: for a given numerical
solution FC of the full compressible equations, we have dFC(FC) = 0 (up to numerical
errors), and dAA(FC) provides an intrinsic measure of how well the anelastic entropy
balance is satisfied, i.e. how far it lies from an anelastic solution.

On figure 24, we plot the expressions (11.9) and (11.10) for a set of numerical solutions
of the full compressible FC and anelastic AA models. In fact, the absolute value of these
quantities are plotted, but we have observed that dAA(FC) is positive and dFC(AA) is
negative: this was expected since the full compressible source of entropy due to thermal
conduction is larger than its anelastic counterpart, as it takes into account the square
of the superadiabatic temperature gradients. It is particularly interesting to consider the
small values of ε: in this limit, we observe that dFC(AA) and dAA(FC) collapse on a

single curve when they are plotted as a function of ε2Ra
1/3
sa which is a proxy for εq, where

q = Qsa/Qa. For a given superadiabatic heat flux ratio q, making the superadiabatic
temperature ratio ε small reduces the distance between the full-compressible FC and
anelastic AA entropy sources.

As can be seen in Fig. 24, those distances obey approximately the following relationship

dFC(AA) ' dAA(FC) ' 2× 10−2 ε2Ra1/3sa ' 2× 10−2 εq, (11.11)

while the anelastic liquid approximation has a different scaling

dFC(ALA) ' 4× 10−4 εRa1/6sa ' 4× 10−4 (εq)1/2. (11.12)

Although the convergence towards zero is asymptotically faster for the anelastic results
AA, it turns out that, within the range of parameters actually computed, the distance
dFC(ALA) is smaller than dFC(AA) ' dAA(FC).

Concerning the anelastic approximation AA, the convergence of entropy sources seen
in Fig. 24 can be associated to a convergence of the heat fluxes with full compressible
results. We had indeed observed in Fig. 14 that as the dissipation number approaches
its maximum value (implying a small value for ε) the relative difference of heat fluxes
between AA and FC is small, particularly at low values of Rasa (hence small q). On
the contrary, such a convergence is not seen in Fig. 15 between ALA and FC: the
relative difference of heat fluxes increases when D increases, even though entropy sources
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Figure 24. Quantities (11.9) and (11.10) are plotted against ε2Ra
1/3
sa for three types of

calculations: full compressible FC, anelastic AA and anelastic liquid ALA. The empty circles,
dFC(AA), connected with dashed lines of various colors, indicate the distance of the anelastic
calculations to the full compressible entropy balance, while the full circles, dAA(FC), connected
with colored solid lines, correspond to the distance of the full compressible calculations to the
anelastic entropy balance. The colored dotted lines correspond to the distance of the anelastic
liquid calculations to the full compressible entropy balance, i.e. dFC(ALA). The pale gray
lines represent the level of numerical errors associated with the full compressible calculations
dFC(FC) (solid) and anelastic calculations dAA(AA) (dashed) regarding the corresponding
entropy balance.

converge (distance dFC(ALA) is small).

11.4. Bounds on anelastic entropy sources

In the anelastic approximations, AA and ALA, according to (11.3), the source of
entropy associated with irreversible thermal conduction is〈∇Ta · ∇T

T 2
a

〉
. (11.13)

This does not constitute a very satisfactory entropy source as it is not guaranteed to
be positive: whether it might be physically relevant or not, one can easily imagine a
temperature field making the integrand of (11.13) locally negative (e.g. in the regions close
to the boundary layers where the temperature profile overshoots the adiabatic gradient).
This was already pointed out in Braginsky & Roberts (1995), page 35. However, we
will now derive upper and lower bounds for that expression (11.13), which will then
allow us to obtain lower and upper bounds for the source of entropy associated with
irreversible viscous dissipation. In our derivation, we make an assumption concerning the
temperature field: it is assumed to stay close to the adiabat, precisely within ±1/2 ∆Tsa
which for all the experiments and simulations that we are aware of, seems to be a very
conservative assumption.
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Using the decomposition T = Ta + T ′, we have〈∇T · ∇Ta
T 2
a

〉
=
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dTa
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〉
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Integrating the second term by parts leads to〈∇T · ∇Ta
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a

〉
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(
1

Ta

)〉
, (11.15)

where Tab = Ta(z = 0) and Tat = Ta(z = 1) are the bottom and top dimensionless
adiabatic temperatures and Qab = −(dTa/dz)z=0 and Qat = −(dTa/dz)z=1 are the
dimensionless heat fluxes down the adiabat at the bottom and top of the layer. Using
Schwartz inequality and our assumption on T ′, the last integral can be bounded so that
the conduction source of entropy is bounded above and below by〈∇T · ∇Ta
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a

〉
=

∫ 1
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(11.16)
Considering the anelastic entropy balance (11.3), the dissipation source of entropy is then
bounded above and below in the following way

D
R
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(11.17)
Now, in the particular case of the ideal gas equation of state, we have Ta = 1−D

(
z − 1

2

)
and the bounds above can be written as follows〈∇T · ∇Ta

T 2
a

〉
= Qa

D
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4

+
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where the superadiabatic Nusselt number, defined as Nusa = Qsa/∆Tsa, was already
introduced in (8.11). It can be observed here that a Boussinesq result on dissipation is
recovered from the anelastic dissipation in the limit of vanishing D. From Boussinesq
equations, viscous dissipation is exactly equal to the dissipation number times the
convective heat flux. Here, the bracket on the right-hand side of (11.19) converges towards
D−D/Nusa plus higher order terms. Now the factor Qsa = Q−D is expanded at small
D as Q−δT+δT−D ' Qconv+δT = Qconv(1+1/Nu). Hence equation (11.19) converges
towards the Boussinesq limit (10.1).

We finally compare the approximate expression (11.7) with the exact bound (11.19).
They are quite similar: in the large bracket of (11.19) we find the same expression as in
the right-hand side of (11.7), plus a term proportional to D/Nusa, with an uncertainty
within a term proportional to ±D2/Nusa. However, the main difference is due to the
reference heat flux: it is Qconv for (11.7) and Qsa for (11.19). As Qconv = Q − δT and
Qsa = Q − D, we have Qconv = Qsa − δTsa = Qsa (1− 1/Nusa). This means that the
approximate expression (11.7) has a relative error of order Nu−1sa compared to the exact
bound (11.19), which is to be expected: first, we have assumed that the temperature



Compressible convection 37

field is given by our simplified model (7.1) with β = 0 for this anelastic case, secondly
we have neglected the temperature gradients in the core of the flow compared to those
in the boundary layers when deriving (11.7).

12. Conclusions

We have been investigating numerically some features of compressible convection and
the differences induced when an anelastic or an anelastic liquid approximation is used. In
order to make the problem more tractable, we have decided to remove some difficulties.
First, we have considered the case of an infinite Prandtl number. We have shown that this
makes the Mach number zero and eliminates sound waves. So, any difference observed
when using approximate models cannot be attributed to sound waves, but are due to
compressibility (dissipation number) and finite ratio of imposed temperatures. Secondly,
we have restricted our analysis to ideal gases. The advantage of this type of equations
of state is that the adiabatic temperature gradient is uniform (under a uniform gravity
field) so that we do not have to treat cases of stable subadiabatic regions appearing when
conduction alone is able to carry the whole heat flux while the rest of the fluid domain
is convecting: the depth of the convective zone is always equal to the height of the fluid
domain. As a consequence, we clearly define an academic problem as probably no fluid
will follow an ideal gas equation of state and have a very large Prandtl number. Yet,
this defines a sound physical problem and we believe that it is of interest to study the
effect of compressibility on convection using the exact (full compressible) equations or
anelastic approximations.

As the conditions depart from the Boussinesq limit (temperature ratio significantly
larger than unity, non negligible dissipation number), we observe that an asymmetry
develops between top and bottom thermal boundary layers. This effect is not specific to
compressible convection and is also observed when the dissipation number is very small
(Wu & Libchaber 1991): in that case, one might call it a non-Oberbeck-Boussinesq effect.
However, we notice that this asymmetry is enhanced (and in the opposite direction) when
the dissipation number is increased. We have suggested a rationale, based on a constant
time of boundary layer development (for a given superadiabatic Rayleigh number), which
ultimately relates the thickness of a boundary layer to the inverse of the square-root of
density (because we have a uniform thermal conductivity, thermal diffusivity is inversely
proportional to density). Temperature affects density, but pressure has an even larger
impact on density for a dissipation number of order unity, particularly when γ − 1 is
small. We have shown that a consequence of this asymmetry is that it has an impact on
the entropy sources: the entropy source due to thermal conduction is affected because
a temperature gradient in a small volume element has a larger contribution at a lower
temperature (within the top boundary layer) than at higher temperature (within the
bottom boundary layer). Any impact on the entropy source due to conduction is then
transferred to the entropy source due to viscous dissipation. Using our rationale on
boundary layer development, we have derived a prediction for the integral of entropy
sources, different for the full compressible and anelastic cases, in a good agreement with
our numerical results.

Concerning the heat flux, we have shown that the anelastic models underestimate it
systematically by 10 to 30 % (up to 40 % for the anelastic liquid approximation). This is
partly due to the transition between steady to unsteady convection, taking place system-
atically at lower superadiabatic Rayleigh numbers for the anelastic approximations. Here
again, our rationale was used to derive predictions for the heat flux, showing a lower heat
flux in the anelastic approximation, in good agreement with the numerical results (see
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Fig. 11). In a symmetric top/bottom expression of the Nusselt number (8.16), we show
that the product of top and bottom densities ρtρb plays a role: this can also be found
with a different scaling in Tilgner (2011), although inertia, rather than compressibility,
is important in this work and a rationale based on equal top and bottom kinetic energy
densities from free-fall velocity is proposed.

In the heat flux, we have studied particularly the typical compressible contribution due
to the power of shear stress. We have shown that it scales quadratically in the dissipation
number D and that its relative magnitude compared to the classical convective flux
depends weakly on the superadiabatic Rayleigh number.

Entropy sources have been considered with attention. In the anelastic case, we have
derived upper and lower bounds for the conduction and viscous entropy sources, which
are accurate when the Nusselt number is large. We have not been able to do so for the full
compressible case. Instead, we have introduced a tool to evaluate intrinsically a distance
between full compressible and anelastic approximations. That tool is based on the entropy
balance. The full compressible entropy balance is different from the anelastic entropy
balance, but all terms in these balances can be evaluated after each numerical simulation
(full compressible or anelastic). One of these balances is satisfied (up to numerical errors)
and the other one tells us how far full compressible results are from anelastic results. We
obtain a good collapse on a single curve when that distance is plotted against the product
of the superadiabatic temperature difference ratio and the superadiabatic heat flux ratio

εq (or ε2Ra
1/3
sa ). Our numerical solutions in the anelastic liquid approximation are closer

to satisfying the full compressible entropy balance than the anelastic results, however the
convergence seems to be slower.

On many outcomes of the numerical simulations, we have observed that the anelastic
AA and full compressible FC results agree quite well when the superadiabatic temper-
ature difference is very small compared to the adiabatic temperature difference (i.e.
when the dissipation number approaches the maximal value authorized by the imposed
temperature ratio). This is consistent with the convergence mentioned above regarding
entropy balances, although the convergence is made more difficult to observe at large
superadiabatic Rayleigh numbers. This is however not the case for the anelastic liquid
approximation ALA, which we expect to be less good when D increases (see Anufriev
et al. (2005)).

Here, we have restricted our study to ideal gases, but we plan to investigate other
equations of state, in particular with a small αT product, which are better suited to
condensed matter. The anelastic liquid approximation is supposed to be better in such
a case.

It has become apparent during this study that thermal diffusivity is crucial to de-
termine the relative thickness of each boundary layer. It will be interesting to perform
numerical simulations with a fluid of uniform thermal diffusivity, by adjusting thermal
conductivity to density and specific heat capacity cp. In that case, however, the temper-
ature drop will be different across the top and bottom boundary layers, since thermal
conductivity will no longer be uniform while the conservation of energy will continue to
impose an equal top and bottom conduction heat flux.
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