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Abstract. In this paper, we derive a number of inequalities which express power-

efficiency trade-offs that hold generally for thermodynamic machines operating in non-

equilibrium stationary states. One of these inequalities concerns the output power,

which is bounded by a quadratic function of the thermodynamic efficiency multiplied

by a factor. Different factors can be obtained according to the level of knowledge

one has about the underlying dynamics of the machine, they can depend for instance

on the covariance of the input flux, the dynamical activity, or the non-equilibrium

conductance.

Introduction

In recent years, considerable efforts have been devoted to engineer new thermoelectric

materials with the best possible efficiency [1] and to build small artificial stochastic

engines mimicking molecular motors [2, 3, 4]. Clearly, in order to build the best possible

machines, it is essential to develop a general understanding of the relationship between

power, precision and dissipation [5]. What are the fundamental limits and design trade-

offs involved in optimizing these three quantities ?

This question is related to a major recent development in Stochastic

Thermodynamics called the thermodynamic uncertainty relation, which is important

because it goes beyond the usual formulation of the second law of thermodynamics

[6]. This result establishes that the precision on a thermodynamic current in non-

equilibrium stationary states comes with a minimal energetic cost [7, 8], where precision

is quantified by the variance of the current and the energetic cost is measured by the

dissipation. Applications of this thermodynamic uncertainty relation include among

others, an inference method to obtain the topology or the dissipation present in chemical

networks [9, 10, 11], a characterization of brownian clocks [12], bounds on the efficiency

http://arxiv.org/abs/1903.08508v1
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of molecular motors [13], design principles on non-equilibrium self-assembly [14] and

much more.

For stochastic dynamics in contact with heat baths, a related result derived by

Shiraishi et al. [15] states that the square of the heat current between the system and

heat bath is bounded by a system-dependent positive constant times the rate of entropy

production. The Shiraishi et al. result and the thermodynamic uncertainty relation

both lead to similar power-efficiency trade-offs as far as the dependence on efficiency is

concerned and the main difference between the two results lies in a system-dependent

constant in factor of the function of the efficiency. Regardless of the precise value of this

system-dependent positive constant, both results imply that the maximal efficiency of

machines can only be realized at vanishing power output. The similarity between these

two formulations of the power-efficiency trade-offs suggests that a general framework

could exist, which presumably would include both formulations in a unifying way.

The search for such an unifying framework is motivating the present paper. In

fact, a number of recent works are going in this direction: on one hand, the result of

Shiraishi et al. has been generalized to arbitrary currents besides the heat current,

for non-thermal heat baths, and for dynamics with broken time-reversal symmetry but

keeping the assumption of Langevin dynamics [6]. These authors obtained a general

inequality based on the Cauchy-Schwartz inequality, according to which, the rate of

entropy production is bounded from below by the square of any irreversible current. On

the other hand, some of the limitations of the thermodynamic uncertainty relation have

now been overcome, such as the assumption of steady states. Indeed, in Ref. [16] time-

periodic machines have been studied in this context. These new results also follow from

bounds on large deviation functions of a single current as in the original uncertainty

relation, except that they no longer involve the entropy production, which is replaced

by a different quantity. This quantity can be interpreted as the entropy production of

the stationary dynamics that has the same mean current. Finally, another limitation of

the uncertainty relation, the requirement of not breaking time-reversal dynamics, has

been addressed in Ref. [17].

In this paper, we follow a somewhat different route as compared to these works,

while still aiming at unifying power-efficiency trade-offs. Our approach is based on a

concept we introduced in an earlier work, namely that of non-equilibrium conductance

matrix [18]. This conductance matrix, relates physical currents to thermodynamic

forces, just like the Onsager matrix, but generalizes it by being not limited to

the near equilibrium regime. This new framework holds for systems operating in

general non-equilibrium stationary states, i.e. arbitrarily far from equilibrium. By

construction, this conductance matrix is a real, symmetric and semi-definite positive

matrix, just like the Onsager matrix. One important difference with the Onsager matrix

however, is that the coefficients of this matrix are not constants, but are functions of

thermodynamic forces. Only near equilibrium, this dependence can be neglected in

which case the non-equilibrium conductance matrix becomes identical with the Onsager

matrix. This similarity with the Onsager matrix, allowed us to prove that the maximum
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thermodynamic efficiency achievable by a thermodynamic machine only depends of the

so-called degree of coupling of the thermodynamic machine [18], thus generalizing an old

result which was known for machines operating near equilibrium [19]. We also noted that

the macroscopic current-force relation does not lead to a unique conductance matrix,

while a unique matrix can be built if the microscopic dynamics is known. To obtain an

explicit matrix in this way, we considered a dynamics of Markov jump processes, and we

obtained the non-equilibrium conductance matrix by extending a previously introduced

large deviation formalism of stochastic currents [20].

In this paper, we derive a number of bounds using the method introduced in Ref. [18]

and we make contact with the results of Dechant and Sasa[6] and of Shiraishi et al.[15].

We find a hierarchy of inequalities in terms of either the conductance matrix, an activity

matrix (which is a variant of the conductance matrix built from the transition frequencies

instead of the local resistances), and the covariance matrix of the physical currents. This

hierarchy of inequalities represents a generalization of the thermodynamic uncertainty

relation that naturally leads to power-efficiency trade-offs. Finally, we illustrate these

trade-offs using two examples of thermodynamic machines.

1. Power-efficiency trade-offs

1.1. Bounds on the output power

Let us focus on the simple case of a machine, in which a driving process, which we call

the first process, drives another process, the second process. If we call σ1 (resp. σ2)

the partial entropy production rate of the first (resp. second) process, we have σ1 > 0

and σ2 6 0. Let us then define the total entropy production as σ = σ1 + σ2, and the

thermodynamic efficiency as η = −σ2/σ1. Using the definition of η and the second law

of thermodynamics σ ≥ 0, we have 1 > η > 0.

Let us also denote Fi the affinity and Ji the corresponding physical current of

the process i = 1, 2 of the machine, then the partial entropy production σi is simply

σi = FiJi. As explained above, we relate the physical currents to the affinities by a

generalization of the Onsager matrix, which we call the non-equilibrium conductance

matrix G, in such a way that JX =
∑

Y
GX,YFY [18]. We then introduce a new

parametrization of this matrix in terms of the degree of coupling ξ = G12/
√
G11G22 ×

sign (F1F2) and the relative intrinsic dissipation ϕ =
√

(G22F 2
2 )/(G22F 2

1 ). By expressing

the output power −σ2 in terms of these parameters and optimizing with respect to them,

we obtain the power-efficiency inequality :

−σ2 6 G1,1F
2
1 η(1− η), (1)

and alternatively using the component G2,2 of the non-equilibrium conductance matrix

−σ2 6 G2,2F
2
2

1− η

η
. (2)

An interesting and important consequence of these inequalities is that the output

power (proportional to −σ2) must vanish when the efficiency approaches its maximum
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value, i.e. when η → 1, which corresponds for heat engines to the Carnot efficiency,

unless both coefficients G1,1F
2
1 or G2,2F

2
2 diverge. This rather unusual limit has been

considered in Ref. [21, 22].

An inequality of the type of Eq. (1) has been first derived in Ref. [15] for heat

engines. In that work, the coefficient G1,1F
2
1 was replaced by a model dependent

coefficient Θ̄, for which an expression was provided for a system interacting with

Langevin heat baths, in terms of the time average of the total kinetic energy of the

engine, the temperature (of the baths), mass (of the engine) and damping constant (of

the engine). A similar inequality has been derived in Ref. [13] by P. Pietzonka et al.

in the context of molecular motors based on the thermodynamic uncertainty relations

[7, 8]. In their case, G1,1F
2
1 is replaced by the variance of the input current.

1.2. Bounds on the input power

A similar calculation as that used to derive Eqs. (1)-(2) also gives bounds on the input

power σ1 and on the total entropy production σ. Two types of bounds can be obtained

by making the process one or two special. If one chooses to specialize to the process

one, the input power σ1 takes the following expression :

σ1 = F 2
1G11 (1 + ξϕ) . (3)

By optimizing this expression with respect to ϕ at constant ξ, one obtains a lower bound

which only depends on the degree of coupling :

σ1 > F 2
1G11

(

1− ξ2
)

. (4)

As also done in the derivation of Eqs. (1)-(2), in this optimization, one can treat G11

as constant, because there are only two independent parameters in the conductance

matrix, so they can be chosen to be ϕ and ξ.

In order to obtain a different bound now in terms of the efficiency η rather than

the degree of coupling, one uses the expression of ϕ as a function of η and ξ [18] :

ϕ± = −ξ (η + 1)

2
± 1

2

√

(η + 1)2ξ2 − 4η, (5)

which is then reported into Eq. (3). One obtains two functions of ξ, σ±
1 (ξ), which are

such that σ+
1 (ξ) > σ−

1 (ξ). Since σ+
1 (ξ) is a monotonously decreasing function of ξ, this

function reaches its maximum at ξ = −1. Reporting this value into the expression of

σ+
1 leads to the upper bound

σ1 6 G11F
2
1 (1− η). (6)

If we instead choose to make the second process special, one starts with

σ1 = F 2
2G22

1 + ξϕ

ϕ2
. (7)

Now, after reporting the expression of ϕ± into this σ1, one obtains two solutions which

are such that σ+
1 (ξ) 6 σ−

1 (ξ). Then, the upper bound is obtained by reporting ξ = −1
into σ−

1 , which leads to

σ1 6 G22F
2
2

1− η

η2
. (8)
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1.3. Bounds on the total entropy production

Similarly, the total entropy production can be expressed in terms of ϕ and ξ by choosing

either the first or the second process as special. An optimization with respect to ϕ at

constant ξ leads in the former case to the bound :

σ > F 2
1G11

(

1− ξ2
)

, (9)

and to

σ > F 2
2G22

(

1− ξ2
)

, (10)

in the later case. It is interesting to note that these lower bounds represent an

improvement with respect to the second law, except at tight coupling when ξ = −1
where the inequalities (9)-(10) become the second law σ > 0. Similarly, for the partial

entropy production, (4) represents an improvement with respect to the second law for

the partial entropy production σ1 > 0 except at tight coupling. Interestingly, in addition

to these lower bounds, this framework also leads to upper bounds on the input power

such as (6),(8). In the limit where η → 1, these upper bounds impose that the input

power should vanish σ1 → 0 since σ1 > 0. It is clear that this should be the case since

we have already noted that in general σ2 → 0 as η → 1, therefore given the definition

of η, σ1 → 0 as η → 1.

The improved bound on the total entropy production of (9) is tested in Fig. 1 for

a stochastic model of a molecular motor which will be presented in details in section

3.2. The test consists in varying systematically kinetic parameters of the model and

evaluating in each case the entropy production and the degree of coupling. The same

figure for the bound (10) presents similar features but is not presented. A related test

also performed in the same way with this model checked that the maximum efficiency

only depends on the degree of coupling [18].

2. Hierarchy of matrix inequalities

2.1. Conductance, activity and covariance matrices for Markov jump processes

We use a Markov jump process to model a mesoscopic machine with a finite number of

states. The probability per unit time to jump from state y to state x is given by the rate

matrix k of components k(x,y) > 0. We call the couple of states (x, y) an oriented edge

when k(x,y) > 0. We assume that if the jump from y to x is possible then the reverse

jump also exists, i.e. k(x,y) > 0 implies that k(y,x) > 0. The stationary probability of x,

denoted πx, verifies by definition
∑

y k(x,y)πy = 0. The mean probability current along

edge (x, y) in the stationary state is

J(x,y) ≡ k(x,y)πy − k(y,x)πx, (11)

and the corresponding edge affinity writes

F(x,y) ≡ ln
k(x,y)πy

k(y,x)πx

. (12)
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Figure 1. Total entropy production as function of the degree of coupling for the

molecular motor model introduced in section 3.2. The violet line is the bound of

Eq. (9). The kinetic parameters of the model are randomly chosen by multiplying the

values used in Fig. 2a by ex with x drawn uniformly within [−2, 2], whereas the values

of the affinity are uniformly drawn within [−3, 1] for f and [3, 7] for ∆µ.

We also introduce the physical matrix φ̄ that connects the edge current to the physical

current by

JX =
∑

(x,y)

φ̄X,(x,y)J(x,y), X = 1, 2. (13)

From the mean probability currents and edge affinities, we define an edge

conductance Ḡ(x,y) ≡ J(x,y)/F(x,y) which is a diagonal matrix in the space of edges.

In [18], we derived a unique expression of the non-equilibrium conductance matrix

by combining edge resistances (inverse of edge conductances) in series, and cycle

conductance in parallel, leading to

G ≡ φ̄ · C ·
(

C
T · Ḡ−1 · C

)−1 · CT · φ̄T, (14)

where C is the cycle matrix whose columns represent fundamental cycles on the graph

of the machine and lines correspond to edges on the graph [20, 23]. Each component of

the matrix C is 1 or −1 if the edge belongs to the cycle (with sign + if the cycle and

edge have the same orientation), and 0 otherwise.

In the study of non-equilibrium processes, the edge activity matrix Ā of diagonal

components

Ā(x,y) ≡ k(x,y)πy + k(y,x)πx, (15)

is of fundamental importance [24, 25, 26, 27]. In this equation, Ā(x,y) represents the

mean number of jumps (irrespective of the direction of the jumps) per unit time between

states x and y in the stationary state. The edge activity has a crucial influence on the

edge resistance because if the machine almost never performs a transition along an edge

(which means it has a low activity), this edge resistance should be high. This argument
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explains why the dynamical activity should matter not only for the thermodynamic

uncertainty relations [28], but more generally for key properties of the machine such

its output power or its efficiency. In exact parallel with the conductance matrix, we

introduce the matrix of dynamical activity A as

A ≡ φ̄ · C ·
(

C
T · Ā−1 · C

)−1 · CT · φ̄T, (16)

where the edge activity appears instead of the edge conductance with respect to Eq. (14).

Finally, we define the covariance matrix C of physical currents

CX,Y ≡ lim
t→∞

t [〈jXjY 〉 − 〈jX〉 〈jY 〉] , (17)

where jX is the stochastic current for the driving process (X = 1) or the output current

(X = 2). We denote by 〈...〉 the mean value in the stationary state, i.e. 〈jX〉 = JX . The

covariance matrix characterizes the small fluctuations of currents around their average.

Close to equilibrium case, the fluctuations-dissipation theorem connects the

fluctuations characterized by the matrix C and the Onsager response matrix that is

linked to dissipation. Far from equilibrium, the thermodynamic uncertainty relation

replaces the fluctuations-dissipation theorem. In our framework, this shows up as a

hierarchy of inequality for the matrices G, A and C, emphasizing the key role played

by dynamical activity in non-equilibrium systems.

2.2. From matrix inequalities to power-efficiency trade-offs

In order to compare the various matrices introduced above, it is useful to introduce

among them the Loewner partial order [29]. Given two symmetric n × n matrices V

and W , we write V > W when V −W is a positive semi-definite matrix, which also

means that

V > W ⇔
(

∀x ∈ R
n, xT · V · x > xT ·W · x

)

. (18)

With this definition, we derive in appendix A the following matrix inequalities using a

large deviation framework :

G 6
A

2
6

C

2
. (19)

We view Eq. (19) as a fluctuation-activity-dissipation inequality. At equilibrium, the

non-equilibrium conductance matrix becomes the Onsager matrix L, and the two

inequalities above saturate because L = A/2 = C/2.

From Eqs. (18) and (19) and chosing x = (1, 0)T, we find

G11 6
1

2
A11 6

1

2
C11. (20)

After multiplying these inequalities by F 2
1 , we obtain G11F

2
1 6 A11F

2
1 /2 6 C11F

2
1 /2.

Then, three different bounds on the output entropy production rate follows from Eq. (1),

in terms of the first coefficients of the non-equilibrium conductance, of the activity or

of the current covariance matrices.

−σ2 6 G11F
2
1 η(1− η) 6

A11

2
F 2
1 η(1− η) 6

C11

2
F 2
1 η(1− η), (21)
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Note that Eq. (21) contains the trade-off derived by Pietzonka et al. [13].

In contrast to that, the trade-offs obtained by Sasa-Dechant[6], see also Shiraishi

et al.[15] take the following form for Markovian dynamics on a graph:

−σ2 6
A11

2
F 2
1 η(1− η) 6

1

2
AφF

2
1 η(1− η), (22)

where Aφ =
∑

(x,y) φ̄
2
1,(x,y)A(x,y) is an average dynamical activity with respect to the same

function φ̄1,(x,y) introduced in Eq. (13) to relate physical and edge currents. Despite a

common origin among all these trade-offs (see appendix B for details), we note that

there is no general ordering between Aφ in Eq. (22) and the term proportional to C11

in Eq. (21).

We conclude this section by emphasizing that we focused on the bounds following

from Eq. (1) combined with the matrix inequality of Eq. (19) or with the bound for A11

following from Cauchy-Schwartz inequality, but it is straightforward to obtain similar

upper bounds for the other inequalities in section 1.

3. Illustrative examples

In this section, we illustrate the above power-efficiency bounds using two simple models

of thermodynamic autonomous machines studied in Ref. [18] : a unicyclic thermal engine

and an isothermal molecular motor that has several cycles. We first describe these two

models and then discuss our main results.

3.1. Unicyclic thermal engine

We start with the unicyclic heat-to-heat converter with three states a, b and c of

energy Ea, Eb, Ec. Each transition is promoted by a different heat reservoir at inverse

temperature β1, β2, β3. We take the Boltzmann constant kB = 1, and set the energy

scale by taking β3 = 1. The transition rates are

k(b,a) = Γe−
β1
2
(Eb−Ea), k(a,b) = Γe−

β1
2
(Ea−Eb),

k(c,b) = Γe−
β2
2
(Ec−Eb), k(b,c) = Γe−

β2
2
(Eb−Ec),

k(a,c) = Γe−
β3
2
(Ea−Ec), k(c,a) = Γe−

β3
2
(Ec−Ea),

(23)

where Γ is the coupling constant to the heat reservoirs which defines the unit of time and

which we take to be Γ = 1. Since the converter is coupled to three heat reservoirs, the

total entropy production rate writes σ = −β1J1−β2J2−β3J3, where Ji denotes the heat

flux from the heat reservoir i to the system. Using energy conservation J1+J2+J3 = 0,

we simplify the total entropy production rate as σ = (β3 − β1)J1 + (β3 − β2)J2. In

agreement with section 1, we consider as driving process the heat flow J1 and output

process the heat flow J2. Without loss of generality, we assume the following inequalities

for the reservoir’s temperatures β3 > β1 and β3 > β2 and for the energy levels

Eb > Ec > Ea. Under these conditions, the driving and output currents are such

that J1 > 0 and J2 < 0: the system operates as a machine that transfers heat from

a cold to a hot reservoir using the thermodynamic force generated by the transfer of
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heat from a hot to a cold reservoir. The partial entropy production rates and physical

affinities are then

σ1 = (β3 − β1)J1, F1 = (β3 − β1)

σ2 = (β3 − β1)J2, F2 = (β3 − β2).
(24)

We emphasize that this model is unicyclic and hence satisfies the tight coupling

condition. Therefore, the currents J1 and J2 are proportional to each other and at

stalling, i.e. when J2 = 0, the heat to heat converter works reversibly and does not

produce entropy.

3.2. Molecular motor model

Our second example is a discrete model of a molecular motor [30, 31]. The motor has

only two internal states and evolves on a linear discrete lattice by consuming Adenosine

TriPhosphate (ATP) molecules. The position of the motor is given by two variables:

the position n on the lattice and y is the number of ATP consumed. The even and odd

sites are denoted by a and b, respectively. Note that the lattice of a and b sites extends

indefinitely in both directions along the n and y axis; for the spatial direction n, the

lattice step defines the unit length. There are two physical forces acting on the motor, a

chemical force controlled by the chemical potential difference of the hydrolysis reaction

of ATP, ∆µ and a mechanical force f applied directly on the motor. The whole system

is in contact with a heat bath, and we choose to express all quantities in units of kBT .

Equilibrium corresponds to the vanishing of the two currents, namely the mechanical

current v̄ which is the average velocity of the motor on the lattice, and the chemical

current r, which is its average rate of ATP consumption. Since the system operates

cyclically, the change of internal energy in a cycle is zero and the first law takes the

form q + r∆µ + f v̄ = 0 where q is the heat flow coming from the heat bath, r∆µ

represents the chemical work and f v̄ represents the mechanical work; all quantities are

evaluated in a cycle. Under these conditions, the second law takes the form σ = −q,
and the entropy production rate takes the following form:

σ = f v̄ + r∆µ. (25)

In the normal operation of the motor, chemical energy is converted into mechanical

energy, which means that the driving process (1) is the chemical one and the output

process (2) the mechanical one in agreement with the convention made in this paper.

Thus, the two partial entropy production rates should be σ1 = r∆µ, with the chemical

affinity F1 = ∆µ and σ2 = f v̄, with mechanical affinity F2 = f .

3.3. Discussion

In order to illustrate the inequalities (19), we plot the (1, 1) coefficients of the three

matrices G, A/2, Cov/2 and the dynamical activity parameter Aφ in Fig. 2 for the

unicyclic engine and the molecular motor as function of the output affinities for both
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Figure 2. Trade-off coefficients versus the force acting on the molecular motor in (a)

or versus the inverse temperature for the unicyclic thermal engine in (b). The Green

empty squares are the coefficient G11 of the conductance matrix, the violet circles are

the coefficient A11 of the activity matrix, the coefficient C11 of the covariance matrix

is shown with the red full squares and the input power activity Aφ is the blue empty

triangles. Insert: A larger view of the main figure. For figure (a), the parameters are

∆µ = 20.0, α = 0.57, α′ = 1.3.10−6, ω = 3.5, ω′ = 108.15 ǫ = 10.81, θ+a = 0.25,

θ−a = 1.83, θ+b = 0.08, θ−b = −0.16. For figure (b), they are β1 = 0.5, β3 = 1, Γ = 1,

Ea = 1, Eb = 4 and Ec = 2.
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Figure 3. Output entropy production rate as a function of the thermodynamic

efficiency for the molecular motor (left) or the unicyclic thermal engine (right). The

solid line represents the output entropy production and the symbols represent the

different power-efficiency trade-offs derived from the coefficients represented in Fig. 2

(with the same color code and shape). Inset: Zoom in the region of the maximum

power. Parameters are the same than in Fig. 2.

machines. We confirm the order between the different coefficients predicted by Eq. (19)-

Eq. (22).

In the chosen conditions, only the unicyclic engine can approach equilibrium, it

does so around β2 = 0.3. At this point, all three coefficients converge towards the same
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value.

On Fig. 3, we plot the four studied power-efficiency trade-offs. We confirm again

the order among the four trade-offs. It can be also observed that in the case of the tight

coupling machine, the inequality (1) is even an equality [18].

It is interesting at this point to observe that the quality of the various bounds seems

to be related to the level of information available about the system. Indeed, the tightest

bound is the one obtained from the non-equilibrium conductance matrix, which is built

using the knowledge of the microscopic dynamics of the system. The bound obtained

from the dynamical activity is less tight, but it also requires less information since only

time symmetric observables of the microscopic dynamics are used. The bounds deduced

from the covariance matrix are the most loose bounds, and they indeed require the least

information, since only information on macroscopic physical currents is needed instead

of the more detailed stochastic dynamics of edge currents.

4. Conclusion

In this work, we have extended our previous framework on the conductance matrix for

general thermodynamic machines operating in a non-equilibrium steady state arbitrarily

far from equilibrium. By parametrizing this conductance matrix in terms of the degree

of coupling, we obtain various bounds for the input and output power and for the total

entropy production. It is easy to see that the bounds on the total or partial entropy

production go beyond the second law of thermodynamics.

While these bounds can be proven generally, they involve a constant factor, a

coefficient of the conductance matrix, which is in general unknown. To make progress,

we choose a discrete Markov jump process for the microscopic dynamics, which allows

to calculate explicitly important matrices for this problem, such as the conductance

matrix, the activity matrix and the covariance matrix. We show that these matrices are

ordered according to Loewner partial order, and that these matrix inequalities contain

an ordered set of power-efficiency trade-offs.

Our formulation includes a number of already known results such as the power-

efficiency trade-off derived by Pietzonka and Seifert or the inequality previously

obtained by Dechant and Sasa for Langevin systems. We obtain a hierarchy of power-

efficiency trade-offs, with an order that depends primarily on the level of knowledge

of the microscopic dynamics. The tightest bound is obtained when the maximum of

information is available on the microscopic dynamics, while more loose bounds are

obtained when only coarse-grained information is available.

The present work applies to stationary machines but not to periodically driven ones

[32, 33]. We have also not considered systems with broken time-reversal symmetry [34]

for which extensions of this framework could be carried out. We hope to address some

of these extensions in future work.
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A. Derivation of the matrix inequalities

Let us consider in a stochastic description of the machine, a long trajectory of duration

T , and x(t) the label of the state occupied at time t. The empirical density is defined

as the fraction of time a given trajectory spends in state y as

py =
1

T

∫ T

0

dtδx(t),y. (A.1)

In the long time limit, py tends to πy which is the stationary probability distribution.

Furthermore, we denote the empirical edge current associated to the net number of

transitions from y to x per unit time during a trajectory of duration T by j(x,y), with

j(x,y) =
1

T

∫ T

0

dt
(

δx(t−),yδx(t+),x − δx(t+),yδx(t−),x

)

, (A.2)

where x(t±) denotes the configuration immediately before or after time t. In the long

time limit, j(x,y) tends to J(x,y), which is the steady state current. Beside these two

currents, let’s introduce the current jp(x,y) that represents the expected edge current

given the empirical density p and the edge rates

jp(x,y) = k(x,y)py − k(y,x)px. (A.3)

Finally, we denote by gp(x,y) the edge rates given p that represents the pairwise geometric

average on direction of each transition rate

gp(x,y) = 2
√

k(x,y)k(y,x)pypx. (A.4)

The probability distribution P ({px}, {j(x,y)}) of the empirical density and edge

currents obeys at large time T a large deviation principle yielding

P ({px}, {j(x,y)}) ≃ e−TI({px},{j(x,y)}), (A.5)

where I({px}, {j(x,y)}) is a large deviation function (LDF) [35]. This LDF provides the

rate at which decays with time the probability that empirical densities and edge currents

remain different from their steady state values. This level of description is called the

level 2.5 in the literature. The LDF at that level for Markov jump processes has an

explicit form [10]:

I2.5({px}, {j(x,y)}) =
∑

(x,y)

j(x,y)arcsinh

(

j(x,y)
gp(x,y)

)

− j(x,y)arcsinh

(

jp(x,y)
gp(x,y)

)

+
√

jp(x,y)
2 + gp(x,y)

2 −
√

j2(x,y) + gp(x,y)
2. (A.6)

To make useful predictions based on this LDF one must coarse-grain edge currents into

physical currents [36], using that the latter are linearly related to the formers. Hence,

the LDF for physical currents is obtained from Eq. (A.6) by the following contraction:

I(j) = min
{px},{..}

I2.5({px}, {j(x,y)}), (A.7)
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where {..} denotes here (and in the following) the minimum over edge currents {j(x,y)}
that corresponds to the physical current j and respect the stationary condition

∀x,
∑

y

(j(x,y) − j(y,x)) = 0. (A.8)

A first bound follows from Eq. (A.7), once the empirical density {px} is approximated

by the stationary probability {πx}, namely:

I(j) 6 min
{..}

I2.5({πx}, {j(x,y)}). (A.9)

By performing a Taylor expansion of I2.5({πx}, {j(x,y)}) around j(x,y) ≃ J(x,y) at second

order, one obtains an approximated function which we call Iloc({πx}, {j(x,y)}), with

Iloc({πx}, {j(x,y)}) =
∑

(x,y)

(j(x,y) − J(x,y))
2

2
√

J(x,y)
2 + gπ(x,y)

2
=
∑

(x,y)

(j(x,y) − J(x,y))
2

2Ā(x,y)

(A.10)

Therefore, combining Eq. (A.9) and (A.10) leads to the local bound on current LDF

I(j) 6 min
{..}

I2.5({πx}, {j(x,y)}) ≃ min
{..}

Iloc({πx}, {j(x,y)}). (A.11)

We emphasize that the Eq. (A.11) is a local bound in the sense that it is valid only up

to the second order of the Taylor expansion. As shown in Ref. [10], a closely related

bound denoted Iquad lead this time to a global bound, namely I2.5({πx}, {j(x,y)}) 6

Iquad({πx}, {j(x,y)}), with

Iquad({πx}, {j(x,y)}) =
1

4

∑

(x,y)

(j(x, y)− J(x,y))
2
σπ
(x,y)

J2
(x,y)

. (A.12)

In this equation, σπ
(x,y) is the steady state entropy production rate associated to the

transitions from y to x defined by

σπ
(x,y) = (k(x,y)πy − k(y,x)πx) ln

k(x,y)πy

k(y,x)πx

. (A.13)

Now, using the relation σπ
(x,y) = J(x,y)F(x,y) and the definition R̄(x,y) = F(x,y)/J(x,y), one

can write Iquad as

Iquad({πx}, {j(x,y)}) =
1

4

∑

(x,y)

(j(x, y)− J(x,y))
2R̄(x,y). (A.14)

Further, using the general inequality (a − b) ln(a/b) > 2(a − b)2/(a + b), one deduces

first that σπ
(x,y) > 2J2

(x,y)/Ā(x,y) and then using Eq. (A.12) that

Iloc({πx}, {j(x,y)}) 6 Iquad({πx}, {j(x,y)}). (A.15)

Using Eqs. (A.7),(A.11) and (A.15), we obtain in the end:

I(j) 6 min
{..}

Iloc({πx}, {j(x,y)}) 6 min
{..}

Iquad({πx}, {j(x,y)}). (A.16)
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Since we are now minimizing quadratic functions, we can find the minimizer exactly as

in Ref. [18]:

Iloc(j) = min
{..}

Iloc({πx}, {j(x,y)}) =
1

2
(j − J)T ·A−1 · (j − J) (A.17)

Iquad(j) = min
{..}

Iquad({πx}, {j(x,y)}) =
1

4
(j − J)T ·G−1 · (j − J) (A.18)

with the expression of the matrix G and A being given by the Eqs. (14) and (16). Since

I(J) = Iloc(J) = Iquad(J) = 0 and
dI

dj
(J) =

dIloc
dj

(J) =
dIquad
dj

(J) = 0, (A.19)

the inequality (A.16) propagates to second order derivatives:

C−1
6 A−1

6
1

2
G−1. (A.20)

Using properties of semi-definite positive matrices [29] ends the proof of Eq. (19)

G 6
A

2
6

C

2
. (A.21)

B. Bound from an activity ansatz

The computation of conductance matrix and activity matrix in Eq. (A.17–A.18) requires

the minimization of the bounds. Instead, we can rely on the use of an ansatz if we

focus on only one current. Let’s consider the stochastic current j1 defined as a linear

combination of edge currents

j1 =
∑

(x,y)

φ̄1,(x,y)j(x,y). (B.1)

To avoid the minimization in Eq. (A.16), we use an ansatz on edge current j̃(x,y)(j1)

that verifies
∑

(x,y)

φ̄1,(x,y)j̃(x,y)(j1) = j1, (B.2)

and the stationary condition

∀x,
∑

y

(j̃(x,y)(j1)− j̃(y,x)(j1)) = 0. (B.3)

Following Ref.[8], the ansatz

j̃(x,y)(j1) = J(x,y)
j1
J1

. (B.4)

works and can be used into Eq. (A.16) yielding

I(j1) 6 Iloc({πx}, {j̃(x,y)(j1)}) 6 Iquad({πx}, {j̃(x,y)(j1)}). (B.5)

The second derivative of this equation with respect to j1 leads to

1

Var(j1)
6

(

∑

(x,y)

J2
(x,y)

Ā(x,y)

)

J2
1

6
σ

2J2
1

. (B.6)
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Due to Cauchy-Schwarz inequality, we have

J2
1 =





∑

(x,y)

φ̄1,(x,y)J(x,y)





2

6





∑

(x,y)

φ̄2
1,(x,y)Ā(x,y)









∑

(x,y)

J2
(x,y)

Ā(x,y)



 , (B.7)

where actually Ā(x,y) could be arbitrary. Combining Eq. (B.6) and (B.7) gives then

J2
1

σ
6

J2
1

2

(

∑

(x,y)

J2
(x,y)

Ā(x,y)

) 6
1

2





∑

(x,y)

φ̄2
1,(x,y)Ā(x,y)



 =
1

2
Aφ. (B.8)

This equation is similar to the bound derived for Langevin systems in Ref.[6] (see

Eq. (14) of that reference). It expresses a bound on the square of any current (here

J2
1 ) in terms of the total entropy production times a coefficient which depends on the

activity. In diffusive systems, this activity may be expressed in terms of the diffusion

coefficient of the system. We note that while the linear decomposition of Eq. (B.1) is

general, we need to choose the specific function φ̄1,(x,y) introduced in Eq. 13 in order to

apply the Cauchy-Schwartz inequality specifically to physical currents.

Notice that the term in the rhs of Eq. (B.8) could also be obtained by using as

ansatz

j̃(x,y)(j1) = J(x,y) + (j1 − J1)
φ̄1,(x,y)Ā(x,y)

∑

(x,y) φ̄
2
1,(x,y)Ā(x,y)

, (B.9)

that respect the condition (B.2) but not the stationary condition (B.3). It happens that

the ansatz (B.9) is the actual miminizer of Iloc({πx}, {j(x,y)}) under the constraint (B.2)
but without considering the stationary condition. Therefore, pluging the ansatz of

Eq. (B.9) inside Iloc({πx}, {j(x,y)}) leads to

Iloc({πx}, {j̃(x,y)(j1)}) =
(j1 − J1)

2

2Aφ

6 min
{..}

Iloc({πx}, {j(x,y)}), (B.10)

where as before the minimum of right hand side is carried over {j(x,y)} that corresponds
to physical current j1 and respect the stationary condition (B.3). Hence, using

Eq. (A.17) and by deriving twice with respect to j1, we obtain the inequality A11 6 Aφ

used in Eq. (22).

C. Illustrative example: conductance and activity matrices

C.1. Unicyclic heat-to-heat converter

Given the rates of the unicyclic heat-to-heat converter, we are able to determine the

stationary probabilities πa, πb and πc using for instance the spanning tree formula. We

next compute the stationary cycle current Jc1 and the mean activity on each edge (i, j)

Ā(i,j) = k(j,i)πi + k(i,j)πj (C.1)
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That give us the conductance

G =
Jc1

Fc1

(

(Eb − Ea)
2 (Ec − Eb)(Eb −Ea)

(Ec − Eb)(Eb −Ea) (Ec −Ea)
2

)

, (C.2)

and activity matrix

A =

(

1

Ā(a,b)

+
1

Ā(b,c)

+
1

Ā(c,a)

)−1
(

(Eb − Ea)
2 (Ec −Eb)(Eb −Ea)

(Ec −Eb)(Eb − Ea) (Ec − Ea)
2

)

. (C.3)

These expression are used to draw Fig. 2b and 3b.

C.2. MolecularMotor

The graph of this model includes four bidirectional edges connecting two states. For two

of these edges, the transitions are passive and do not consume or produce ATP, but the

two others are active. The eight transition rates associated to these four bidirectional

edges are

−→ωb
−1 = α′eθ

+
b
f , −→ωb

0 = ω′ eθ
+
b
f ,

←−ωa
1 = α′e−ǫ+∆µ−θ−a f , ←−ωa

0 = ω′ e−ǫ−θ−a f ,
←−ωb

−1 = α e−θ−
b
f , ←−ωb

0 = ω e−θ−
b
f ,

−→ωa
1 = α e−ǫ+∆µ+θ+a f , −→ωa

0 = ω e−ǫ+θ+a f ,

(C.4)

where we have kept the original notation of Refs. [30, 31]. In the above equations, θ±i
represent load distribution factors that are arbitrary except that θ+a + θ−b + θ−a + θ+b =

2 [31]. Let’s orientate all edges from state a to b. Then, the four edge currents and

affinities are

J(1) = πa
←−ωa

1 − πb
−→ωb

−1, F(1) = ln
←−ωa

1πa

−→ωb
−1πb

, (C.5)

J(2) = πa
←−ωa

0 − πb
−→ωb

0, F(2) = ln
←−ωa

0πa

−→ωb
0πb

, (C.6)

J(3) = πa
−→ωa

0 − πb
←−ωb

0, F(3) = ln
−→ωa

0πa

←−ωb
0πb

, (C.7)

J(4) = πa
−→ωa

1 − πb
←−ωb

−1, F(4) = ln
−→ωa

1πa

←−ωb
−1πb

, (C.8)

in terms of the stationary probabilities of states a or b, denoted πa and πb respectively.

For the explicit expressions of the probability currents in terms of the transition rates,

we refer to Ref. [30, 31]. If one introduce the edge resistance matrix R̄(i) = F(i)/J(i) with

i = 1, 2, 3 and 4, the conductance matrix for this model writes

G =
1

ZG

(

(R̄(1) + R̄(4))(R̄(3) + R̄(2)) 2(R̄(4)R̄(2) − R̄(1)R̄(3))

2(R̄(4)R̄(2) − R̄(1)R̄(3)) 4(R̄(1) + R̄(2))(R̄(3) + R̄(4))

)

, (C.9)

with

ZG = R̄(1)R̄(4)R̄(3) + R̄(1)R̄(4)R̄(2) + R̄(1)R̄(3)R̄(2) + R̄(4)R̄(3)R̄(2). (C.10)
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The activity matrix is derived in a similar way and we obtain

A =
1

ZA

(

(Ā−1
(1) + Ā−1

(4))(Ā
−1
(3) + Ā−1

(2)) 2(Ā−1
(4)Ā

−1
(2) − Ā−1

(1)Ā
−1
(3))

2(Ā−1
(4)Ā

−1
(2) − Ā−1

(1)Ā
−1
(3)) 4(Ā−1

(1) + Ā−1
(2))(Ā

−1
(3) + Ā−1

(4))

)

, (C.11)

with

ZA = Ā−1
(1)Ā

−1
(4)Ā

−1
(3) + Ā−1

(1)Ā
−1
(4)Ā

−1
(2) + Ā−1

(1)Ā
−1
(3)Ā

−1
(2) + Ā−1

(4)Ā
−1
(3)Ā

−1
(2). (C.12)

and

A(1) = πa
←−ωa

1 + πb
−→ωb

−1, A(2) = πa
←−ωa

0 + πb
−→ωb

0, (C.13)

A(3) = πa
−→ωa

0 + πb
←−ωb

0, A(4) = πa
−→ωa

1 + πb
←−ωb

−1. (C.14)
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