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 52 

ABSTRACT 53 

 54 

Reducing conditions and high organic carbon content make wetlands favorable to uranium 55 

(U) sequestration. However, such environments are subjected to water-table fluctuations that 56 

could impact the redox behavior of U and its mobility.  Our previous study on U speciation in 57 

a highly contaminated wetland has suggested a major role of water-table redox fluctuations in 58 

the redistribution of U from U(IV)-phosphate minerals to organic U(VI) and U(IV) 59 

mononuclear species. Here, we investigate the mechanisms of these putative processes by 60 

mimicking drying or flooding periods via laboratory incubations of wetland samples. LCF-61 

XANES and EXAFS analyses show the total oxidation/reduction of U(IV)/U(VI)-62 

mononuclear species after 20 days of oxic/anoxic incubation, whereas U-phosphate minerals 63 

appear to be partly oxidized/reduced.  SEM-EDXS combined with µ-XRF and µ-XANES 64 

analyses suggest that autunite Ca(UO2)2(PO4)2•  H2O is reduced into lermontovite 65 

U(PO4  OH •H2O, whereas oxidized ningyoite CaU(PO4)2•2H2O is locally dissolved. The 66 

release of U from this latter process is observed to be limited by U(VI) adsorption to the 67 

surrounding soil matrix and further re-reduction into mononuclear U(IV) upon anoxic 68 

cycling. Analysis of incubation waters show, however, that dissolved organic carbon 69 

enhances U solubilization even under anoxic conditions. This study brings important 70 

information that help to assess the long-term stability of U in seasonally saturated organic-71 

rich contaminated environments. 72 

 73 

 74 
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1. INTRODUCTION 77 

Uranium is a toxic element [1] that naturally occurs in the continental crust at an 78 

average concentration of 2.7 mg.kg
-1

 [2]. It locally concentrates in economic deposits via 79 

reductive precipitation and/or hydrothermal processes [3] and has been mined for decades in 80 

several countries worldwide. Uranium mining operations and legacies have been shown to be 81 

responsible for local increases of U contaminations in surrounding surface environments. For 82 

instance, U concentrations exceeding the geochemical background were found in aquifer 83 

sediments [4], lacustrine sediments [5], soils [6] and wetlands [7-10] in the vicinity of former 84 

U mining sites.  85 

Organic-rich wetlands are favorable to develop reducing conditions and have been 86 

recognized to accumulate uranium both via organic complexation of U(VI) and U(VI) 87 

reduction to less soluble U(IV) species. These environments are thus considered as being able 88 

to naturally attenuate U migration from nearby mining sites [7,10]. However, the long-term 89 

fate of U in wetlands remains unclear, especially when they exhibit intermittent oxidizing 90 

conditions due to water-table fluctuations [10]. Indeed, non-crystalline U species that have 91 

been identified as major U species in wetlands, such as mononuclear U(VI) and U(IV) 92 

complexes bound to organic matter [10,11-13], are known to be potentially mobile under both 93 

oxic [14-17] and anoxic conditions [7,18].  In addition, U(IV)-phosphate minerals may also 94 

play an important role in U retention in mining-contaminated wetlands. Indeed, such phases 95 

have been recently recognized as important U hosts in contaminated environments [10,19] 96 

and as possible products of microbial U(VI) reduction [16,20-21].  However, the geochemical 97 

reactivity of these phases when submitted to redox fluctuations is still scarcely documented 98 

and remains debated. For instance, Latta et al. (2016) [22] reported that the oxidation of a 99 
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synthetic amorphous U(IV)-phosphate resulted in the formation of a low-solubility U(VI)–100 

phosphate phase. In contrast, oxidation of a ningyoite-like mineral (ideal formula 101 

CaU(PO4)2•2H2O) has been shown to lead to significant U remobilization [16]. To this regard, 102 

the reactivity of U(IV)-phosphate minerals such as ningyoite needs to be further investigated.  103 

In this context, our recent study of U speciation in a highly contaminated wetland in Brittany, 104 

France [10] has suggested that low water-table level conditions can lead to oxidative 105 

dissolution of U(IV)-phosphate minerals, especially ningyoite, and to subsequent sorption of 106 

U(VI) to soil organic matter, while flooding conditions could favor further reduction of U(VI) 107 

to U(IV) organic complexes. Based on these findings, the present study aims at elucidating 108 

the micro- and molecular-scale mechanisms underlying such U redistribution processes, by 109 

performing incubations experiments that mimics typical redox changes induced by water-110 

table fluctuations in a seasonally saturated wetland. 111 

 112 

2. MATERIALS & METHODS 113 

 114 

2. 1. Wetland soil samples 115 

 116 

The wetland soil samples selected for the present incubation experiments were collected in 117 

the highly contaminated wetland previously studied by Stetten et al. (2018b) [10], located 118 

near the former U-mine Ty Gallen in Brittany, France. Four types of soil layers were 119 

distinguished: a humus layer almost devoid of crystalline mineral components (O-type), 120 

organic-rich or organic-poor soil layers (A1- and A2-type layers respectively), and mine water 121 

deposit layers inherited from former mining operations (Figure SI-1b) [10].  122 

For oxic incubations, three pristine reduced soil samples were selected below the water-table 123 

(Figure 1): an organo-mineral soil sample from a A2-type layer (C2-25 cm sample) and two 124 
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samples from mine water deposit layers (C2-30 cm and C6-33 cm samples). These samples 125 

were obtained from the C2 and C6 soil cores that were collected, vacuum-dried in a desiccator 126 

to a vacuum limit of 0.5 mbar and preserved under anoxic conditions [10].  127 

For anoxic incubations, a humus layer sample (S1 sample; Figure 2) and a mine water deposit 128 

layer sample (S2 sample) were collected with a spade in the wetland in November 2015 and 129 

were stored under aerobic conditions at ambient temperature (21 °C), before the incubation 130 

experiments. These two latter samples were considered as representative of wetland soil 131 

samples exposed to a prolonged period of dryness and were thus used as starting samples for 132 

anoxic incubation experiments. In addition, a pristine organic-rich soil sample from the C2 133 

core corresponding to the A1-type layer above the water-table level (C2-5 cm sample) was 134 

also used as starting sample for anoxic incubation. 135 

 136 

2. 2. Incubation experiments  137 

 138 

For oxic incubation experiments, ~300 mg of dry soil was supplemented with ~1 ml of O2-139 

free milli-Q water and were put in 50 ml tinted glass vials. The glass vials were then left open 140 

to air on a lab bench during 20 days in order to simulate a period of dryness. As these pristine 141 

soil samples exhibit similar uranium speciation [10], they were used as triplicates for this 142 

experiment (C2-25cm_oxic; C2-30cm_oxic; C6-33cm_oxic). Anoxic incubation experiments 143 

were conducted in an anaerobic glove box (O2 < 20 ppm vol. in N2) at IMPMC in sealed glass 144 

vials, in order to simulate a flooding period. Anoxic incubation of the S1 and S2 samples 145 

(S1_anox_bio_1ml_t20; S2_anox_bio_1ml_t20) were carried out with ~1 g of air-stored 146 

sample in 1ml of O2-free milli-Q water in 50 ml tinted glass vials sealed with a butyl rubber 147 

stopper for 20 days. Similar conditions were applied for the C2-5cm sample (C2-5 148 
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cm_anox_bio_1ml_t20) with ~300 mg of vacuum dry solid sample.  No duplicates were 149 

carried out for these anoxic incubations.  150 

Additional anoxic incubations of the S1 and S2 samples were carried out in duplicate, with a 151 

lower solid:liquid ratio (1:10) during 14 days (S1_anox_bio_10ml_t14_A; 152 

S1_anox_bio_10ml_t14_B; S2_anox_bio_10ml_t14_A; S2_anox_bio_10ml_t14_B; A and B 153 

corresponding to duplicates). Abiotic control incubations were conducted similarly but with 154 

samples previously autoclaved at 120°C for 20 min (S1_anox_abio_10ml_t14; 155 

S2_anox_abio_10ml_t14). For these 1:10 incubations, ~1 g of wet soil sample was 156 

supplemented by 10 ml of an anoxic 9 mg.L
-1

 NaCl solution, put in 50 ml tinted glass vials, 157 

sealed by a butyl rubber stopper and tumbled for 14 days. For these latter experiments, NaCl 158 

was used as background electrolyte in order to avoid osmotic stress of the microbial biomass. 159 

At the end of these experiments, the incubation solutions were collected by centrifugation, 160 

f                0.2 μ  and an aliquot was acidified to pH~1 using 67 % HNO3 for further 161 

dissolved U analysis.  162 

At the end of all incubation experiments solid samples were vacuum dried in a desiccator 163 

placed in a glove box and stored under anaerobic conditions for further analyses.  164 

 165 

2. 3. Chemical Analyses procedures 166 

 167 

The initial solid soil samples of the C2 and C6 cores were previously analyzed for majors and 168 

traces elements [10].  For S1 and S2 initial solid samples, U content was measured by gamma 169 

spectrometry using a Ge HP type N - GEN27 detector at IRSN laboratory.  For this purpose, 170 

solid samples were dried at 105 °C until a constant mass was obtained. They were 2mm 171 

sieved and ~40 g of the fraction inferior to 2mm was conditioned under vacuum in aluminized 172 

bag. Each sample was measured for 24 hours. Dissolved uranium in the 1:10 incubation 173 
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experiments were measured on acidified aliquots using an    -     7         174 

ThermoFisher
®

). Dissolved Organic Carbon (DOC) and Dissolved Inorganic Carbon (DIC) 175 

were measured following the method described in Stetten et al. (2018b) [10]. 176 

 177 

2. 4. X-ray Absorption Spectroscopy 178 

 179 

X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine 180 

Structure (EXAFS) spectra at the Uranium LIII-edge were collected on the 11-2 wiggler 181 

beamline at the Stanford Synchrotron Radiation Lightsource (SSRL) and on the CRG-FAME 182 

bending-magnet beamline at the European Synchrotron Radiation Facility (ESRF). The S1, 183 

S2 and anoxic incubation samples were analyzed on the 11-2 beamline at liquid N2 184 

temperature in fluorescence mode detection using a Si(220) double crystal monochromator 185 

and a 100-element solid state Ge array fluorescence detector. The oxic incubation samples 186 

were analyzed on the FAME beamline at liquid He temperature using a Si(220) double crystal 187 

monochromator and a 30 elements Ge fluorescence detector (ESRF) [23]. The incident beam 188 

energy was calibrated using a Y-foil in double transmission setup, with first inflection point 189 

set to E=17038 eV. XAS spectra collected at BL 11-2 were deadtime corrected and average 190 

using SIXPACK [24], and those collected at FAME-CRG beamline were averaged using 191 

ATHENA [25]. Energy calibration, normalization and background subtraction were 192 

performed with ATHENA.  193 

In order to quantitatively determine the fractions of U(VI) and U(IV), U-LIII edge XANES 194 

spectra were least-squares fit by linear combinations (LCF) of pure U(IV) and U(VI) model 195 

compounds XANES spectra, using a home-built code [10,19,26]. The chosen model 196 

compounds were a U(IV) humus sample and a synthetic U(VI)-humic acid model compound 197 

[10].  Uranium LIII-edge EXAFS spectra of the incubated samples were least-squares fit by 198 
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linear combinations (LCF) of model compounds EXAFS spectra using a home-built code 199 

[10,19,26]. The model compounds chosen for this procedure were already used by Stetten et 200 

al. (2018b) [10] to fit the U LIII-edge EXAFS spectra of the C2 and C6 soil samples and were 201 

previously interpreted using shell-by-shell fitting of the k
3
-EXAFS spectra. This latter 202 

procedure yielded a description of the first and second neighbor shells around the U atom in 203 

these model compounds, as detailed in Stetten et al. (2018a) [5] and Stetten et al. (2018b) 204 

[10]. 205 

 206 

2. 5. µ-XRF and µ-XAS data collection and analysis. 207 

 208 

Microfocused X-ray fluorescence (µ-XRF) and U LIII-edge micro-X-ray Absorption Near 209 

Edge Structure (µ-XANES) spectroscopy analyses were conducted at the 2-3 beamline 210 

(SSRL) on polished sections of epoxy resin-embedded samples. The chosen samples were the 211 

mine water deposit sample (S2) and the product of its 20-day incubation under anoxic 212 

conditions (S2_anox_bio_1ml_t20). The µ-XRF maps were collected at room temperature 213 

and an incident energy of 17200 eV, using a Vortex silicon drift detector, a beam spot size of 214 

~2x2 µm, a step of 10 µm and a counting time of 50ms. In order to limit U(IV) oxidation, a 215 

continuous flow of N2 gas was applied on the surface of the samples during the 216 

measurements. Points of interest were selected on the µ-XRF maps for U LIII-edge µ-XANES 217 

analyses using a Si(111) monochomator calibrated with elemental Y (K-edge at 17038 eV). 218 

The spectra were averaged using SIXPACK [24], normalized with ATHENA and analyzed by 219 

LCF with a custom-built software based on Levenberg-Marquardt least-squares minimization 220 

algorithm, using U(VI)-humic acid and U(IV)-humus model compound spectra as fitting 221 

components [5,10]. 222 

 223 
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2. 6. SEM-EDXS data collection and analysis 224 

 225 

Scanning electron microscopy analyses were performed at IMPMC, using a Zeiss ultra 55 226 

equipped with a Field Emission Gun. Backscattered images and EDX Spectra were collected 227 

at 15 keV with a working distance of 7.5 mm. The beam intensity was calibrated using the Cu 228 

K-alpha emission from a TEM copper grid. Semi-quantification of the EDXS spectra was 229 

performed using the Bruker


 Esprit program and the Phi(rho,z) method using mineral 230 

standard spectra. The atomic content in U, Ca and P obtained with this method were then 231 

plotted in ternary diagrams using TERNPLOT [27]. 232 

 233 

3. RESULTS AND DISCUSSION 234 

 235 

3. 1. Effect of oxic incubations 236 

 237 

In the pristine wetland soil samples (C2-25 cm, C2-30 cm and C6-33 cm samples), ~40-58% 238 

U(IV) is present as mononuclear U(IV) species that were fitted with a U(IV)-humus 239 

component (Figure 1, Table SI-2). In this model compound, the U-P at 3.1 Å and U-C at 3.7 240 

Å EXAFS scattering paths are interpreted as bidentate and monodentate binding of U to 241 

phosphate and carboxylate groups, respectively [10].  The remaining ~35-55 % U in the soil 242 

samples was fitted with a U(IV)-rhabdophane component, used as proxy for U(IV) phosphate 243 

minerals identified as ningyoite and lermontovite [10].   244 

After 20 days of incubation under oxic conditions, the proportion of mononuclear U(IV) 245 

decreased down to 0-17% and that of U(IV)-phosphate mineral decreased down to 20-38 %, 246 

while mononuclear U(VI) increased to 51-89 %, as fitted with a U(VI)-biosorbed component 247 

(Figure 1; Table SI-2). In this latter model compound, U(VI) is bound to both phosphate in 248 
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monodentate geometry (U-P path at ~3.6 Å; [10,28,29]) and carboxylate in bidentate 249 

geometry (~2 U-C paths at 2.9 Å; [10]). These data are consistent with the extent of U 250 

oxidation measured by LCF-XANES analysis of the same samples (Figure SI-3, Table SI-2).  251 

These results indicate complete oxidation of mononuclear U(IV) (Figure 1), except for sample 252 

C2-25 cm in which 17 % of mononuclear U(IV) persisted, which is consistent with the 253 

reported higher sensitivity of mononuclear species to redox change than crystalline U(IV) 254 

species [15-18]. In addition, except in sample C2-25 cm, 30-45 % of the U(IV)-phosphate 255 

minerals oxidized, likely into U(VI)-mononuclear species that were accounted by an increase 256 

of the U(VI)-biosorbed component in the LCF. These oxidized species could correspond to 257 

mononuclear U(VI) bound to organic phosphate groups of humic substances or biomass 258 

[28,30], as well as to inorganic phosphate groups [28,33] for instance at the surface of the 259 

oxidized U(IV)-minerals. Finally, 55-100 % of the U(IV) mineral phases were resistant to 260 

oxidation. The study of Newsome et al. (2015a) [16] also highlighted that U(IV)-phosphate 261 

minerals were partly resistant to oxidation. In this previous study, only ~20 % of U(IV) was 262 

reoxidized from a biologically precipitated ningyoite-like phase after 90 days of air exposure. 263 

 264 

 265 
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 266 

Figure 1. LCF analysis of U LIII EXAFS data of pristine reduced soil samples from the A2-type and 267 
mine water deposit layers and same samples after incubation under oxic conditions. Experimental and 268 
fit curves are displayed in black and red colors respectively. Modulus and Imaginary part of the Fast 269 
Fourier Transforms of the experimental and fit curves are also reported. The proportions of the fitting 270 
components, represented by the bar-diagram, are normalized to 100 %. Non-normalized results and 271 
uncertainties are given in Table SI-2. 272 

 273 

 274 
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Figure 2. LCF analysis of U LIII EXAFS data of initial samples (S1 and S2 samples) and incubated 275 
samples under anoxic conditions. Experimental and fit curves are displayed in black and red colors 276 
respectively. Modulus and Imaginary part of the Fast Fourier Transforms of the experimental and fit 277 
curves are also reported. The proportions of the fitting components, represented by the histograms, are 278 
normalized to 100 %. Non-normalized results and uncertainties are given in Table SI-2. 279 

 280 

In order to evaluate the consequences of the oxidation of U(IV)-mineral phases on the 281 

potential U redistribution in the soil matrix, the spatial distribution of U was investigated by 282 

µ-XRF mapping. The sample studied was a polished cut of the air dried S2 mine water 283 

deposit sample that exhibited the same U speciation as C2-30cm_oxic and C6-33 cm samples 284 

(Figures 2 and 1; Table SI-2). Uranium was mainly found by µ-XRF as hot spots (Figure 3a) 285 

suggesting the presence of U minerals grains. LCF analysis of µ-XANES spectra collected at 286 

hotspots #1 and #2 showed only U(IV) (Table SI-4). These grains could thus be interpreted as 287 

corresponding to abundant ningyoite CaU(PO4)2•2H2O (Figures 4d,4a, SI-4a), and to a lesser 288 

extent lermontovite U(PO4  OH •H2O (Figures 4c; SI-4b) grains identified by SEM-EDXS in 289 

the same S2 sample. 290 

 291 

Figure 3: µ-XRF mapping of U distribution and µ-XANES analyses of U redox state in a mine water 292 
deposit sample collected in the wetland (Sample S2) and the product of its incubation under anoxic 293 
conditions (S2_anox_bio_1ml_t20); The data were obtained by analyzing polished sections of epoxy-294 
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resin embedded samples. The μ-XRF elemental maps are displayed in the same color intensity scale 295 
and show the spreading of U around U-rich grains in the incubated sample.  The color scale of the μ-296 
XRF elemental maps corresponds to the background subtracted area of the U Lα emission line, 297 
increasing from blue to red with U content; U oxidation state was determined by LCF fit of the micro-298 
XANES spectra collected on selected points in the XRF maps using U(VI)-humic acid and U(IV)-299 
humus model compound spectra as fitting components. Spectrum of these model compounds are 300 
plotted in black lines. Experimental and calculated spectra are plotted as black and red solid lines, 301 
respectively. No oxidation of U(IV) was reported during the time of the measurement as shown in 302 
Figure SI-6. Non-normalized results and uncertainties are given in Table SI-4. 303 

 304 

Spot #3 exhibited only U(VI) could be attributed to crystalline autunite 305 

Ca(UO2)2(PO4)2•  H2O that was scarcely observed in this sample (Figure SI-4c). Since no 306 

U(VI)-bearing mineral was detected by EXAFS analysis of this sample, autunite likely do not 307 

account for more than 10 % of total U in the S2 sample. The formation of an autunite-like 308 

mineral after oxidation of an amorphous U(IV)-phosphate was reported by Latta et al. (2016) 309 

[22]. By contrast, in the mine water deposit S2 sample, the scarce and massive autunite 310 

crystals (Figure SI-4c) differs from the reticulated microcrystals observed by Latta et al. 311 

(2016) [22], and thus did not likely formed by the oxidation of ningyoite. Instead, our µ-XAS 312 

dataset and the non-detectability of U(VI)-mineral by EXAFS suggest that U(IV) minerals 313 

grains oxidized into mixed U(IV)/U(VI) grains, in which U(VI) may be mainly present as 314 

sorbed mononuclear U(VI). Indeed, the observation of U(VI) in hot spots #4, 5 and 6 315 

suggested that these U-rich grains contain sorbed U(VI) that could coat or replace former 316 

U(IV)-phosphate phases. Finally, the μ-XRF map of the initial S2 sample (Figure 3) displayed 317 

a diffuse distribution of U, which was consistent with the occurrence of U(VI) mononuclear 318 

complexes determined by LCF-EXAFS (Figure 2; Table SI-2). Altogether, these results 319 

confirmed that a fraction of U is distributed in the soil matrix, which might account for the 320 

non-crystalline U(VI) species observed by EXAFS analysis. 321 

 322 
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 323 

 324 

Figure 4. Backscattered electrons SEM images and semi-quantitative EDXS analyses of U minerals in 325 
the mine water deposit (S2 sample; red crosses) and in the same sample after anoxic incubation 326 
(S2_anox_bio_1ml_t20; purple crosses). (a) Ningyoite in the S2 sample, (b) Ningyoite with prismatic 327 
morphology [34] and (c) Lermontovite with platy morphology [37] in the S2_anox_bio_1ml_t20 328 
incubated sample. (d) Ternary diagram showing P, Ca and U compositions of the U-mineral grains 329 
observed in these samples. Ideal stoichiometric composition of Autunite Ca(UO2)2(PO4)2•  H2O 330 
(orange diamond), ningyoite CaU(PO4)2•2H2O (green triangle) and lermontovite U(PO4  OH •H2O 331 
(green square) minerals are also reported.  332 

 333 

 334 

3. 3. Effect of anoxic incubations  335 

 336 

Two types of samples were incubated under anoxic conditions: S1 and C2_5cm humus 337 

samples in which U mainly occurs as mononuclear species and S2 mine water deposit sample 338 

in which U is partitioned between U-phosphate minerals and mononuclear species. Full 339 

reduction of U(VI) was observed for S1 and C2_5 cm, whereas partial reduction was 340 

observed for S2 (Figures 2 and SI-3; Tables SI-2 and SI-3) after 20 days. The extent of U 341 
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reduction was systematically lower at shorter incubation times (14 days) and at lower 342 

solid:liquid ratio (1:10) (Figure 2; Table SI-2). We may hypothesize that a lag phase in the 343 

growth of the microbial biomass could have delayed the effective microbial-mediated U 344 

reduction during the first 14 days of incubation. The reduction of U(VI) to U(IV) species 345 

could be enhanced by both enzymatic and abiotic U(VI) reduction pathways [5, 37-40]. Here, 346 

the role of microorganisms in U reduction was confirmed by the absence of U reduction in the 347 

abiotic incubations conducted for 14 days at solid:liquid ratio (1:10) (Figure SI-3; Table SI-348 

3). The higher reduction rate observed for S1 samples could be explained by the high organic 349 

carbon content of these samples that would have enhanced biotic reduction processes [37], 350 

likely via direct or indirect dissimilatory reduction of U(VI) [38-40]. Even if it has been 351 

shown that direct enzymatic U reduction pathways dominate in sediments [36, 39], we cannot 352 

exclude that U is reduced by indirect microbial pathways, for example via the release of 353 

abiotic reductants such as Fe(II), itself possibly produced by the bioreduction of Fe(III)-354 

bearing minerals [5, 40]. 355 

For the S1 sample, the best EXAFS LCF was obtained with 60% of U(VI)-biosorbed model 356 

compound and 40% of U(IV)-humus model compound (Figure 2; Table SI-2). This latter 357 

model compound also used by Stetten et al. (2018b) [10] corresponds to the product of 358 

reduction of the S1 sample after 20 days of incubation at high solid:liquid ratio 359 

(S1_anox_bio_1ml_t20 sample), in which U was fully reduced (Figures 2 and SI-3; Tables 360 

SI-2 and SI-3). Shell-by-shell fitting of the k
3
-EXAFS spectra was performed in Stetten et al. 361 

(2018b) [10] for this humus model compound and indicated the presence of bidentate U(IV)-362 

phosphate and monodentate U(IV)-carboxylate complexes.  363 

Altogether, these results suggest that the reduction of monodentate U(VI)-phosphate and 364 

bidentate U(VI)-carboxylate complexes lead to the formation of bidentate U(IV)-phosphate 365 

and monodentate U(IV)-carboxylate complexes, without formation of U(IV) mineral, likely 366 
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due to the abundance of organic-bound phosphate and carboxylate ligands inhibiting uraninite 367 

formation [41,42]. Additionally, the lack of free orthophosphate may also prevent U(IV)-368 

phosphate minerals precipitation in such organic-rich layers. 369 

Sample S2 was chosen to investigate the effect of anoxic conditions on oxidized mine water 370 

deposits that contained mainly sorbed mononuclear U(VI) species (~80 %) and recalcitrant 371 

U(IV)-phosphate minerals (~20 %) (Figures 2, 3 and 4; Table SI-2). LCF-EXAFS results 372 

indicated that after 14 days of anoxic incubation (sample S2_anox_bio_10ml_t14_A), the 373 

proportion of U(IV)-phosphate minerals increased up to 40% whereas sorbed mononuclear 374 

U(VI) species decreased by 20 % (Figures 2; Table SI-2). After 20 days of anoxic incubation 375 

(sample S2_anox_bio_1ml_t20), the proportion of U(IV) phosphate did not increase above 376 

~40 %. In contrast, the proportion of sorbed U(VI) decreased down to 31 % while a 377 

proportion of ~30 % of U was found as U(IV)-humus (Figure 2, Table SI-2). This latter result 378 

could be interpreted as the reduction of sorbed U(VI) to sorbed U(IV), as discussed in the 379 

previous section for S1 sample.  380 

The increase in the proportion of U(IV)-phosphate minerals after 14 and 20 days of anoxic 381 

incubation suggests the formation of U(IV)-phosphate minerals. Such a reaction may likely 382 

occur via reduction of U(VI) bound to phosphate mineral surfaces since the reduction of 383 

organically-bound U(VI) was found to lead to organically bound U(IV) as shown for S1 384 

sample. The formation of U(IV)-phosphate such as ningyoite-like minerals from the 385 

bioreduction of inorganic U(VI)-phosphate species is supported by previous laboratory assays 386 

[21,43]. Indeed, these previous studies reported slow reduction kinetics of Hydrated Uranium 387 

Phosphate (HUP), with ~20-80 % of U(VI) remaining in the solid phase after 10 days 388 

incubation of a biogenic HUP, and ~30 % of U(VI) after 20 days incubation of abiotic HUP. 389 

To this regard, the lower reduction rate observed in S2 sample compared to the organic S1 390 
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sample may be due to a slower bioreduction rate of inorganic U(VI)-phosphate species 391 

compared to organic ones.  392 

In the incubated S2_anox_bio_1ml_t20 sample, µ-XANES spectra for U(IV)/U(VI) ratio 393 

showed that a minor (10-35%) proportion of U(VI) remained at hot spots (Figure 3b; Table 394 

SI-4), suggesting almost complete reduction of U(VI)-bearing mineral grains. In addition, the 395 

amount of U in the soil matrix appeared to be higher after than before incubation (Figures 3a 396 

and 3b), suggesting U migration from U hot-spots to the surrounding organic-rich soil matrix 397 

(Figure 3b). One may hypothesize that such migration process could have occurred at the 398 

beginning of the incubation experiment via the dissolution of U(VI) initially sorbed to 399 

oxidized phosphate minerals grains (Figure 5). The presence of U(IV) in the soil matrix 400 

(Figure 3b; Table SI-4) suggests that U(VI) was then further reduced to U(IV) mononuclear 401 

species under the reducing conditions that developed in these anoxic incubations. 402 

 403 

 404 

 405 

Figure 5. Schematic view of the effect of successive oxic and anoxic incubations on the redistribution 406 
of U from U(IV)-phosphate mineral such as ningyoite in mine water deposits layers in the studied 407 
contaminated wetland. 408 

 409 

SEM-EDX observations revealed a higher amount of lermontovite-like minerals (Figures SI-410 

5c) after anoxic incubation, i.e. in the S2_anox_bio_1ml_t20 sample, than in the S2 sample 411 

U(VI)aq

O2 H2O O2

Surface oxidation of 
U(IV)-ningyoite

Dissolution, release and complexation of U(VI) 
to organic matter

Reduction of U(VI) 
species

Anoxic incubationOxic incubation
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(Figures 4d, SI-4b). Conversely, ningyoite was also found in the S2_anox_bio_1ml_t20 412 

sample (Figure SI-5ab) but in a lower amount than in the S2 sample (Figures 4d, SI-4a). 413 

Moreover, some ningyoite grains observed in this sample exhibited a weathered morphology 414 

with acicular apexes and eroded surfaces (Figures 4b, SI-5b), whereas lermontovite grains 415 

exhibited massive and non-weathered morphology (Figure 4c, SI-5c). These results suggest 416 

that sorbed U(VI) previously resulting from the oxidation of ningyoite grains could have 417 

dissolved at the beginning of the anoxic incubation, whereas lermontovite-like minerals may 418 

be more recalcitrant to oxidation and dissolution. Moreover, we hypothesize that autunite-like 419 

minerals of the S2 sample could have been transformed into lermontovite-like minerals via a 420 

loss in Ca during the reduction process. Indeed, lermontovite is known to mainly occur as 421 

secondary mineral in reducing environments and is found in intimate intergrowth with U(VI)-422 

phosphates from the autunite or meta-autunite group [35]. In addition, although the crystal 423 

structure of lermontovite is still unsolved, it has been reported to crystallize in the 424 

orthorhombic system and could thus have a layered structure like autunite [35], which could 425 

favor transformation of autunite phase to lermontovite via the loss of Ca
2+

 in the interlayer 426 

and reduction of U(VI) to U(IV). The scarcity of autunite in the wetland soil, while it is an 427 

abundant mineral of the oxidation zone of the Ty Gallen ore (https://www.mindat.org/min-428 

433.html), and in return the abundance of lermontovite in the reduced mine water deposits 429 

layers of the wetland could be explained by a progressive transformation of autunite into 430 

lermontovite under prolonged reducing conditions. In contrast, the progressive oxidation and 431 

dissolution of ningyoite, after repeated redox cycles could explain the redistribution of U 432 

toward the organic compartment of the wetland soil. Finally, neoformation of ningyoite under 433 

reducing conditions cannot be excluded since Khijniak et al. (2005) [43] reported the 434 

formation of a ningyoite-like mineral after bioreduction of a meta-autunite mineral uramphite 435 

https://www.mindat.org/min-433.html
https://www.mindat.org/min-433.html
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(NH4)(UO2)(PO4).3H2O at 65°C in a laboratory experiment with Thermoterrabacterium 436 

ferrireducens.  437 

 438 

3.4. Uranium mobility after a redox cycle: experiment vs field investigation 439 

 440 

In order to investigate the release of U during a flooding event following a dry period, we 441 

have measured dissolved U concentrations in 0.2 µm filtered supernatant solutions collected 442 

at the end of the anoxic incubation. Figure 6 shows the dissolved uranium concentrations at 443 

the end of the 1:10 incubation performed under biotic and abiotic anoxic conditions. Uranium 444 

concentrations in the humus sample S1 experiments (S1_anox_biotic_10ml ([U]= 1520 µg.L
-445 

1
) and S1_anox_abiotic_10ml ([U]= 2156 µg.L

-1
) ) are far higher than U concentrations of the 446 

mine water deposit layer sample S2 experiments (S2_anox_biotic_10ml ([U]=160 µg.L
-1

) and 447 

S2_anox_abiotic_10ml ([U]=913 µg.L
-1

)). Such high concentrations represented however less 448 

than 0.05 % of both S1 and S2 solid U concentrations (4516 mg.kg
-1

 for S1 and 2750 mg.kg
-1

 449 

for S2). These results showed that, in the conditions of our experiments, the remobilization of 450 

U in the aqueous media after a complete redox cycle is limited and did not exceed 0.05 % of 451 

the total U solid pool. Despite that the aqueous environments established in the experiments 452 

are simplified, these results were consistent with our previously developed hypothesis of the 453 

redistribution and scavenging of U in the solid phase during the incubation experiment, 454 

mostly by adsorption and subsequent reduction (Figure 3a). These results agree with a recent 455 

study showing a release of U of 0.8% from initially reoxidized mononuclear U species under 456 

reducing conditions in carbonate-free media [18]. 457 

In all anoxic incubations, dissolved organic carbon release was high, especially for organic S1 458 

samples (Table SI-5) and was positively correlated to dissolved U concentration, which 459 

strongly suggests solubilization of U by complexation to soluble organic ligands. Such results 460 
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are in line with the study of Grybos et al. (2009) [44], in which large quantities of dissolved 461 

organic matter were reported to be solubilized under reducing conditions in a wetland soil, 462 

likely because of the reductive dissolution of ferric iron oxides involved in the stabilization of 463 

organic matter. Organic species have been shown to complex U(VI) and U(IV) in aqueous or 464 

colloidal mobile species in the laboratory and the field [7,45-46]. In the study of Seder-465 

Colomina et al. (2018) [18], U release under anoxic condition was mainly explained by 466 

inorganic carbon complexation except in experiments without added HCO3
-
, where a minor U 467 

mobilization was explained by the release of organic carbon. In addition, in the same study, 468 

geochemical modeling confirms the presence of dissolved U(VI) and U(IV) organic species as 469 

major species in the aqueous media in carbonate-free experiments. In our experiments, DIC 470 

was found negligible to the opposite of DOC. In addition, EXAFS results show an important 471 

fraction of U bound to organic moieties (Figure 2) in the solid phase. The final dissolved U in 472 

all our incubated samples could therefore be associated with soluble or colloidal forms of 473 

organic carbon. Then, for the S1 sample, the release of U could be due to the release of U-474 

bearing organic molecules. For the S2 sample, the dissolution of U(VI)-phosphate minerals 475 

could be more limited because of the lower amount of organic carbon, but still promoted by 476 

complexation to soluble organic ligands. Accordingly, laboratory experiment have reported 477 

important remobilization of U after reoxydation of non crystalline U(IV) [15]. In contrast, 478 

U(IV)-phosphate minerals were found to be more recalcitrant to oxidative remobilisation, but 479 

significant release of U was also reported [16]. Here, our results suggested that such 480 

remobilization could be limited in organic-rich environmental samples, via U sorption onto 481 

particulate matter. Indeed, uranium remobilization was found to be minor (< 1% of total solid 482 

U). However, the high concentrations of U in the soil (< 4500 mg.kg
-1

) could contribute to  483 

significant dissolved U concentrations in pore waters under reducing condition. Moreover, the 484 

presence of U(IV)-phosphate minerals that are subject to reoxidation events and subsequent 485 
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dissolution appears to play an important role in the long-term release of U under redox 486 

fluctuations, even in the absence of carbonates. In addition, mobility of U bound to particulate 487 

and colloidal organic matter would be important to consider in order to evaluate U fluxes out 488 

of the studied wetland.  489 

 490 

 491 

Figure 6. (a) Uranium concentration and redox in S1, S1_anox_bio_10ml_t14, 492 
S1_anox_abio_10ml_t14 and S2, S2_anox_bio_10ml_t14_A and S2_anox_abio_10ml_t14 solid 493 
samples. (b) U concentration in biotic and abiotic incubation solutions of S1_anox and S2_anox 494 
incubated samples at the end of the 14 days (c) Dissolved organic carbon concentrations in biotic and 495 
abiotic incubation solutions of S1_anox and S2_anox incubated samples at the end of the 14 days. 496 
Corresponding data are reported in Table SI-5. Errors bars represent the standard deviation over the 497 
duplicates samples for biotic incubations and the relative uncertainty of the measurement for abiotic 498 
incubations. 499 

 500 

4. CONCLUSION 501 

In our previous study of the same wetland, we showed an important redistribution of U from 502 

U(IV)-phosphates to mononuclear U(VI)/U(IV) species, interpreted as the result of the 503 

oxidative dissolution of U-phosphate minerals and subsequent adsorption of U by organic 504 

matter occuring during redox oscillations [10]. Here, our results confirm that a drying period 505 

could enhance rapid oxidation of non crystalline species and, to a lesser extent, of U(IV)-506 
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phosphate minerals. Even if such oxidation has been shown to lead to an important 507 

remobilization of U, especially if it is under non-crystalline forms [15-16], our results show 508 

that in organic-rich samples, the adsorption onto soil organic ligands limits U spreading from 509 

mineral hotspots. In addition, the dissolution of U(IV)-phosphate minerals upon redox cycling 510 

raises important issues concerning the long-term fate of U in seasonnaly saturated 511 

environments. Our results further suggest that mononuclear U(VI) species resulting from such 512 

oxidative dissolution processes can be fully reduced after 20 days under reducing condition. 513 

Thus, in organic-rich and carbonate-free environments, U mobility appears to be mainly 514 

controlled by the fate of organic matter rather than by redox processes [7,47], which is 515 

supported by the observed positive correlation between aqueous U and DOC content in our 516 

anoxic incubation solutions. This observation raises questions concerning the long-term fate 517 

of U in highly contaminated organic-rich wetlands, since U could be slowly mobilized under 518 

both oxic and reducing conditions. As a perspective of this work, we hope that the molecular 519 

scale processes identified in this study will help to design efficient monitoring and modeling 520 

approaches to manage U migration at the landscape scale in organic-rich environments. 521 

 522 
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