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Abstract The influence of solidification on the spreading of liquids is
addressed in the situation of an advancing liquid wedge on a cold sub-
strate at Tp < Tf , of infinite thermal conductivity, where Tf is the
melting temperature. We propose a model derived from lubrication the-
ory of contact-line dynamics, where an equilibrium between capillary
pressure and viscous stress is at play, adapted here for the geometry
of a quadruple line where the vapour, liquid, solidified liquid and basal
substrate meet. The Stefan thermal problem is solved in an intermedi-
ate region between molecular and mesoscopic scales, allowing to predict
the shape of the solidified liquid surface. The apparent contact angle
versus advancing velocity U exhibits a minimal value, which is set as
the transition from continuous advancing to pinning. We postulate that
this transition corresponds to the experimentally observed critical ve-
locity, dependent on undercooling temperature Tf − Tp, below which
the liquid is pinned and advances with stick-slip dynamics. The ana-
lytical solution of the model shows a qualitatively fair agreement with
experimental data. We discuss on the way to get better quantitative
agreement, which in particular can be obtained when the mesoscopic
cut-off length is made temperature-dependent.

1 INTRODUCTION

Contact line dynamics is still a challenging problem motivating many studies. The
multi-scale nature of the problem, the existence of several conflicting models, com-
bined with the difficulty to obtain exhaustive and reproducible data has left this
problem still opened [1,2,3]. Of special difficulty is the case in which the contact line
motion is combined with some phase change, as for instance evaporation/condensation
of the liquid [4,5,6,7], colloids or particle deposition [8,9,10,11], or solidification of a
liquid moving on a cold substrate [12,13,14,15,16,17]. In this last case, as well as in
that of colloid deposition [8], it is well known that the continuous advancing or re-
ceding of a contact line can be interrupted when one reduces the velocity U, reaching
some threshold Uc for contact line pinning [16], below which stick-slip behaviour can
be observed as well [14,17]. Understanding these phenomena is of crucial importance
for several applications, including 3D printing [18], or aircraft icing [19].

To account for this transition, models are still lacking. Schiaffino and Sonin [12,13,16]
developed what can be understood as a ”four phases” contact line model (substrate,
air, liquid, solidified liquid) that they carried out numerically. Their peculiar situation
was that of a thin liquid layer, fed from a spray of impacting droplets, and spreading
on an already frozen solid base formed on the cold substrate. A difficulty that they
noticed is that, just as the same way as the evaporation rate for colloid deposition
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(”coffee stain” problem) [20,21], a divergence of heat flux appears near the contact
line, which should similarly imply a divergence of solid freezing rate. The liquid layer
flowing above the basal solid deposit then should freeze much faster than the charac-
teristic time of the flow. This singularity has led the authors to introduce a mesoscopic
cut-off length in the micron range, of yet unknown origin. In view of these problems,
Tavakoli et al. [14] postulated a different structure for the solid/liquid interface. In
this quasi-static approach, the interface should coincide with an isotherm and would
intersect the liquid/air interface with a right angle - based on the assumption that
the thermal flux is negligible within the vapour phase [22]. The equilibrium is sup-
posed to be broken when the total volume deposited remains below some threshold.
The agreement with experiments is fair, but the threshold volume is an unknown
parameter that is empirically adjusted. Furthermore, the question of how the liquid
flows at higher velocitiy remains elusive and unspecified in this approach. Another
way to tackle the problem has been proposed by de Ruiter et al. [15], and consists
in admitting some lag in solidification, denoted as kinetic undercooling, that depends
on the contact line velocity. This leads to a critical temperature near the contact
line below which the liquid locally freezes, leading to the arrest of the spreading, in
agreement with experiments. This feature was also reproduced with thermoresponsive
polymer solutions [23] on hot substrates. Let us note that the experiments did not
exhibit stick-slip dynamics, as the liquid was not continuously forced to spread on the
substrate [15]. Another difficulty of the subject is that a simple model is lacking that
could help for semi-quantitative analysis or simple calculations, in a way similar to a
model of advancing contact-line or ”a la Voinov”, i.e. a hydrodynamics framework in
the lubrication approximation [24].

In the present paper, we aim to build such a framework while trying to reconcile the
three approaches reminded above. We consider a four phases contact line advancing
on a cold plate of infinite thermal conductivity (see Fig. 1). The angles θs(x) and
θL(x) respectively stand for the angle formed by the solid with the substrate and by
the liquid/air interface with the horizontal. These two angles are expected to (slowly)
depend on the horizontal coordinate x. We assume total wetting conditions of the
liquid on the solid phase (θe = θL − θs = 0 for U=0), and interfaces with small
slope so that lubrication approximation can be applied. We assume that at a certain
mesoscopic scale, thereafter denoted as b, there is a crossover between the first two
aforementioned approches and we develop a simple model deduced from Voinov’s
theory [24], completed with a Stefan kinetic condition at the solid/liquid front. The
microscopic length scale is quantified by the cut-off length a, and shall be considered
as the molecular size.

We first describe the equations of the model (section II.1), then we show the main
predictive plots (section II.2), and finally we discuss on the limitations of the model,
the physical meaning of the cut-off length b and the importance of its adjustment, to
finally conclude on the prospectives.

2 A quadruple dynamical contact-line

Let us consider a liquid wedge (density ρ, viscosity η and surface tension γ) in contact
with a substrate of temperature Tp smaller than the melting temperature Tf , so that
liquid is partially frozen along the contact area with the substrate. We focus on the
vicinity of the contact-line, hence in a typical situation of a moving sessile drop or
a climbing meniscus. For sake of simplicity, we adopt here a two-dimensional (2D)
geometry.

We assume that the liquid and solid wedges, of angles respectively equal to θL−θs
and θs, are in contact with each other and form altogether an apparent contact angle
of θL with the substrate, which holds until the nanometric scale, see Fig. 1. Let
us assume a steady situation where both wedges advance at the same velocity U
with respect to the substrate. This condition of steadiness will impose a relationship
between the line velocity and the liquid-solid front dynamics,

We also assume total wetting condition (θe=0 for U=0) and a steady advancing
contact-line, i.e. U remains constant and positive. As set in Fig. 1, the solid/liquid
wedge is divided into three distinct domains :

- a nanometer-scale region (x < a) of molecular size,
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- an intermediate mesoscopic region (a < x < b) defining the quadruple contact
line where the free-surface, the liquid/solid and the solid/substrate interfaces co-exist
and where viscous shear stress develops,

- a macroscopic quasi-static region (x > b) where the solidification front is ruled
by the isotherm T = Tf in the liquid bulk.

The substrate temperature is kept constant at Tp < Tf , supposed to be uniform, an
assumption which is valid if its thermal conductivity κP is large enough. The approach
of dynamical contact-lines proposed within the intermediate region is inspired from
on the Cox-Voinov’s hydrodynamic model [24].

a b

intermediate region macroscopic region
nanometric-scaled
       region

Liquid

Solid

T=Tp

T=Tf

𝛳L

𝛳s

Figure 1: Sketch of the quadruple line geometry, combining Schiaffino & Sonin’s
[12,13,16] and Tavakoli et al.’s [14] approaches. Let us note that the curvature of
the free-surface, due to viscous bending, is of opposite sign to the curvature of the
solid-liquid front.

2.1 Model of contact line dynamics a la Voinov with solidification

2.1.1 Voinov’s model in the intermediate region

Shear stress coupled to capillary forces at the contact-line induces what is commonly
denoted as viscous bending, a framework classically used to predict the dynamics of
triple contact lines in the hydrodynamics context [2,1,24]. This viscous shear has no
reason to be uniform within the whole wedge and generally depends on x [2,1]. Hence,
the curvature of the free-surface and that of the liquid/solid interface are supposedly
nonzero and taken into account.

The liquid region forms an angle θL − θs advancing with the solid front. For a
situation like the one depicted in Fig. 1 be possible in a steady state (U=cte), it is
assumed that the liquid free-surface and liquid/solid interface advance at the same
velocity U (that of the quadruple line), and that the interface adopts a steady shape
in the moving frame. This condition of existence thus implies a condition relating U
and the solid/liquid front dynamics at any x > 0, which itself depends on the wedge
geometry.

A flow is established in the liquid wedge of height hl(s), s being the coordinate
along the solid front, and yields a continuity equation :

∂hL
∂t

=
∂(hl < u >)

∂s
= U cos θs

∂hl
∂s

(1)
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Figure 2: Zoomed sketch of the quadruple line within the intermediate region, with
the continuous hydrodynamic approach by Voinov [24], i.e. a finite and spatially
dependent curvature of the film and solid front, to rule the visco-capillary balance in
the liquid.

where < u > is the average velocity in the liquid, slowly varying with s, that reads
approximately

< u >' γh2l
3η

∂3ξ

∂x3

where y = ξ(x) denotes the profile equation of the free-surface.
In our case, the curvature of the solid shape is assumed to be small - i.e. its

radius of curvature is much larger than the mesoscopic length b, and the slope of
the interfaces remain small (θL �1 and θs �1). Under these assumptions, we can

assume that cos θs ' 1 in eq. (1) and replace ∂3ξ
∂x3 with ∂3hl

∂x3 , which yields the classical
equation :

∂3hl
∂x3

' 3
Ca

h2l
(2)

where Ca = ηU
γ stands for the dimensionless capillary number. Also with θe = 0, this

equation leads to the well-known Tanner’s solution that gives the angle θL(s) at the
distance s from the corner :(

θL(s)− θs(s)
)3

= 9 Ca log
s

a
(3)

The determination of θs involves a balance in thermal flux, which must be solved
in order to predict the complete evolution of θL with U .

Let us note that the validity of the usual hydrodynamic equations, commonly set
on a straight substrate, and considered here on a slightly curved solid, implies that
the solid radius of curvature be weak compared to the value of b, in order that the
previous equations remain valid at first-order. This assumption is to be checked later
in the paper, and we shall show that it is generally right, providing one pays attention
on the choice of b.

2.1.2 Thermal equilibrium in the wedge

The heat flux generated across the liquid-solid interface by the substrate at Tp, rules
the solid angle θs within the liquid wedge. This flux is determined by the heat equa-
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tion, which in a steady situation where convection is neglected, writes as the classical
Laplacian equation :

∇2T (r, φ) = 0 (4)

Equation (4) is solved in a wedge of angle θs(x) at any x >0, with T = Tp
and T = Tf respectively as boundary conditions along the horizontal substrate/solid
interface and along the solid/liquid interface, for any x >0. The Laplacian equation
is solved in circular coordinates with radial and angular spatial variables r and φ
represented in Fig. (3).

M(r,φ)
Tf

Tp

𝛳s

SOLID

LIQUID

Figure 3: Sketch of the thermal Stefan problem in the wedge.

Applying the classical separation of variables, the resolution of eq. (4) yields :

T (r, φ) = F(r)G(φ) = (a0 + b0 ln r)(A0 +B0φ) + (αrυ +βr−υ)(A cos(υφ) +B sin(υφ))
(5)

where a0, b0, A0, B0, α, β, A and B are constants. The following boundary conditions
allow to determine the constants :

T (r, 0) = Tp and T (r, θs) = Tf (6)

We set ∆T = Tf −Tp > 0 as the main control parameter of this thermal problem.
The temperature remains finite in the vicinity of the corner, so that β = 0. It yields
a general expression for the solution of eq. (5) :

T (r, φ) = Tp +

(
∆T

θs

)
φ+

∞∑
n=1

αnr
nπ
θs sin

(
nπφ

θs

)
(7)

In the simpler situation of a solid wedge forming a constant angle θs, the solution
of the temperature field T (r, φ) would only contain lowest order terms, and would
express as :

T0(r, φ) = Tp +

(
∆T

θs

)
φ (8)

Our present situation is that of a (weakly) curved solid/liquid interface, i.e the
wedge angle θs is weakly dependent on x (or r). To account for this higher order
correction, let us introduce the small parameter ε such that θs = θs(εr). We now look
for a solution of the stationary diffusion equation (4) for the temperature of the form:
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T (r, φ) = Tp +

(
∆T

θs(εr)

)
φ+ εT 1(r, φ) (9)

After injecting the equations (9) into (4) and (6) and expanding in powers of ε,
we obtain the following solution up to first order in ε:

T (r, φ) = Tp +
∆T

θs(0)
φ− εr∆Tθ

′
s(0) sinφ

θs(0) sin θs(0)
(10)

Let us recall that the flux across the liquid-solid interface is:

Js(s, φ = θs) = −κ
s

∂T

∂φ
= κ

∆T

sθs
(11)

where κ stands for the thermal conductivity of the solid. This heat flux induces the
Stefan condition at the interface, which enables to determine the solidification front
kinetics from (11) :

Js(s, φ = θs) = ρLUs = ρLU sin θs (12)

where L stands for the liquid/solid latent heat. This flux through the liquid/solid
interface can be evaluated from a simple integration integration of eq. (11) and (12),
under the assumptions of small angle and small curvature.

Back to eq. (10), we obtain in the limit of small angles :

κ∆T

sθs(0)
− εκ∆Tθ

′
s(0)

θs(0)2
= ρLUθs(εr) (13)

which, from a formal identification at the first order in ε, yields :

κ∆T

sθs(εs)
= ρLUθs(εs) (14)

The solution of eq. (14) above is simply:

θs(s) =

(
κ∆T

ρLUs

) 1
2

(15)

Let us note that under the assumption of θs � 1, and assuming small enough
curvature, we can substitute the curvilinear coordinate s by x in eq. (15) in what
follows.

2.1.3 The dependence of θL on U yields a transition to unstable dynamics

Returning to Voinov’s equation (3), an expression for the apparent dynamical contact
angle θL reads :

θL(x) =

(
κ∆T

ρLUx

) 1
2

+

(
9 Ca log

x

a

) 1
3

(16)

Thus, θL depends on the substrate temperature Tp - in fact through its difference
with Tf , ∆T , and on the advancing velocity U .

Figure 4-(a) shows θL versus U from eq. (16), for various ∆T and a value of the
mesoscopic length x = b set at 1 µm. We took values for solid and liquid hexadecane,
for which ρ = 833 kg.m−3, κ = 0.15 W.m−1.K−1, L = 2.3×105 J.kg−1, η = 3×10−3

Pa.s, γ = 0.028 N.m−1 and a = 0.845 nm.
Let us note that for ∆T =0, the angle θs equals zero, and that we retrieve the

isothermal situation. For ∆T > 0, hence in the situation of partial solidification
of the liquid, the evolution of θL for relatively large U follows a trend similar to
the isothermal situation, with an increase of θL with U . However, at relatively low
velocity, i.e. below a critical velocity (U < U∗), our model predicts a sharp decrease
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Voïnov model without
solidification

U*

(a)

b=10.0 𝜇m
b=1.0 𝜇m
b=0.1 𝜇m

Red

Yellow

Blue

Green

(b)

Figure 4: (a) Apparent advancing angle versus advancing velocity U and various
values of ∆T (a = 0.845 nm (molecular size) and x = b = 1 µm). Apart from the
isothermal case, θL shows a minimum for a critical velocity U∗, which is taken as
the value for the transition to unsteady dynamics. (b) Same as (a) but with different
values of b and ∆T .
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of θL with U . Therefore, our model leads to a non-monotonous dependence of θL with
U .

Figure 4-(b) shows θL versus U for different sets of values for b and ∆T . Clearly
the value of x = b strongly influence the location of U∗. Comparisons with existing
experiments, to be shown later, will enable to better justify the choice of b = 1 µm.

At this stage, we state that the existence of a minimum for θL(U) implies an
unstable situation from a mechanical point of view. Let us remind here the general
expression of the capillary motile force, here expressed per unit length of contact-line,
due to the unbalanced Young’s equation :

Fcap = γπ(cos θe − cos θL) ' γπ(
θ2L
2

+
θ4L
24

) (17)

In a steady situation U=cte, this capillary force is usually balanced by a viscous
friction force Fv ∼ ηU originating from shear stress within the wedge between mi-
croscopic and macroscopic scales. Keeping the first order term in the development, it
yields :

Fv ∼ γπ(
θ2L
2

) (18)

The fact that Fv be proportional to θ2L, leads that the liquid/substrate friction
decreases with velocity in the domain U < U∗. Intuitively, when a higher U leads to a
smaller friction force Fv, the situation is dynamically unstable. Therefore, in analogy
with solid friction [25,26], we postulate that this decreasing branch is unstable and can
lead to stick-slip dynamics below some critical velocity U∗. We then assume that U∗

corresponds to the location of the minimum of θL(U), which delimitates the transition
between continuous and stick-slip dynamics. Therefore, this framework allows us to
analytically calculate an estimate of U∗ and the related critical (apparent) contact
angle θ∗L = θa.

2.2 Prediction of critical velocity and arrest angle

The minimum of the apparent angle with U is given by
∂θL
∂U

(U∗) = 0, determined

from eq. (16). The resulting critical velocity reads :

U∗ =

(
3

2

) 6
5
(

6η

γ
log

b

a

)− 2
5
(
k∆T

ρLb

) 3
5

(19)

We note that U∗ follows a scaling law with the undercooling temperature : U∗ ∼
∆T

3
5 . As underlined in Fig. 4, the cut-off length b which is an adjustable parameter of

our model, has significant influence on U∗. Figures 5-(a,b) show typical variations of
U∗ versus ∆T , for various values of b from 0.15 to 9 µm. A larger b tends to decrease
the critical velocity for pinning and unstable dynamics, for the same ∆T . In other
terms, the range of stability is wider in velocity for smaller b.

A prediction for the critical apparent angle θa is obtained by combining eqs. (16)
and (19) :

θa =

( (
3

2

)− 3
5

+

(
3

2

) 3
5
) (

9ηκ∆T

γρLb
log

b

a

) 1
5

(20)

The predictions for θa versus ∆T , given by eq. (20), are plotted in Fig. 6. We
assume that the determination of the apparent angle is carried out at a distance of
the quadruple line equal to the mesoscopic length r = b. In Fig. 6, the value of b
is varied from 0.01 µm to 9 µm, hence within a range extended to smaller values
compared to Fig. 5.

Schiaffino and Sonin [16] theoretically determined mesoscopic cut-off lengths for
wax paraffine (denoted there as λ) and proposed temperature-dependent values. For
instance, for ∆T ' 7◦C, λ = 0.77 µm, and for ∆T ' 34◦C, they found λ = 0.12
µm. Since this length λ has a similar physical meaning as our parameter b, we are
confident that our choice for the range of b is realistic.
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Figure 5: (a) Critical velocity versus ∆T , for different values of b. Data points are
experiments from de Ruiter et al. [15] and Herbaut et al. [17]. (b) Same as (a) in
Lin-Log axes.

2.3 Comparison with existing experiments

2.3.1 Critical velocity and its relationship to spreading arrest condition

In figures 5 and 6, we inserted data points from different experiments of previous
studies, to be compared with the results of the model. Let us first comment on how
these data were obtained. The critical velocity U∗ could be extracted from experi-
ments of a single drop spreading on a cold substrate [15], and of a liquid bridge driven
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Figure 6: (a) Apparent angle θa versus undercooling ∆T , predicted by eq. (20). The
different curves correspond to different values of the mesoscopic cut-off length b, (a is
set to 0.845 nm). Data points are experiments from de Ruiter et al. [15] and Tavakoli
and Tavakoli et al. [14]. (b) Same as (a) with an offset in temperature added in
eq. (20), ∆Tc = 2.46◦.
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on a cold substrate put on a translation stage at constant velocity [17]. In both cases,
U∗(∆T ) corresponds to the limit velocity below which the liquid on a substrate at
Tp = Tf −∆T stops spreading and gets its contact-line pinned. In [17], it corresponds
to the occurrence of a stick-slip dynamics.

Quantitatively, experiments showed a power-law dependence of U∗ = c∆Tχ, with
the exponent χ = 1 in de Ruiter et al. [15] and χ ' 2.65 in Herbaut et al. [17].
Let us remark that this discrepancy in the values of exponents was attributed to the
morphological differences of the solid front : isotropic in de Ruiter et al. [15] and
dendritic in Herbaut et al. [17] (see also [27]). Furthermore, the two experimental
studies were carried out under different conditions of wettability. Our model rather
predicts χ = 3

5 , see eq. (19). Though, a common point between these studies is
that the criterion for pinning, and possible unsteady dynamics, is based on a critical
temperature in the vicinity of the triple - or here quadruple - line, and this criterion
comes from the phenomenon of kinetic undercooling [15,17].

Still, for the realistic values taken for b, our model captures a good order of
magnitude for the critical velocity. In order for the model to be more quantitatively
predictive, and inspired by the approach of Schiaffino and Sonin [16], one has to choose
b as being temperature-dependent. Figures 5 indeed suggest such a dependence, i.e.
that b should decrease with ∆T in order to better agreement between experiments and
theory. Still, in the absence of direct measurements of b, we are unable to comment
further.

Let us now reconsider the physical meaning of this critical velocity U∗, calculated
from the minimal value of θL versus U (see Fig. 4). In experiments, a steady situation
is observed when U > U∗, so that the solid/liquid front remains at some distance
from the contact-line. Hence, the situation of a quadruple line shown in Figs. 4 can
be envisioned in two peculiar situations :

- the spreading of a liquid at an advancing velocity U slightly larger than U∗, so
that the solid front remains at very short distance, of the order of a few molecular
lengths, to the triple line. This situation prevents the solid front to catch the contact
line, which would lead to an additional pinning force and to a dynamics of stick-slip
[17]. As U & U∗, the front advances faster than the spreading and the dynamics
turns unsteady. In this sense, our model describes a situation at the limit of pinning,
in analogy with the limit of sliding in solid friction [25,26].

- the spreading of a liquid on its own previously formed solid, on a cold substrate,
enabling the growth of the solid-liquid front together with - and toward a direction
normal to - the liquid spreading. To the best of our knowledge, this situation was
never experimentally investigated.

We come back to an initial assumption that the radius of curvature of the solid
front remains smaller than the value of b, which allowed to apply the usual equations
of hydrodynamics of wetting on a straight solid. According to eq. 15, an order of
magnitude for the radius of curvature of the solid-front is obtained from a simple

derivation : rc ' 2r3/2
(
ρLU
κ∆T

)1/2
. As our assumption is rc > b, we evaluate the

ratio rc
b for r = b, and we find rc

b ' 2
(
bρLU
κ∆T

)1/2
. With the experimental values of

hexadecane, and the values of b giving the best fit for corresponding ∆T and U , we
find : rc

b ' 4 for ∆T = 10◦ (taking b=0.25 µm) and rc
b ' 9 for ∆T = 2◦ (taking

b=3 µm), see Figs. 5. Therefore, our assumption can be considered as roughly valid,
and the corrections due to solid curvature should not be too much significant on the
hydrodynamics, although a more detailed calculation should take into account these
second-order terms.

2.3.2 Critical angle and the offset in ∆T

Figure 6 shows that the model, namely eq. (20), provides qualitative agreement with
existing experiments, namely those of Tavakoli et al. [14] and of de Ruiter et al.
[15]. Those from Herbaut et al. were excluded because they were obtained in different
conditions of wetting, namely with a surface treatment which achieved partial wetting
conditions with hexadecane and pentadecane.

Still, experimental data points seem to show an offset in temperature, roughly
equal to ∆Tc = 2.46◦, below which the angle of arrest was not measurable. This offset
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does not appear in Herbaut et al.’s experiments, which are conducted in a permanent
regime and where a solid front always exists within the liquid bridge [17]. Figure
6-(b) indeed show a better agreement between the model and experiments. However,
we cannot provide a physical meaning to this offset, nor explain why this appears in
experiments of single drop unsteady spreading (unsteady states) [14,15] but not in
steadily driven liquid bridges [17]. In both cases, the agreement with experiments is
improved if b is made temperature-dependent.

3 Conclusion : limitations and prospectives

A model of quadruple line advancing at steady velocity U , which combines hydrody-
namic lubrication with solidification in a weakly curved wedge, and computed between
microscopic and mesoscopic cut-off lengths, offers a fair qualitative agreement with
experiments of advancing solidifying contact-lines, concerning the prediction of a con-
dition for arrest (pinning). In practice, this can be related to the transition between
continuous and stick-slip dynamics occurring under a temperature-dependent thresh-
old velocity. Analytical solutions of the models predict power-laws relating arrest
angle θa with undercooling ∆T , as well as for the critical velocity U∗ with ∆T .

However, the model predictions are questionnable in two points :
- the exponent are different from those deduced from drop spreading experi-

ments. Still, when one allows an adjustable parameter, the cut-off length b, to become
temperature-dependent - a possibility emphasized in Schiaffino and Sonin’s theoreti-
cal approach, the agreement between θa, U∗ and ∆T becomes quantitatively better.
The physical significance of these cut-off length values and their dependence on ∆T ,
although falling in a magnitude which is physical sound, remains unexplained.

- an offset (or threshold) value for the undercooling ∆T has to be introduced in
order to fit correctly experimental data of the critical angle of arrest. This threshold, of
relatively small magnitude, could be explained by a slight supercooling effect, which
prevent the appearance of solidification germs close to the melting point. Indeed,
such an offset does not appear when one reaches a permanent regime of spreading
with constant driving velocity [17], as a solid phase continuously exists nearby the
contact-line.

Despite these limitations, our model predicts a criterion for pinning based on
a critical velocity of spreading, which is temperature dependent. The geometry of
quadruple line also suggests possible experiments mimicking this situation as, for
instance, the spreading of a liquid drop on its own solid. We hope this will motivate
further studies on this field.
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