
HAL Id: hal-02343546
https://hal.science/hal-02343546v1

Submitted on 2 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High order time integration and mesh adaptation with
error control for incompressible Navier-Stokes and scalar

transport resolution on dual grids
Marc-Arthur N’Guessan, Marc Massot, Laurent Series, Christian Tenaud

To cite this version:
Marc-Arthur N’Guessan, Marc Massot, Laurent Series, Christian Tenaud. High order time integra-
tion and mesh adaptation with error control for incompressible Navier-Stokes and scalar transport
resolution on dual grids. Journal of Computational and Applied Mathematics, 2021, 387, pp.112542.
�10.1016/j.cam.2019.112542�. �hal-02343546�

https://hal.science/hal-02343546v1
https://hal.archives-ouvertes.fr


High order time integration and mesh adaptation with

error control for incompressible Navier-Stokes and scalar

transport resolution on dual grids

Marc-Arthur N’Guessana,∗, Marc Massota, Laurent Sériesa,
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Abstract

Relying on a building block developed by the authors in order to resolve the

incompressible Navier-Stokes equation with high order implicit time step-

ping and dynamic mesh adaptation based on multiresolution analysis with

collocated variables, the present contribution investigates the ability to ex-

tend such a strategy for scalar transport at relatively large Schmidt numbers

using a finer level of refinement compared to the resolution of the hydrody-

namic variables, while preserving space adaptation with error control. This

building block is a key part of a strategy to construct a low-Mach number

code based on a splitting strategy for combustion applications, where several

spatial scales are into play. The computational efficiency and accuracy of the

proposed strategy is assessed on a well-chosen three-vortex simulation.
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1. Introduction

Numerical simulations of chemically reacting flows place a considerable

strain on computational resources, because of the large spectrum of character-

istic spatial and temporal scales involved in these phenomena. Furthermore,

the Direct Numerical Simulation (DNS) of low-Mach combustion requires

important computational resources, partly due to the highly refined meshes

necessary to accurately describe the reactive fronts, but also due to the vari-

ous numerical schemes, which involve costly linear algebra for Poisson solvers

or implicit schemes [1]. One way to reduce the computational effort that has

been investigated over the years is the use of Adaptive Mesh Refinement

(AMR) [2] to spatially adapt the grid in the reactive fronts, thus reducing

the number of unknowns [3, 4, 5, 6].

Whereas such techniques have led to very interesting developments, one

of the difficulties of AMR is the heuristics used in order to refine the mesh,

which lead to a high compression level but hardly provide any error esti-

mate. Our contribution also focuses on spatial mesh adaptation in order to

reduce the memory of such simulation, but rather involves multiresolution

(MR) analysis in order to obtain high compression [7, 8], with error control

in space and time when coupled to an adaptive splitting technique [9]. In

[8], Cohen et al. developed the algorithms to efficiently perform adaptive
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MR for systems of conservative laws in a finite volume context. There were

implemented for examples in [10] for the numerical simulations of premixed

and diffusion flames, where the advection-diffusion-reaction problem was spa-

tially discretized on a Cartesian grid with MR adaptation, whereas the flow

field was provided analytically at each time step; a similar strategy was inves-

tigated in [11] for another application. Using the proposed splitting strategy

implies that the missing building block was a solver for the hydrodynamics.

We started with the incompressible Navier-Stokes equations and the use of

multiresolution and finite volume on adapted grids and tree-data structures

made the classical approach on staggered grids [12] or the resolution of the

resulting differential algebraic equation (DAE) by a fractional-step method

[13, 14, 15] rather impossible or low order. In [16] we developed a high-order

time integration based on the Radau IIA Runge-Kutta method, and a finite-

volume method coupled to adaptive multiresolution to solve incompressible

flows on collocated grids.

One of the particularities of low-Mach combustion is the fact that the

flow and the transported species involve different spatial and temporal scales.

The ones describing the flow require more computational effort because they

involve the numerical resolution of linear systems [12, 17, 18, 14, 15, 19]. But

the characteristic spatial scales of the flow are often larger than the scales

of the species, and one may exploit this fact by resolving these two sets of

equations on different grids. This idea was used in [6], where a full low-Mach

combustion solver was designed, with the flow being solved on a uniform

coarse grid, while the advection-reaction-diffusion of scalars were solved on a

finer grid using AMR. See also [20, 21] for an application of this technique for
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phase-field simulations. Our aim is to design a numerical strategy along the

same lines, which adapts the mesh at different levels for the hydrodynamics

variables and for the species equations with finer discretization, while sticking

to error control based on MR on this dual grid.

Low-Mach number combustion is our goal, but in order to introduce the

fundamentals of the approach, we rather focus on a simpler problem represen-

tative of the difficulties we will encounter and tackle the problem of a scalar

transport at various Schmidt numbers by a flow field, which is a solution of

the incompressible Navier-Stokes equation, where we introduce a numerical

strategy relying on a dual grid for both fields with error control based on

MR. To this end, we design a 2D configuration inspired by the canonical

interaction of vortex pair with the mixing layer of a passive reactant [4]. The

strategy is assessed in this academic configuration in terms of accuracy and

efficiency and we show that the proposed strategy allows to obtain large gains

in terms of computational cost and memory trace, without tempering on the

accuracy of the global solution even at relatively large Schmidt numbers.

The outline of the paper is the following. In section 2 the governing

equations for an incompressible flow and the advection-diffusion of a passive

scalar are presented, as well as the details of the mixing layer and vortex

interaction. Then, in section 3 we expose our numerical strategy, namely

the adaptive multiresolution algorithm, our spatial discretization strategy

for both the flow and the scalar and finally the temporal discretization re-

tained here. We assess the efficiency of this strategy to properly tackle the

transported scalar problem at hand in section 4, and finally conclusions are

drawn in section 5.
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2. Governing equations

We consider the transport of a passive scalar s(x, y, t) in a rectangu-

lar domain denoted Ω, of characteristic length L0, by an incompressible

fluid flow which is fully described by two variables, the velocity vector u =

(ui(x, y, z, t))i=1,2 and the pressure field p(x, y, z, t). The time variable t varies

between 0 and T . The flow momentum and mass balance equations read:
∂u

∂t
+∇ · (ut ⊗ u) +∇p− ν ∆u = f

∇ · u = 0

(1)

and are coupled to a transport equation for the scalar s given by:

∂s

∂t
+∇ · (su)− κ∆s = f (2)

where ν is the kinematic viscosity of the fluid, κ is the diffusivity of the

scalar, and f and f are source terms. Initial and boundary conditions are

added to the system of equations and will be presented in the numerical

results section.

In order to mimic the situation in combustion applications where the

characteristic length related to the flame inner layer is lower than the scales

that have to be resolved in order to properly capture the velocity field [3, 6],

we will consider several Péclet number in our study. The Péclet number is

the product of the Reynolds number and of the Schmidt number. Given

a vortical structure of size L, with a vorticity amplitude of ϕ, the Péclet

number reads ϕL2/κ and represents the ratio between the convection and

diffusion processes; it can be interpreted as a ratio of eddy turn over time

compared to the diffusion time over the size of the vortex. In order to resolve
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cases, where the Péclet number is relatively large, adapting the grid for both

hydrodynamic field and scalar field at the same time will lead to much too

fine a mesh for the hydrodynamic solver in terms of memory trace and then

computational cost for a given accuracy. The idea is then to use a dual grid

and couple MR on this dual grid in order to save memory and time, while

preserving error control.

3. Numerical strategy

We want to tackle problems where the flow and transported scalars have

an inhomogeneous spatial distributions, with localized scalar fronts moving

across the domain. We exploit this specificity by dynamically adapting the

computational grid thanks to the multiresolution analysis [8, 7], in order

to refine the mesh in regions where steep gradients occur and coarsen it

elsewhere. By studying the physical characteristics of the problem at hand,

we start with a uniform mesh refined enough to capture the smallest length

scales. We then apply MR algorithms, at each timestep, to restrain the use

of the finest meshes only where the variables present steep gradients, while

employing coarser meshes elsewhere. Two attributes of the multiresolution

analysis make it perfectly suited for adaptive grid refinement in numerical

resolution of PDEs [7]:

1. the adaptation process is based on local regularity indicators of the

variable we are approximating. It is thus inherently more accurate

than ad-hoc criteria used in AMR

2. we have the ability to monitor the error of the multiresolution process.

This adaptation strategy comes with error-tracking capabilities allow-
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ing us to control the information loss that data compression necessarily

entails

We do not need the same mesh resolution for the flow and the scalar trans-

port; it suggests the use of a multihierarchy spatial discretization strategy

[6, 20, 21]. We will use one grid for the velocity and pressure fields, another

one for the transported scalars, and will perform adaptive MR separately but

in a consistent manner on both grids. This means that at any timestep we

have an hybrid grid for the flow, that is hopefully coarser than the scalars’

hybrid grid. Here we only consider the transport of a passive scalar, so we

only need to project the velocity field on the scalars’ grid when needed: this

is done with the inter-level operations of the MR procedure (the prediction

and projection operators, which are described in the next section). This

will introduce some errors compared to a computation of both the flow and

the scalar performed in a single grid, especially regarding the divergence-free

constraint on the velocity, nevertheless this error is controlled thanks to the

MR algorithm. We will denote by (MMR) this new multihierarchy multires-

olution adapative strategy.

We discretize our PDEs in space via a finite volume method. The classical

approach for finite volume schemes to approximate incompressible flows, is

to use staggered grids for the velocity and pressure, to avoid spurious ve-

locity and pressure modes [12]. However, the inter-level operations between

embedded grids necessary for the MR algorithms on the one-hand, and the

non-uniform character of the adaptive computational grid on the other hand,

hinder the use of the staggered-grid layout in our case. We resort then to a

collocated arrangement [22], and we have to deal with the spurious modes.
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Moreover, our adaptive grid is non-conforming ([22, 23, 24], see figure 1).

This problem was also taken into account in the finite volume scheme that

we designed to couple multiresolution to an incompressible flow solver. This

scheme is easily usable to discretize the scalar transport, too.

The spatial discretization yields a Differential Algebraic Equation (DAE)

for the velocity and pressure variables, and an Ordinary Differential Equation

(ODE) for the scalar, since we only consider here the advection-diffusion of

the scalar by the flow. Since the grid can change at each timestep, we prefer

to integrate these equations in time by one-step methods. The integration

of the DAE needs special care due to its stiffness [25, 26, 27]; in addition

the satisfaction of the divergence-free constraint cannot be achieved with an

explicit method. We chose the fully implicit two stages Radau IIA method

[25]. It is stiffly accurate [28], and does not suffer from order reduction when

applied to DAEs [25]. It is 3rd order for the velocity, and 2nd order for the

pressure. To integrate the scalar we use the classical explicit four stages

Runge-Kutta method (RK4). We use the velocity at time n to advance the

scalar at time n+ 1, and then advance the velocity.

In what follows, we will first give a short presentation of the adaptive

multiresolution algorithms used in a finite volume context; more details can

be found in [8, 7, 29]. We then describe briefly our spatial and temporal

schemes.

3.1. Adaptive multiresolution strategy

We consider a variable u defined on a computational domain Ω =]0, bx[×]0, by[,

with (bx, by) ∈ R∗+. We choose the maximum grid level lmax ∈ N∗ so that

the computational mesh of size 2−l
max

bx×2−l
max

by is fine enough to properly
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capture all the spatial scales of u in Ω. Let Ωl be a set of nested dyadic

Cartesian grids, indexed by their refinement level l = 0, 1, 2, · · · , lmax so that

for each l we have:

Ωl = {]2−lbxi, 2−lbx(i+ 1)[×]2−lbyj, 2
−lby(j + 1)[ | (i, j) ∈

{0, 1, · · · , 2l − 1} × {0, 1, · · · , 2l − 1}}

We define:

Kl
i,j =]2−lbxi, 2

−lbx(i+ 1)[×]2−lbyj, 2
−lby(j + 1)[

Sl = {0, 1, · · · , 2l − 1} × {0, 1, · · · , 2l − 1}

The following then holds:

• Ωl is the disjoint union of cells K l
i,j, with (i, j) ∈ Sl where Sl is the

index set of the meshes of Ωl

• Ωl =
⊔

(i,j)∈Sl
K l

(i,j) = Ω

• if l < lmax, for any cell K l
i,j ∈ Ωl, there exists a unique set of 4 cells

K l+1
µ with µ ∈ Sl+1 so that K l

i,j is the union of the cells K l+1
µ : the cells

K l+1
2i,2j, K

l+1
2i+1,2j, K

l+1
2i,2j+1 and K l+1

2i+1,2j+1. We denote this set Cli,j

There is a natural tree structure associated with such a set of embedded

dyadic grids [8]. The root of the tree is the coarsest cell K0, and for any

cell K l
γ with l < lmax, we say that the cells K l+1

µ ∈ Clγ are the children of

K l
γ, and (reciprocally) that K l

γ is the parent of the cells in Clγ. Leaves of the

tree are cells with no child. By definition, the initial set of leaves is formed
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by the cells at the most refined grid level lmax. Here we have quadtrees in

2D. Given ε ∈ R∗+, we build a multiresolution representation of u with the

following steps:

1. Initialization

We start by computing a discrete representation Ulmax = (uγ)γ∈Slmax of u on

Ωlmax , where each uγ is the average of u over the mesh K lmax

γ .

2. Projection

For l ∈ {lmax − 1, lmax − 2, · · · , 1, 0}, we derive the approximation Ul on the

grid Ωl by a projection [29] of the finer approximation on Ωl+1. For each

γ ∈ Sl, we have: uγ = 1
4

∑
µ∈Clγ

uµ, i.e. uγ is the average of the 4 values of

the children meshes of K l
γ.

3. Details computation

For each K l
i,j, with l ∈ {0, 1, · · · , lmax − 1} and (i, j) ∈ Sl, we derive a

local regularity indicator of the variable u. For any vector of values V =

(vk), where the k belongs to a finite set of indexes, let Qs be a polynomial

interpolation defined as:

Qs(k, V ) =
∑s

q=1 ξq(vk+q − vk−q)

with s ∈ N, and the ξq are the coefficients of centered linear polynomial

interpolations of order 2s + 1 [30]. For each child K l+1
2i+p,2j+q (with (p, q) ∈

{0, 1} × {0, 1} depending on the child), we compute an approximate value

(a.k.a. a prediction) ûl+1
2i+p,2j+q of ul+1

2i+p,2j+q by polynomial interpolation of

the values on the grid Ωl [29]:
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ûl+1
2i+p,2j+q = uli,j+(−1)pQs(i, ul.,j)+(−1)qQs(i, uli,.)+(−1)(p+q)Qs

2(i, j;U l) (3)

where Qs
2 reads:

Qs
2(i, j;U l) =

∑s
a=1 ξa

∑s
b=1 ξb(u

l
i+a,j+b − uli−a,j+b − uli+a,j−b + uli−a,j−b)

The local regularity indicator (a.k.a. the detail) is then defined as: dli,j =√∑
µ∈Cli,j

(ul+1
µ − ûl+1

µ )2

4. Thresholding

For each l from lmax − 1 down to 0, we associate a flag keep-children to

every mesh K l
i,j, that is initially set to false. Then if

dli,j
max(dli,j)

≥ 2l−l
max

ε we

set the flag to true, otherwise we keep it to false. The maximum is taken

over the set of all details of meshes belonging to the tree.

5. Grading

For each K l
i,j, with l ∈ {0, 1, · · · , lmax − 1} and (i, j) ∈ Sl, we denote by

Rl
i,j the indexes of the nodes needed for the computation 3. Then for l from

lmax− 1 down to 0, if the flag keep-children of K l
i,j is set to true, for each

cell K l
γ with γ ∈ Rl

i,j, we set the keep-children of its parent to true.

6. Pruning

For each K l
i,j, with l ∈ {0, 1, · · · , lmax − 1} and (i, j) ∈ Sl, if its flag

keep-children is set to false, then we discard its children from the tree

structure. Let Λ be the set of indexes (l, γ), so that the cell K l
γ belongs to the
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tree structure, letM be its set of leaves and L(Λ) the indexes corresponding

to these leaves . Λ and M evolve after the preceding pruning procedure, in

such a way that the cells belonging toM are still a disjoint partition of Ω. If

we denote: MΛU = (ulγ)(l,γ)∈L(Λ), thenMΛU is a multiresolution approxima-

tion of u, a new discrete and hybrid (because the leaves inM may not have

the same size anymore) representation of this variable on the computational

domain Ω.

The multiresolution analysis [7] ensures that there exist a constant C

independent of ε so that: ‖Ulmax −MΛU‖ ≤ Cε, and so we have a control

of the precision of our hybrid approximation with regard to the most refined

uniform representation (see for example [31]). We proceed with some remarks

about this adaptation strategy:

1. If the interpolation stencil s in step 3 is so that s ≥ 1, then the Grading

step ensures that the level of two adjacent cells in M can differ by at

most one unit (if K l
γ and K l′

µ are adjacent cells, then l′ ∈ {l−1, l, l+1}).

In this study, except stated otherwise, s will be set to 1 (figure 1 gives

an example of a graded mesh discretization in this case)

2. We can combine steps 2 to 6 with a PDE numerical solver S to perform

dynamic grid adaptation in the following way. Suppose that we start

with an initial condition on u discretized over the most refined uniform

grid. We apply the preceding adaptation strategy and obtain new sets

Λ0 and M0, and a multiresolution approximation MΛU
0, that we will

simply denote U0. We then apply S to U0 to obtain Ũ1 on M0, that

we use to compute new projection values (step 2) and new details (step
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3) for the nodes in Λ0 that are not leaves. We modify step 4, and add

another procedure: suppose that mesh K l
γ is a leaf in Λ0, that l < lmax,

and that dl−1
µ is the detail of its parent cell (computed from Ũ1). If

dl−1
µ

max(dl−1
µ )
≥ 24s+42l−1−lmaxε, then we reconstruct the children of K l

γ, we

compute new values in these cells from K l
γ and its neighbors, using the

interpolation of step 3, and we set the keep-children flag of K l
γ to

true. From then we apply steps 5 and 6 to obtain new sets Λ1 and

M1, and a new vector U1. We re-apply S and steps 2 to 6 to obtain

U2, and so on

3. We can adapt multiple variables u1, u2, · · ·um on the same grid: we

perform steps 1 to 4 for each variable separately, and we set the flag

of a cell to true if it is set to true for at least one of the variables.

We then perform steps 5 and 6, and the grid obtained will be accurate

enough for all the variables. We can also discretize two variables u1

and u2 on two completely separate grids, but on the same domain Ω.

If we need values from u2 to perform a computation on the grid of u1

for example, we can always use the projection and prediction operators

(steps 2 and 3) to perform this values transfer between grids

3.2. Spatial discretization

M is the adaptive mesh that partitions the computational domain. For

every rectangular mesh K ∈ M, we denote by xK the center of K, m(K)

its (Lebesgue) measure, NK its set of neighbours, EK = {σK|L | σK|L the

edge separating meshes K and L for L ∈ NK} its set of edge boundaries,

dK,σ the Euclidian distance between xK and σ, and m(σ) the measure of
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Figure 1: Example of a graded quadtree discretization

σ, for σ ∈ EK . A discretized variable V on M is represented by its vector

components V = (vK)K∈M. We also denote lK the level to which the mesh

K belongs to in the grid hierarchy (cf. section 3.1).

The quantities that we are trying to approximate are the velocity u =

(ui(x, t))i=1,2, the pressure p(x, t) and the transported scalar v(x, t). We

start with the finite volume scheme to solve the PDE (1) that results in a

Differential Algebraic Equation (D) for the quantities:

U = (ui,K(t))i=1,2,K∈M

P = (pK(t))K∈M

The DAE (D) is found by approximating the differential spatial operators

that appear in (1).

We follow [23] in designing our finite volume scheme, and discretize (1) for

every mesh K and component i = 1, 2 in the following way:
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m(K)
dui,K
dt

+ ν
∑
σ∈EK

FK,σ(ui)︸ ︷︷ ︸
Diffusion

+ m(K)∂
(i)
K P︸ ︷︷ ︸

Pressure gradient

+ C
(i)
K (U)︸ ︷︷ ︸

Convection

=

∫
K

fi(x)dx = m(K)Fi,K

m(K)divKU =
∑
L∈NK

ΦK|L(U) = 0

(4)

ν
∑

σ∈EK FK,σ(ui) are approximations of the diffusive fluxes of the quan-

tity ui through the set of boundaries EK of K.
∑

L∈NK ΦK|L(U) are an

approximation of the mass fluxes through the boundaries of K, with NK its

set of neighbours. Given the type of mesh we have to deal with (cf. sec-

tion 3.1), we need to distinguish between 3 cases for the fluxes computation:

the case where the meshes K and L are at the same level (lK = lL), the

case where L has level lL = lK + 1, and finally the case where L has level

lL = lK − 1. The three cases are explicited in (figure 2) below.

The different equations (4) amount to a nonlinear system that can be

written in matrix form (for example
∫
K
∇ · u ≈ D · U where D is a diver-

gence matrix). We formally define the gradient matrix as −Dt, that is, the

discrete gradient is the dual operator of the discrete divergence [22, 23, 32].

This way, we make sure that our discretization mimics this property of the

continuous PDE. In addition, we do not then have to specify boundary con-

ditions for the pressure, which can be a tricky operation [33]. Finally, we

define the convective term: C
(i)
K (U) = m(K)divK(U ⊗U)(i).

The scheme written here is complete for periodic boundary conditions. For

Neumann or Dirichlet boundary conditions however, we need a special trea-

ment for the discretization of the diffusion and mass fluxes of the velocity
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Case lL = lK

×
xK ×

xL

K L

dK,σK|L

σK|L

Fk,σK|L(ui) = m(σK|L)
ui,K − ui,L

dK,σK|L+dL,σK|L
;

ΦK|L(U) = m(σK|L)
u1,K + u1,L

2

Case lL = lK + 1

×
xK

×
xL

K

L

σK|L

Fk,σK|L(ui) = m(σK|L)
ui,K − ui,L

dK,σK|L
2

+dL,σK|L

;

ΦK|L(U) = m(σK|L)
u1,K + u1,L

2

Case lL = lK − 1

×
xK

×
xLK

L

σK|L

Fk,σK|L(ui) = m(σK|L)
ui,K − ui,L

dK,σK|L+
dL,σK|L

2

;

ΦK|L(U) = m(σK|L)
u1,K + u1,L

2

Figure 2: Computation of the fluxes depending on the interface case
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near the boundary of the domain. We will not get into the details of this im-

plementation here, because the main goal of this article is not to describe the

collocated spatial discretization. It is quite classical for collocated meshes in

the litterature, and will be presented in a subsequent paper in preparation.

We discretize (2) for every mesh K using the approximation fluxes of (4):

m(K)
dSK
dt

+ κ
∑
σ∈EK

FK,σ(s)︸ ︷︷ ︸
Diffusion

+m(K)divK(US)︸ ︷︷ ︸
advection

=

∫
K

f(x)dx = m(K)FK

(5)

3.3. Temporal discretization

We now have to solve the following Hessenberg index 2 DAE in the time

parameter for the velocity and the pressure variables:
Γ
dUi
dt

= νLiUi +Dt
iP − (

∑
j=1,2

DjUiUj) + ΓSi(t)

∑
i=1,2

DiUi = Sdiv(t)

(6)

and the following ODE in the time parameter for the transported scalar:

Γsc
dS

dt
= κLscS − (

∑
j=1,2

DjSUj) + ΓscSsc(t) (7)

Here Γ, Li and Di are square matrices of size card(M)× card(M). Γ is

the mass matrix, the diagonal matrix so that Γi(K),i(K) = m(K) for the mesh

K ∈M. The Li operators are the Laplacian matrices for the diffusive terms,

and the Di are the divergence matrices described above. The vectors Si(t)

include the discretized source terms Fi and the eventual boundary conditions,

and the vector Sdiv(t) include the boundary conditions for the divergence
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constraint.

Since the flow and the scalar may not be solved on the same grid, we denote

Msc the grid for the scalar. Γsc, Lsc and Dsc
i are square matrices of size

card(Msc) × card(Msc). Γsc is the mass matrix, the diagonal matrix so

that Γsci(K),i(K) = m(K) for the mesh K ∈ Msc. The Lsc operator is the

Laplacian matrix for the diffusive terms, and the Dsc
i are the divergence

matrices described above. The vectors Ssc(t) include the discretized source

term F and the eventual boundary conditions.

We start with the resolution of (6) and we solve it with the Runge-Kutta two-

stage Radau IIA method, which is 3rd order for the velocity and 2nd order

for the pressure [25, 26]. We derive it here with the ε-embedding method

[25] in the following way. Given velocities and pressure fields (U0, P 0) at

time t0, we want to obtain an approximate solution of (6) (U1, P 1), at time

t0 + h = t1 with an implicit 2-stage Runge-Kutta method. The ε-embedding

method recasts equation (6) in the following form:

Γg1
i = ΓU0

i + ha11

(
νLig

1
i +Dt

i k
1 − (

∑
j=1,2

Djg
1
i g

1
j ) + ΓSi(t0 + c1 h)

)
+ha12

(
νLig

2
i +Dt

i k
2 − (

∑
j=1,2

Djg
2
i g

2
j ) + ΓSi(t0 + c2 h)

)
Γg2

i = ΓU0
i + ha21

(
νLig

1
i +Dt

i k
1 − (

∑
j=1,2

Djg
1
i g

1
j ) + ΓSi(t0 + c1 h)

)
+ha22

(
νLig

2
i +Dt

i k
2 − (

∑
j=1,2

Djg
2
i g

2
j ) + ΓSi(t0 + c2 h)

)
∑
i=1,2

Dig
1
i = Sdiv(t0 + c1h)

∑
i=1,2

Dig
2
i = Sdiv(t0 + c2h)
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ΓU1
i = ΓU0

i + hb1
(
νLig

1
i +Dt

i k
1 − (

∑
j=1,2

Djg
1
i g

1
j ) + ΓSi(t0 + c1 h)

)
+hb2

(
νLig

2
i +Dt

i k
2 − (

∑
j=1,2

Djg
2
i g

2
j ) + ΓSi(t0 + c2 h)

)

P 1 =
(
1− h

2∑
i,j=1

biωij)P
0 +

2∑
i,j =1

biωijk
j (8)

h is the timestep, gji , k
j are intermediate variables, and W = (ωij)1≤i,j≤2

is the inverse of the matrix A = (aij)1≤i,j≤2 corresponding to the Radau IIA

method (see table 1). Since this method is stiffly accurate, we actually have

U1
i = g2

i ; and since it is L-stable, we actually have (1 − h
∑2

i,j=1 biωij) = 0

[25], which simplify the computations. The presence of the convective terms

in (1) implies that (8) is a nonlinear system in the variables (gji , k
j), that has

been solved here with simple fixed-point Picard iterations [34].

We now treat the spurious pressure and velocity modes. The spurious

modes are due to the linear part of equation (1) [17], so that we only have

to consider the Stokes equation for their treatment. If we do not take into

account the convective terms in (8), the velocity and pressure at time tn+1

1
3

5
12

−1
12

1 3
4

1
4

3
4

1
4

Table 1: Butcher array of the Radau IIA scheme
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are obtained by inverting the matrix E =

B M

N 0

, where:

• B is block-diagonal matrix consisting of d (the space dimension) diag-

onal blocks Bi, with Bi =

Γ− a11hνLi −a12hνLi

−a21hνLi Γ− a22hνLi



• M =

M1

M2

, with Mi =

−a11hD
t
i −a12hD

t
i

−a21hD
t
i −a22hD

t
i



• N =
(
N1 N2

)
, with Ni =

Di 0

0 Di


The spurious modes that will affect the solution of our problem are the

vectors of the form

v

q

 which are in the null-space of E: E

v

q

 =B M

N 0

v

q

 = 0. If v 6= 0, it will pollute the quantities g1
i , g

2
i in (8),

causing the apparition of spurious modes in the computed solution; and of

course the same is true with q regarding k1, k2. But as we wrote earlier, we

only need the velocity for the scalar, not the pressure, so we are just going

to ensure that there are no spurious modes for the velocity. There might be

spurious mode in the pressure, but if we make sure that they do not affect

the velocity, we are ensured of the precision of our velocity computation.

We remark here that by construction, −νLi is a symmetric and diagonally

dominant matrix, so that it is diagonalizable (in R) and all its eigenvalues are

positive. The matrix B depends on h the timestep, and we use the following

result:
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Theorem 1. There exists h0 > 0 so that for each 0 < h ≤ h0, if

v

q

 is a

null vector of the matrix E, then v = 0.

We will use the following lemma:

Lemma 2. If a matrix B is as defined above, then there exists h0 > 0 so that

for each 0 < h ≤ h0 and for any real vector z the two following propositions

are equivalent:

(a) ztBz = 0

(b) z = 0

Proof. (b) =⇒ (a) is obvious for any h ∈ R∗+. We then turn to (a) =⇒

(b). For h → 0, B converges to a diagonal matrix where each block is the

mass matrix. Hence, in the limit, all its eigenvalues are positive. By the

continuous dependency of the eigenvalues on the matrix coefficients, there is

some h0 > 0 such that all eigenvalues of B, for h ≤ h0, are positive too. In

that case ztBz = 0 implies that z = 0, which concludes the proof of the

lemma.

Proof. We have that Bv + Mq = 0. If we multiply this vector by vt, we

have vtBv + vtMq = 0. Or vtMq = qt(M tv), and if we write v =

v1

v2

,

we have that M tv =

−a11h(
∑2

i=1Div
i)− a21h(

∑2
i=1 Div

i)

−a12h(
∑2

i=1Div
i)− a22h(

∑2
i=1 Div

i)

 = 0, because

Nv = 0. Hence vtBv = 0.
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We see that if we choose a real h0 that satisfies the conditions of the

lemma, then necessarily, v = 0, which concludes the proof of the theorem.

We see that we can always choose h small enough to preclude the appari-

tion of spurious modes for the velocity field, the one that is detrimental for

the transport of scalars.

The resolution of the ODE (7) is done with the RK4 method, which is 4th or-

der for the scalar. We discretize the time interval [0, T ] with fixed timesteps

of size h, the timestep used to solve the flow. RK4 being an explicit method,

we have to take into account stability restrictions when solving the scalar

equation, that do not apply to the Radau IIA method. In practice we thus

integrate (7) with a timestep hsc smaller than h. We use the velocity at time

nh to integrate the scalar from nh to (n+ 1)h with
⌊
h
hsc

⌋
iterations of RK4,

and then use one iteration of (8) to advance the flow variables from nh to

(n+ 1)h.

4. Numerical experiments

4.1. Initial configuration

The initial configuration of the flow consists of three vortices (ω1, ω2, ω3)

distributed on the horizontal axis with their centers located respectively at

the center of the domain (0, 0), and at (−x0, 0) and (x0, 0). They have the

following shapes:
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ω1 = −1

2
ϕ

(
1 + tanh

(
1

δ0

(r0 −
√
x2 + y2)

))
ω2 = +

1

2

ϕ

2

(
1 + tanh

(
1

δ0

(r0 −
√

(x− x0)2 + y2)

))
ω3 = +

1

2

ϕ

2

(
1 + tanh

(
1

δ0

(r0 −
√

(x+ x0)2 + y2)

))
The initial condition for the scalar is given by

s = tanh

(
1

δ1

y

)
It aims at mimicking an initial configuration where the scalar is a con-

stant value in the upper half of the domain, and another one in the lower

half of the domain (we can think for example of a gas mixture with fresh fuel

in the upper half, and hot air in the lower half). The source terms of (1) and

(2) are set to 0. Figure (3) shows the initial vorticity and scalar field.

The computational domain Ω is the square [−1
2
, 1

2
]×[−1

2
, 1

2
], the boundary

conditions for the velocity are free-flow boundary conditions, and we impose

homogeneous Neumann boundary conditions for the transported scalar. We

set ν = 5.10−4, ϕ = 100, δ0 = 0.01, r0 = 0.03, x0 = 0.09, and δ1 = 0.01.

We turn to an analysis of the relevant spatial scales of this configuration.

The characteristic scales of the flow are the core size of each vortex 2r0 and

the distance between the vortices center x0. The characteristic scale for the

scalar is the thickness of the mixing layer δ1. It can happen that δ1 is an

order of magnitude smaller than x0 and 2r0, which means that the scalar

needs a finer mesh than the flow to be accurately solved numerically. The

dimensionless parameter of interest here is the Peclet number, Pe =
4ϕr2

0

κ
,
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Figure 3: Initial values of the numerical experiment. Left: vorticity field; right:

passive scalar

which represents the ratio between advective and diffusive processes in the

scalar transport [17]. If Pe is small then the diffusive forces are prevalent,

and they tend to quickly thicken δ1. In this case a grid resolving the velocity

may be good enough to solve the scalar transport. But if Pe is large, then the

advective forces are prevalent, and the initial small mixing layer is advected

in a spiral way by the flow, almost without thickening due to diffusion. In

that case the grid must capture the small initial structures of the scalar.

We rewrite the Peclet number Pe = ReSc, where Re =
4ϕr20
ν

is the Reynolds

number of the flow, and Sc = ν
κ

is the Schmidt number. We fix Sc = 0.1 to

investigate the error control capability of our method, and we will later con-

sider larger Schmidt numbers. With such parameters, a uniform grid with

lmax = 7 is fine enough to properly describe the flow, but in some situation

this might be too coarse for the scalar. In each of the following computations,
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we fix h = 2.5× 10−3 for the timestep for the flow, and hsc = 1.25× 10−4 for

the scalar. We verified that, for each of the following computations, these

timesteps were small enough to ensure convergence in time; also, the use of

high order temporal integrators ensures the fact that the temporal errors are

negligible compared to the spatial errors. We will denote by (MR) a classical

multiresolution adaptive strategy where the flow and the scalar are computed

on the same grid. Thus the initial uniform grid has to be refined enough to

capture the spatial scales of both the scalar and the flow, and the adaptive

process produces a grid adapted for both of them. We recall that we denote

by (MMR) the new multihierarchy multiresolution adapative strategy that

we developed here, with separate grids for the flow and the scalar. For the

(MMR) strategy, we denote lmaxv the maximum level for the flow grid, and

lmaxsc the maximum level for the scalar.

4.2. Numerical results

First we compare the result of our numerical strategy with a computation

run on a uniform grid. For the (MMR) computation, we set lmaxv = 7,

lmaxsc = 8 for the scalar, we choose ε = 10−3 for thresholding parameter, and

run the computation from 0 to 0.5. The uniform grid is set at lmax = 8

for both the flow and the scalar. The results for three times, t = 0.0075,

t = 0.025 and t = 0.5, are shown on figure (4), where for each time we have

the adapted grid for the scalar on the left, the scalar value for the adapted

grid on the center, and the scalar value for the uniform grid computation

on the right. We see here a good agreement suggesting that our adaptive

strategy is able to produce the same results as on a uniform fine grid. We
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also show the evolution of the vorticity field on figure (5).

Next we check the ability to control the multiresolution error with our

new adaptive strategy. We recall that we adapt both the flow and the scalar,

but on different grid. Here, we set lmaxv = 7, and lmaxsc = 7 or lmaxsc = 8. In

each case, we run the simulation until t = 0.5, and at this time we compute

the L2-norm of the error between the adapted scalar value, and the value

obtained with the same two-grids algorithm, but with both the flow and the

scalar computed on their respective uniform most refined grid. We do this

for different values of ε. Figure (6) shows that we still preserve the ability

to control the adaptation error with ε, the error decreasing linearly with the

threshold parameter.

Our last numerical test deals with variable Péclet numbers. As we stated

earlier, the flow and the scalar might need different resolutions to be ade-

quately solved, and in our case this is mainly related to the relative impor-

tance of the advection versus the scalar diffusion. We set ε = 10−3, and

we run the computation until t = 0.5, with different Schmidt numbers. We

study the values for Sc = 0.1, Sc = 1 and Sc = 10. For each Schmidt num-

ber, we run three computations: one with a uniform grid at lmax = 7 for the

flow and lmax = 10 for the scalar (our reference for comparisons), one with

(MR) where lmax = 7, and one (MMR) with lmaxv = 7 and lmaxsc = 9. The

results are shown in figure (7), where we zoom in closer to the mixing layer.

We see that at Sc = 0.1 and Sc = 1, the (MR) and (MMR) are in good

agreement with the reference simulation. But for Sc = 10, the (MR) solu-

tion is not accurate, and we actually have to resort to a grid with lmaxsc = 9

for the scalar to properly describe the phenomenon. The computation would
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(a) t = 0.0075

(b) t = 0.25

(c) t = 0.5

Figure 4: Interaction of a passive scalar and a vortex field. Comparison between

a computation on a uniform grid at lmax = 8, and a computation done with

(MMR), where lmaxv = 7 and lmaxsc = 8. Left: adapted grid for the scalar; center:

scalar value on the adapted grid; right: scalar value on the uniform grid
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(a) t = 0.0075

(b) t = 0.25

(c) t = 0.5

Figure 5: Evolution of the vorticity field with grid adaptation by multiresolution,

where lmaxv = 7. Left: adapted grid; right: vorticity field
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Figure 6: L2 norm of the multiresolution error versus the threshold parameter ε for the

scalar. Left: lmaxsc = 7; right: lmaxsc = 8

take much longer if we had to resort to a unique grid, even if we use the

adaptive multiresolution for the flow and the scalar: in our case the velocity

grid has around 7000 cells, while the scalar grid as around 63000 cells, so

this would mean solving a linear system for the flow almost ten times higher,

even though the physics of the flow does not require such accuracy. This case

clearly advocates the usefulness of our method.

ε 3.10−2 3.10−3 3.10−4

Speedup ×8.3 ×8.04 ×8.13

Table 2: Interaction of a passive scalar and a vortex field. Comparison between the (MR)

and (MMR) computing times for different thresholding parameters. (MR) with lmax = 8;

(MMR) with lmaxv = 7 and lmaxsc = 8. For a given value ε of the thresholding parameter,

the adapted grid computation with (MR) is speedup times longer than the computation

with (MMR)
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(a) Sc = 0.1

(b) Sc = 1

(c) Sc = 10

Figure 7: Interaction of a passive scalar and a vortex field. Comparison between

uniform, (MR) and (MMR) solutions at t = 0.5 for different Schmidt numbers.

From left to right: (MR) with lmax = 7; (MMR) with lmaxv = 7 and lmaxsc = 9;

uniform with lmaxv = 7 and lmaxsc = 10, reference

30



ε 3.10−2 3.10−3 3.10−4

Speedup ×71.32 ×38.40 ×16.5

Table 3: Interaction of a passive scalar and a vortex field. Comparison between the

uniform grid and (MMR) computing times for different thresholding parameters. Uniform

grid with lmax = 8; (MMR) with lmaxv = 7 and lmaxsc = 8. For a given value ε of the

thresholding parameter, the uniform grid computation is speedup times longer than the

computation with (MMR)

4.3. Cost comparison

Finally, we want to discuss the computational advantages of the (MMR)

method. Before doing so, we mention that the computing costs are deter-

mined in huge part by the software implementation. The code used here

is a research/developement software, which primary purpose was not to ob-

tain high-performance computing, but rather to showcase the ability of the

(MMR) method to obtain correct and precise simulation results. The three

computational settings, the uniform grid, the (MR) and the (MMR) all share

the same routines for the linear space operations (matrix-vector multiplica-

tion, vector-vector addition, vector-vector inner product, linear solver): we

use the optimized PETSc libraries [35, 36, 37] which are written in C. But

the data structures and routines needed for the adaptive multiresolution im-

plementation in the (MR) and (MMR) simulations are written in Python,

for sequential computations only.

We will proceed to two different comparisons. The first one will help us to

determine the computational gain between the (MR) and the (MMR) meth-

ods. While both methods use grid adaptation by multiresolution, the single
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grid algorithm has to be set at the refinement requirement of the scalar trans-

port, which is not the case for the two grids algorithm. Clearly, the (MMR)

method will generate much less meshes than the (MR) one for the flow, and

we want to quantify the resulting speedup.

We set Sc = 0.1, for both the (MR) and (MMR) methods we set lmaxsc = 8,

and for the (MMR) method we also fix lmaxv = 7. We run the computation

from 0 to 0.5, for various values of the thresholding parameters. We save the

computing time for the (MR) and (MMR) computations, and we report the

ratio between the (MR) computing time and the (MMR) computing time in

table (2). The (MMR) method is 8 times faster than the (MR) method here,

which is a very good speedup given the precision that we are still able to

obtain.

The second comparison concerns the (MMR) method and the uniform grid

computation. These kind of comparisons are tricky, because we are dealing

with two different softwares. A common mistake is to use the code for the

adapted grid to do a computation on a uniform grid; that is not the case

here, because we built a specific code for the uniform grid computation, that

do not suffer at all from the overhead of the multiresolution. What is more,

this code runs entirely on PETSc, so that is fairly optimized compared to

the (MMR) code that relies heavily on Python. Nevertheless, we can take

full advantage of working on a coarser grid for the flow, and we quantify the

resulting speedup.

We set Sc = 0.1, and for the (MMR) method we set lmaxsc = 8, and lmaxv = 7.

For the uniform grid computation we set lmax = 8, and we run the computa-

tion from 0 to 0.5, for various values of the thresholding parameters. We save
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the computing time for the uniform grid algorithm once, the different com-

puting times for the (MMR) computations, and we report the ratio between

the uniform grid computing time and the (MMR) computing time in table

(3). The speedup obtained with the (MMR) method, even with a threshold

parameter as small as 3.10−4, is already impressive, and we expect it to be

even greater with an optimized implementation of the adaptive multiresolu-

tion.

We finish this section by recalling that these results were obtained with an

in-house code, on relatively small test cases. But we expect them to be

even better for the (MMR) on a more optimized code for two reasons: (i)

the multiresolution algorithms are linear in time, while the matrix inversion

necessary in incompressible flow computations are polynomial in time, with

a degree greater than 2 generally, thus the overhead of the multiresolution

algorithms is negligible when compared to the grid size reduction, and (ii)

with the (MMR) we can be at an even higher level of refinement for the

scalar.

5. Conclusion

We introduce a new spatial adaptive strategy to efficiently solve the trans-

port of a passive scalar by an incompressible flow. The flow and the scalar are

discretized in a finite-volume context on different grids, and multiresolution

adaptive refinement techniques are applied to both variables. Regarding the

incompressible Navier-Stokes equations, the velocity and pressure unknwons

are discretized on a collocated setting, and the DAE resulting from the spa-

tial discretization is solved with an implicit high-order Runge-Kutta method,
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allowing third-order accuracy in time for the velocity. The ODE resulting

from the spatial discretization of the scalar is solved with an explicit fourth

order Runge-Kutta method. This new strategy is particularly suited for con-

figurations where the characteristic scales of the scalar are much smaller than

the characteristic scales of the flow, as is often the case in chemically reacting

flows. We can achieve an accurate description for the scalar, without paying

the price of solving the flow on a grid with a much larger number of unknowns

that would be necessary for the description of the latter. We review this on

a manufactured case of 3 vortices interacting with a passive scalar mixing

layer.

The next step will consist in combining these techniques with high-order oper-

ator splitting techniques for an efficient and accurate resolution of chemically

reacting flows.
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(1968) 115–152.

[15] J. Kim, P. Moin, Application of a fractional-step method to incompress-

ible Navier-Stokes equations, Journal of Computational Physics 59 (2)

(1985) 308–323.
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