
HAL Id: hal-02343435
https://hal.science/hal-02343435

Submitted on 2 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Teaching Mathematics and Algorithmics with
Recreational Problems: The Liber Abaci of Fibonacci

Marc Moyon

To cite this version:
Marc Moyon. Teaching Mathematics and Algorithmics with Recreational Problems: The Liber Abaci
of Fibonacci. Évelyne Barbin; Uffe T. Jankvist; Tinne H. Kjeldsen; Bjorn Smestad; Costas Tzanakis.
(Eds.), Proceedings of the Eighth European Summer University on History and Epistemology in
mathematics Education (ESU-8) (Skriftserie 2019, nr 11)., Oslo Metropolitan University, pp.417-436,
2019, 978-82-8364-211-7. �hal-02343435�

https://hal.science/hal-02343435
https://hal.archives-ouvertes.fr


TEACHING MATHEMATICS AND ALGORITHMICS 

WHITH RECREATIONAL PROBLEMS 

The Liber Abaci of Fibonacci 

 
Marc MOYON 

IREM de Limoges, University of Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, 

France 

marc.moyon@unilim.fr 

 
ABSTRACT 

I propose an empirical study on theintroduction of an historical perspective onmathematics education at 

different levels in the French secondary school curriculum (11-18 years old). First of all, I present, in the 

historical contexts of the twelfth and thirteenth centuries, elements of the biography of Leonardo da Pisa, 

better known as Fibonacci, and of his mathematical work. I pay close attention to the mathematics of the 

Islamic countries that had largely fed his thinking. I dedicate an important part of our contribution to 

excerpts from theLiber Abaci to understandbetterhow his work might contribute to today’s classroom. All 

selected extracts belong to the category of so-called ‘recreational’ problems. They were chosen for their 

algorithmic structure that allows us to work with pupils on, among other themes, algebra and algorithmics 

(including coding). Finally, I give details of mathematical and historical extensions. 

1 Introduction 

The work presented in this paper1is part of a global project introducing an historical 

perspective on mathematics education developed in the IREM (Institute of Research in 

Mathematics Education) of Limoges under my supervision2 and following the works of 

the French Inter-IREM Commission on history and epistemology of mathematics.3 With 

secondary school mathematics teachers, I experimented with activities in classroom and 

analysed pupils’ work.4 More precisely, my purpose, here, isto take advantage of the 

algorithmic nature of a ‘recreational’ problem from medieval mathematics. I think that it 

is a suitable way to introduce, practice and clarifyalgorithmics in classroom and also to 

improve pupils’ abilities to code computer programs (with Scratch5). 

I focus on the so-called ‘Apple Orchard Problem’ as it was presented by Leonardo 

Fibonacci (13th c.) in his well-known Liber Abaci. Since the historical context is 

important to understand the genesis and the development of mathematical ideas, I present 

briefly, in the first part, a bibliographical overview of Fibonacci. Then, I explain the main 

reasons which make me consider this problem as a recreational one. Furthermore, I 

                                                           
1 I partly base our contribution on (Moyon, 2019). I give here new extensions by taking into account others 

historical sources and new mathematical developments. Iwould liketo express mysincere thanks to Maurice 

OReilly for his diligent proofreading of this paper. Nevertheless, I am the only one responsible for the flaws 

or errors that remain. 
2 http://www.irem.unilim.fr/recherche/algorithmique-histoire-des-mathematiques/ (Accessed: 20 August 

2018). For this contribution, I worked with Valérie Fréty (Collège Maurice-Genevoix, Couzeix) and Julie 

Pousse (Collège Louise-Michel, Saint-Junien). I thank them for their confidence and their availability. 
3http://www.univ-irem.fr/spip.php?rubrique15 (Accessed: 20 August 2018). 
4 In the same way, the IREM of Limoges participated to the “Passerelles” project with the edition of a book 

(Moyon & Tournès, 2017) and the construction of a companion website providing complementary 

documents http://www.univ-irem.fr/spip.php?rubrique505 (Accessed: 20 August 2018). 
5 Scratch is used (https://scratch.mit.edu. Accessed: 20 August 2018) because it is provided free of charge 

and it corresponds to the most used in French classroom. 

417

mailto:marc.moyon@unilim.fr
http://www.irem.unilim.fr/recherche/algorithmique-histoire-des-mathematiques/
http://www.univ-irem.fr/spip.php?rubrique15
http://www.univ-irem.fr/spip.php?rubrique505
https://scratch.mit.edu/


analyse6 several different pupils’ work (13 to 15 years old) from mathematical activity to 

coding. In the last part, I give, for the same problem, mathematical extensions, for more 

advanced pupils, involvingsequences satisfying a recurrence relation. Finally, I give 

extracts from another medieval Latin text in the same genre. 

2 Fibonacci and his Liber Abaci 

In this part, I limit my remarks to necessary historical contents
7
 because my goal is not to 

offer a complete work on Fibonacci (even if that were possible
8
) but it is rather an 

opportunity to put in context the mathematical content that follows. In addition, this part 

could be useful for mathematics teachers or teacher educators who would like to 

reproduce my experiments in their own practice. 

2.1 Fibonacci: some biographical elements 

Leonardo of Pisa was born in the last third of the twelfth century and died after 1241. He 

belonged to the merchant elite of Pisa, a very important maritime republic on the Tuscan 

coast. He was the son of Guglielmo Bonacii, hence his nickname Fibonacci, contraction of 

‘filius Bonacci’. He was also known as Leonardo Bigollo (the traveller or the wanderer) 

for his numerous travels in the Mediterranean Basin. He visited several regions such as 

Egypt, Syria, Constantinople, Sicily and Provence. His most important journey was to 

Bugia (now Bejaïa in Algeria) where his father worked as a ‘scriberesponsible for 

Customs’ (Caianiello, 2013, 241). In thisMediterranean port city under Pisan rules, he was 

initiated to Arabic mathematics and, especially, to the Hindu-Arabic numeral system and 

algebra. Fibonacci largely benefitted from the cultural and scientific contexts of the 

Mediterranean Basin of the thirteenth century with important commercial and diplomatic 

relations between the north and the south, in particular with the fourth, fifth and sixth 

crusades, contemporary with Fibonacci. Probably in his native city, he met the Emperor 

Frederick IIwho appreciated the sciences in general.
9
 It is well-known that the court of the 

Holy Roman Emperor comprised various multilingual scholars from all over the 

Mediterranean Basin. As Latin, Greek and Arabic were spoken, numerous written sources 

circulated. Fibonacci seemed to have scientific and friendly links with many of these 

scholars such as Michael Scot, John of Palermo and Theodore of Antioch.  

2.2 The works of Leonardo 

Fibonacci is nowadays well-known thanks to the famous sequence defined such as 

every number after the first two is the sum of the two preceding ones. Nevertheless, 

his work should not be reduced to it (Figure 2.1). Two books of fundamental 

importance were: hisLiber Abaci for arithmetic and algebra (Fibonacci, 1857) and his 

                                                           
6  The analysis is based both on the observation of students' activity during the research and on the 

examination of written documents (taking into accounts general and mathematical abilities). See (Moyon, 

2019, 248). 
7All this part is extracted from (Moyon & Spiesser, 2015) and (Moyon, 2016). 
8For more details, see (Caianiello, 2012, 2013; Høyrup, 2016). 
9Fibonacci begins his Flos – a short text on algebra with problems involving several unknowns written 

between 1226 and 1230 (Picutti, 1983) – with: “While I was in Pisa in the presence of your Majesty, very 

glorious Prince Frederick, Master Jean of Palermo, your philosopher, discussed with me many questions 

about numbers and among other things proposed me two problems concerning both geometry and 

number” (Fibonacci, 1854, 2; Moyon, 2016, 7). 
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Practica geometriae for geometry (Fibonacci, 1862).10 He authored also three other 
writings: the Liber quadratorum, the aforesaid Flos, and the Epistola ad magistrum 
Theodorum.11 Considering the breadth of his work, Fibonacci seems to have mastered 
the scholarly mathematics of his time, as well as the practical problems related to it. 
After the vast movement of translation from Arabic into Latin in the twelfth century, 
he himself contributed to the spread throughout Europe of Islamic mathematics with 
their new theoretical ideas and problems. Below are three basic examples. 

 
Figure 2.1 

The first example is the Hindu-Arabic numerals that are presented at the beginning of 
the first chapter of the Liber Abaci:12 

The nine Indians figures are: 
9  8  7  6  5  4  3  2  1 

With these nine figures and with the sign 0 which the Arabs call zephyr, any 
number whatsoever is written. (Fibonacci, 1857, 2; Moyon, 2016, 12) 

And he follows explaining the writing of any number, however big: 

A number is a collection of units, which increases indefinitely by its own orders. 
The first [order] is composed of the units from one to ten. The second is composed 
of the tens, from ten to one hundred. The third is composed of the hundreds, from 
one hundred to one thousand. The fourth is composed of the thousands, from one 
thousand to ten thousand and so one for any of the following orders until infinity, 
each order being tenfold from the previous one. (Fibonacci, 1857, 2; Moyon, 2016, 
12) 

An important part of the Liber Abaci (chapter 5, 6 and 7) is dedicated to fractions – 
                                                           
10 Both are translated into English (Sigler, 2002; Hughes, 2008). Nevertheless, the Latin readings are really 
necessary because both suffer from various failings. See, for example, (Rommevaux 2008; Høyrup 2009) for 
the Practica Geometriae. 
11Fibonacci mentions two other texts but they are nowadays considered lost. 
12 In the following, all the original extracts from the Liber Abaci are framed. 
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with the horizontal bar – and to computations with them. This part is largely (but not 

exclusively) inspired by Maghrebian mathematics. Following al-Ḥaṣṣār (12
th

 c.) and Ibn 

al-Yāsamīn (d.1204), Fibonacci identified fractions to solve various types of problems 

(Moyon & Spiesser, 2015). 

The second example is related to algebra detailed in the last two chapters of his Liber 

Abaci but also widely used in his Practica geometriae to solve geometrical problems of 

measurement (Miura, 1981; Hughes, 2004; Moyon, 2012). This new discipline was born 

in Bagdad between 813 and 833 with al-kitāb al-mukhtaṣar fī ḥisāb al-jabr wa-l-

muqābala [The Compendious Book on Calculation by Restoration and Comparison] 

written by al-Khwārizmī.Fibonacci demonstrates an excellent knowledge of the Arabic 

corpus, in particular, the seminal text of al-Khwārizmī(d.ca.850) and, among others,al-

Kitāb al-jabr wa-l-muqābala [Book on Restoration and Comparison] of Abū Kāmil (d. 

ca.930). For numerous problems, he proposes both algorithmic and algebraic procedures. 

The third example focuses on practical geometry. Inheritor of the Islamic tradition of 
c
ilm al-misāḥa [science of measurement], we must consider him as a major player in the 

beginning of the geometry of measurement in Latin Europe. With the Practica 

geometriae, the reader is taught, among other things, to measure plane figures, to divide 

them into different other figures giving geometrical constraintsand to measure inaccessible 

distances (Moyon, 2017, 111–113, 577–616). 

Finally, Fibonacci is one of the greatest medieval Western mathematicians. However, it 

is also necessary to consider him as a crucial link between Islamic countries and Latin 

Europe. 

3 ‘Recreational problems’ in the medieval history of mathematics 

3.1 Generalities 

The focus is on problems that I now consider part of recreational mathematics even tough 

they are not always defined as such by their authors. It is useful to consider Høyrup’s 

comment on this matter when he explains that recreational problems: 

... are pure in the sense that they do not deal with real applications, however much 

they speak in the idiom of everyday [...]. Nonetheless, their social basis is in the 

world of know-how, not that of know-why [...]. The distinction between these two 

orientations of knowledge is of general validity but has particular implications for 

mathematics. [...]  

Here, techniques and methods are by necessity primary, and problems are 

secondary, derived from the techniques which are to be trained. Anybody familiar 

with schoolbooks on arithmetic will recognize the situation, and scholasticized 

systems are indeed those where problems constructed for training purposes 

dominate. Apprenticeship-based systems, for their part, tend to train as much as 

possible on real, albeit simple tasks. (Høyrup, 2008, 1252–1253) 

Recreational problems (or mathematical riddles) are, in general, easy to state, tempting 

to work on and, sometimes, annoyingly difficult to solve. What we categorize today 

assuch problems are very ancient and omnipresent in many mathematical 
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practicesworldwide. They travel between different cultures.
13

 The same problem can even 

be found in Mesopotamian, Chinese, Greek, Sanskrit, Arabic, and Latin sources (Heeffer, 

2014). Historians of mathematics, such as Hermelink (1978), consider the analysis of this 

corpus as an approach to studying the transmission of knowledge from one culture to 

another. Following this kind of project, Singmaster wrote in 1988: 

I think that the temporal and geographical distribution of the sources suggests that 

recreational mathematics owes a much greater debt to China and India than to 

Greece, and that there must have been earlier and more extensive communication 

from India to Europe via the Arabs than is presently known. (Singmaster, 1988, 195) 

Recreational problems seem to be more and more important in the history of 

mathematics, especially in the context of medieval teaching from as far back as the 

Propositiones acuendo ad juvenes written by Alcuin of York in the ninth century.
14

 In 

addition, as Sesiano (2014b) excellently showed, the medieval texts are historically 

important. They widely feed the later collections edited in the Renaissance. Furthermore, 

Sesiano mentioned about the Liber Mahameleth that “many problems tend to be of a 

recreational nature” adding that “this had become traditional at the time for mathematical 

treatises” (Sesiano, 2014a, xvii). As he made clear in his Introduction to the History of 

Algebra that the “area of recreational mathematics [is] a domain that was to grow 

considerably during the Middle Ages to the point where it became a standard component 

of works on algebra” (Sesiano, 2009, 25). In this context, Fibonacci is one of the most 

influential medieval authors thanks to his Liber Abaci. 

3.2 Recreational Problems in the Liber Abaci 

The Liber Abaci is divided into fifteen chapters.
15

 The first seven chapters deal with 

numeration involving integers, fractions and operations on them. The following chapters, 

from the eighth to the eleventh, focus on problems linked to commercial rules with special 

emphasis on conversion of currency, allocations of profit, alloying of currencies where 

ratio and proportions (with the rule of three among others) are very important. The twelfth 

and thirteenth chapter of Liber Abaci, the longest part (almost half of the book) are 

devoted to various methods of solving recreational problems.
16

 Fibonacci named them 

with the expression erraticae questiones.
17

 In the last two chapters, the Pisan 

mathematician presents computations on radical numbers (based on Euclid’s Elements) 

and, as already mentioned, algebra. 

The problems of chap. 12 are really different, but they all seem to be common 

application problems with improbable and even absurd conditions. Moreover they all 

reveal the Fibonacci’s passion for numbers, for algorithms and for mathematical 

reasoning. Here are some typical problems where, to the reader (or learner)’s amusement, 

                                                           
13The most complete reference is (Singmaster 2013) with a detailed annoted bibliography. The reader can 

also refer to (Tropfke, 1980, 573–660). 
14 The edition of the Latin text is made by Folkerts (1978), the English translation by Hadley and Singmaster 

(1992). For an extended and corrected version, see (Hadley & Singmaster, 1995). 
15For details, read (Moyon & Spiesser, 2015, 421–422). 
16In order to better understand Fibonacci’s conception, Hannah (2011) analyses in detail three collections of 

problems: men giving and taking, men finding a purse, and men wishing to buy a horse. 
17For a discussion on the meaning of this expression, read (Moyon, 2019). 
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animals are seen reasoning with integers, fractions and proportionality.
18

 

A certain lion is in a certain pit, the depth of which is 50 palms, and he ascends daily 

1/7 of a palm, and descends 1/9. It is sought in how many days will he leave the pit? 

(Fibonacci, 1857, 177; Sigler 2002, 273; Moyon, 2016, 28) 

And  

A certain lion eats one sheep in 4 hours, and a leopard eats one sheep in 5 hours, and a 

bear eats one sheep in 6 hours; it is sought, if one sheep is thrown to them, how many 

hours it will take them together to devour it? (Fibonacci, 1857, 182; Sigler, 2002, 279–

280; Moyon, 2016, 24–26) 

And finally, 

Two ants are on the ground 100 paces apart, and they move in the same direction 

towards a single point; the first of them advances daily 1/3 of a pace and retreats 1/4; 

the other advances 1/5 and retreats 16; it is sought in how many days they will meet? 

(Fibonacci, 1857, 182; Sigler 2002, 280; Moyon, 2016, 27) 

It is good to finish any discussion of animal problems with the famous ‘Rabbits problem’ 

which gave birth to the well-known ‘Fibonacci sequence’. It is a very suitable example of 

mathematical modelling. 

How many pairs of Rabbits are created by one pair in one year? 

A certain man had one pair of rabbits together in a certain enclosed place, and one 

wishes to know how many are created from the pair in one year when it is the nature of 

them in a single month to bear another pair, and in the second month those born to 

bear also. (Fibonacci, 1857, 283; Sigler 2002, 404; Moyon, 2016, 29–32) 

Here, for our purpose – to introduce historical perspective in maths education –, I chose 

another problem from the twelfth chapter with an algorithmic structure. I call it the ‘Apple 

Orchard Problem’.
19

 

3.3 The ‘Apple Orchard Problem’ 

A certain man entered a certain pleasure garden through 7 doors, and he took from 

there a number of apples; when he wished to leave he had to give the first doorkeeper 

half of all the apples and one more; to the second doorkeeper he gave half of the 

remaining apples and one more. He gave to the other 5 doorkeepers similarly, and 

there was one apple left for him. It is sought how many apples there were that he 

collected. (Fibonacci, 1857, 278; Sigler 2002, 397; Moyon, 2016, 33–36) 

I give the entire problem (with the solution) in the first appendix. Fibonacci, as often, 

proposed two solutions. The first one can be translated into modern notation as follows: 

              

               

                   

                   

                                                           
18These problems are all extracted from (Moyon, 2016) where I also give solutions with commentary (in 

French).  
19Singmaster (2013) mentioned this problem in the chapter ‘Monkey and Coconuts problems’under the 

heading ‘Arithmetic& Number-Theoretic Recreation’.  
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Fibonacci ended with: “this total is the number of apples; and thus reversing the order 

that was proposed you will be able to solve any similar problem”. This first method is 

based on the inversion of the algorithm: Fibonacci proposed to work backwards and each 

operation is replaced by its inverse. This ‘method of inversion’ is well-known and we 

have, among others, different Indian sources mentioning it. For example, Āryabhaṭa (fifth-

sixth century) in the Gaṇitapāda, the mathematical part of the Āryabhaṭīya, wrote the 

following verse: “In a reversed [operation], multipliers become divisors and divisors, 

multipliers. And an additive [quantity] becomes a subtractive [quantity], a subtractive 

[quantity] an additive [quantity]” (Keller, 2006, 118). Another example comes from 

Brahmagupta. In his Brāhmasphuṭasiddhānta, writtenin the seventh century, this rule can 

be read: “beginning from the end, make the multiplier divisior, the divisor multiplier; 

[make] addition subtraction and subtraction addition; [make] square square-root, and 

square-root square; this gives the required quantity” (Datta & Singh, 2004, 232). 

The second solution is an algebraic one. In modern notation, let x be the number of 

apples initially picked, then the linear equation to solve is: 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
                        

or, step by step (or door by door), following the original approach, 

After the first door, there remain
 

 
   apples, 

After the second door, there remain
 

 
 
 

 
       

 

 
  

 

 
  apples, 

After the third door, there remain
 

 
 
 

 
  

 

 
    

 

 
  

 

 
  apples, and so one 

 
 

 
 
 

 
  

 

 
    

 

  
  

  

  
 

 
 

 
 
 

  
  

  

  
    

 

  
  

  

  
 

 
 

 
 
 

  
  

  

  
    

 

  
  

  

  
 

After the seventh door, there remain
 

 
 
 

  
  

  

  
    

 

   
  

   

   
  apples, and indeed, it 

corresponds to only 1 apple, thus, 
 

   
  

   

   
   and so     . 

4 The ‘Apple Orchard Problem’: Experiments in French Secondary 

Schools (14-16 years old) 

Secondary school mathematics teachers, involved in the experiments with me, judged 

‘Apple Orchard Problem’and the Fibonacci’s original text mathematically and 

pedagogically interesting for pupils aged 14 to 16 years old. Taking into account 

several theoretical studies on the history and pedagogy of mathematics (Fried, 2001; 

Fried, Guillemette & Jahnke, 2016; Jankvist, 2009), my colleague and I decided to 

base our activity on using original sources in classroom. I know, from my own 

experience,
20

 that the whole enterprise of reading a source is a really difficult and 

                                                           
20 For example, (Moyon, 2013, 2017). 
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time-consuming task but we believed that the pupils were able to work with the 

extract of the Liber Abaci. We agree with the idea that “reading a source deepens the 

mathematical understanding on both levels, on that of doing mathematics and on that 

of reflecting about mathematics” (Fried, Guillemette & Jahnke, 2016, 219). And, for 

us, it was a major purpose to make pupils think about the algorithmic structure of the 

problem, the generalization indicated by Fibonacci
21

 and the modern use of coding. 

Thus, reading an original source (translated into French) adapted to the expected 

educational level, is another manner of applying new concepts, quite different from 

usual exercises. Thus we followed the basic guidelines of the hermeneutic procedure 

such as presented by Jahnke in (Fried, Guillemette & Jahnke, 2016, 216). 

To help pupils read and comment the text, we presented the text and the author into 

their historical context (see part 2 of this contribution) and we gave them a 

questionnaire in two stages (each of one hour).
22

 The aim of the first stage was to read 

the problem, understand it and work on it so as to solve it in their own words. At this 

stage, they did not have Fibonacci’s solutions. 

1. Individual work: Identify the different steps of the statement in your rough work. 

2. Collective work (pupils are separated in small groups of 4): Determine the number 

of apples sought by a method agreed by the group. 

3. On the answer sheet, write your solution to the ‘apple orchard problem’ (one sheet 

per group) that can be presented to the class. 

The second stage consists in reading the algorithmic solution. It was stilla collective work. 

The supporting questions were: 

4. Read Fibonacci’s solution. Did you find the same number of apples? 

5. How could you describe simply the solution given by the Pisan mathematician? 

6. Translate it into today’s mathematical language. 

7. According to you, what does it mean “you will be able to solve any similar 

problem”? 

Several procedures were tested by the pupils. Most are quite explicit. I analyse below the 

main results (all the works have been anonymized) regarding the method used. 

 

4.1 Mathematical Workings  

4.1.1 By an algebraic method 

Several pupils (about 30%) used algebra to solve the problem taking the number of 

apples picked as the unknown. A major error arose: the confusion between the 

remaining fruits  
 

 
     and the number of fruits given at the doorkeeper 

 

 
    . 

                                                           
21 “et sic revertendo, secundum quod propositum fuerit, in ordinem retro, poteris quamlibet similium 

positionum reperire” (Fibonacci, 1857, 278), bolded by me. 
22 My colleague and I planned a third stage to work on the algebraic solution but unfortunately we ran out of 

time. The questions were: 1) Read the second solution proposed by Fibonacci. How is it different from the 

first? 2) What is, for Fibonacci, the “thing”? What kind of mathematics is he using? 3) Translate this 

solution into today mathematical language. 
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Figure 4.1: Work of Elisa, Nina and Juliette 

 

Figure 4.2: Work of Mathilde and Mélissandre 

 

Only half students of this group came up with an equation. And, in this case 

(Figure 4.3), as they did not reduce the fractions as soon as possible, they gave up 

because they could not solve the equation.Here, a direct approach involves a 

complicated equation, by the standards of their mathematical ability.It follows that, 

algebra seems not to be the better strategy for 14-16 years old pupils. 

 

 
Figure 4.3: Algebraic solution written by Fayza and Germain (first attempt, see 

fig. 4.5). 
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4.1.2 By a trial and error procedure 

Other pupils (about 20%) tried to solve the problem by trial and error. They took a 

random number and they executed the program repeating the process until they 

decided to stop trying. Several attempts were made. They generally stopped when 

they obtained a negative or a decimal number. 

 

 
Figure 4.4: Here, in the work of Elvis and Dorian,four different numbers were tried: 70, 

40, 48 and 46 (the last ‘successfully’) 

 

Unfortunately, only few pupils (less than a third) reasoned from the results found to 

improve the choice of the initial number to be tested. No pupil solved the problem 

completely by following this procedure. 

4.1.3 By the method of inversion or the working backwards strategy  

The problem proceeds from complex, initially,to simple at the end. And, as it involves 

a sequence of reversible actions, the work backwards strategy isprobably the best 

procedure to perform. 

 
Figure 4.5: Second attempt of Fayza and Germain (see fig. 4.3): explanation of the 

algorithm of inversion (quite similar to Āryabhaṭa and Brahmagupta!) 

 
Figure 4.6: The algorithm in both directions: forward and backward (work of Julie, Lisa, 

Lola and Mélanie) 
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Figure 4.7: Reformulation of the problem (solution of Alice, Mina and Lilou) 

 

 
Figure 4.8: Schematization of the problem and complete resolution made by Annabelle 

and Glwadys. 

 

 
Figure 4.9: With the help of the calculator (final solution of Fayza and Germain, see 

fig. 4.3 and fig. 4.5) 

 

Nevertheless, several difficulties appeared. The first one is just at the beginning to 

understand the exact order of the operations, i.e. 1+1( )´2 = 4or1´2+1= 3. After that, the 

main problems arising are the misuse of parentheses or the distributivity of multiplication 

over addition. Those difficulties were expected by our a priori analysis. It was thus 

necessary to work on it. 
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Figure 4.10: Attempt of Baptiste, Manon and Francisco. 

4.2 Generalization and coding  

You will be able to solve any similar problem. This is Fibonacci’s conclusion 

following his first solution. Pupils understand what kind of similarity (and generality) 

Fibonacci mentioned. They discuss on the mathematical parameters of the problem: 

the number of doors, the number of apples given to the doorkeepers, number of apples 

remaining.For example: 

 

We choose a number x: 

– we add to it 1, 

– we multiply the result by 2, 

We repeat this program 7 

times. 

 

This program is valid not 

only for this problem but also 

for any similar situation. 

For example, give the third 

rather than half; pass through 

5 doors rather than 7; give 2 

fruit rather than 1; 2 fruit 

remain rather than 1. [...] 

Figure 4.11: Proposition from the work of Mathéo, Louis, Léo and Maxence. 

 

When pupils all understood the algorithmic nature of the problem and its parameters by 

following a collective exchange in their proper studyinggroup, we asked to them: “So, 

how many apples were picked if there remains only one apple after 457 doors?” All 

(except one girl who wanted to work ‘in her own head’) experimented with Scratch (in a 

French environment) to code the solution. They done it alone or in pairs and 73% of our 

pupils successfully completed this work. 
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Figure 4.12: First examples – works of Leo and Maxence (see fig. 4.11) and work of 

Annabelle and Gwladys (see fig. 4.8) –with two successive operations (adding 1 and 

multiplying by 2) 

Figure 4.13: The work of Fayza and 

Germain (see fig. 4.3, 4.5, 4.9) where 

operations are reduced in one line 

 

Figure 4.14:Alice’s work (see fig. 4.7) : 

misuse of parentheseswith the Scratch 

conventions 

 

In a final step, all class wrote a collective program taking into account several 

mathematical parameters. Some parameters wererequested from the user and others were 

modifiable directly in the program. Thus, pupils learn the notion of ‘variable’ in computer 

science, distinct from the mathematical notion (with the necessity, in programming, to 

initialize the variable in order to define it). After that, the math teacher checked this 

learning with several exercises in individual work. 
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Figure 4.15: The collective coding written with the help of the math teacher 

Finally, pupils were invited to think about the mathematical links between the 

‘apple orchard problem’ and the following one. 

A certain man went on business to Lucca to make a profit doubled his money, and he 

spent there 12 denari. He then left and went through Florence; he there doubled his 

money, and spent 12 denari. Then he returned to Pisa, doubled his money and it is 

proposed that he had nothing left. It is sought how much he had at the 

beginning.(Fibonacci, 1857, 258–259; Sigler 2002, 372–373; Moyon, 2016, 54–56) 

They easily produced, individually, the following program taking into account the 

previous one. They understood the generality of the method of inversion proposed by 

Fibonacci and the category of problems of which these are examples. 

 
Figure 4.16: The Maxence’s coding 

5 Some extensions 

5.1 For High-Schools curriculum 

The mathematical reasoning of Fibonacci to solve the ‘apple orchard problem’ can be 

reworkedwith the notion of sequence for more advanced pupils (16 to 18 years old in 

France). Here, it is possible to consider the extract of the Liber Abaci as a starting point to 

write mathematics at a higher level than did Fibonacci himself. 
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5.1.1 First sequence working the algorithm backwards 

Let be         the sequence defined recursivelyrepresenting the number of apples 

remaining after the     door,    being the number of applesinside the first door. Thus, we 

have: 

      

 

     

      
 

 
    

  

It is an arithmetico-geometric sequence and its general term
23

is given by: 

         
 

  
         

Thus, in Fibonacci’s conditions, we have: 

   
 

   
           

 

   
         

           

       

5.1.2 Second sequence using algebra 

If x is the number of applesinitially picked, a new sequence        can be defined giving 

the number of applesremaining after the     door by: 

        
 

  
     

      

    
  

Or, after reduction, 

        
 

  
  

    

    
 

An elementary mathematical induction can prove it. Thus, in Fibonacci’s conditions, we 

have: 

   
 

   
  

   

  
   

 

   
  

   

  
   

 

   
    

   

  
 

         
   

  
      

5.2 Another solution method and Other problems from the Liber augmenti et 

diminutionis 

The Liber augmenti et diminutionis [Book on increase and decrease] is an anonymous text 

from the twelfth century.
24

 Hughes (2001, 107) described itas “a book that reads like a set 

of lectures on how to solve problemsinvolving numbers”. The author’s main purpose is to 

teach the method of double false position. One of the nine chapters of the book is about 

“apples stolen from an orchard”. It containssix problemsdivided into three groups, whose 
                                                           
23In France, students do not know the formula for the general term. They do derive it from the recurrence 

relation or with help from the teacher. 
24I am preparing a new critical edition of the text with a French translation of the whole text. 
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statements may besummarized as follows: 

1. There are 3 doors; the man gives half and 2 fruit more; 1 fruit remainat the exit. 

2. There are 3 doors; the man gives half and 4 (resp. 6, 8) fruit more to the first (resp. 

second, third) doorkeeper; no fruit remains at the exit. 

3. There are 3 doors; the man gives half and the first (resp. second, third) doorkeeper 

gives back to the man 2 (resp. 4, 6) fruit; the man has 10 fruit at the exit. 

In appendix 2, I give the entire textof the first problem (the mostsimilar to the ‘apple 

orchard problem’ of the Liber Abaci). I detailhere the method of double false position used 

in the Liber augmenti et diminutionis. 

Let be        a first number (first false position). After the third doorkeeper, exactly 

9 apples remain. So, the differencebetween 9 and 1, the number of applesthat should 

remain, is (an excess of) 8. Let be       a second number (second false position). 

After the third doorkeeper, exactly 21.5 apples remain. So, the difference between 21.5 

and 1 is (an excess of) 20.5. Thus, we have two errors
25

:       and          (both 

excesses), correspondingto the numbers initially chosen:        and       . Here, 

the solution is given by the following relation: 
           

     
 
              

      
    

The method of double false position is adapted for linear problems that, in algebraic form, 

reduce to the solution of equations of the type:          , such as in this case 

(Chabert, 1999, 83–112). In high-school the problem of proving the correctness of the 

method may be given as an exercise. 

6 Elements of conclusion 

In this emprirical contribution, I showed one more time that the history of mathematics 

may support mathematics education using medieval texts (Liber Abaci or Liber augmenti 

et diminutionis) inthe classroom.And, I also highlighted that historycreatesa suitable 

context to think about mathematical concepts and procedures. This is the main purpose of 

my contribution. 

When pupils engaged with the source, most of them had questions (on terminology or 

on mathematical procedures) similar to those a professional historian of mathematics 

would ask, especially when they compared different historical solutions with their own. It 

is, for me, a great opportunity to develop the critical thinkingof pupils. 

Furthermore, I focused only on problems today characterized as ‘recreational’ because 

I consider them as important sources for problem solving (for different educational levels, 

even in the context of initial teacher education as I experiment it in the university of 

Limoges). It is really interesting toappreciatethe richness of these sources. 

Finally, I easily integratedan importantaspect ofliteracy in today’s society, namelythe 

ability to code computer programs (here, using Scratch). In spite of the antiquity of the 

mathematical source, it was so easy –without hard efforts – for the pupils to engage with 

these problems, thanks to their algorithmic nature. 

                                                           
25That’s why this method is called ḥisāb al-khata’ayn [calculation of the two errors] in the Arabic tradition. 

Fibonacci transliterated the expression by elchatayn in his Liber Abaci (Fibonacci, 1857, 318). 
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Appendix 1: the ‘Apple Orchard Problem’ in the Liber Abaci 

Here is the text of Fibonacci translatedin English by Sigler (2002, 397) from the edition 

made by Boncompagni (Fibonacci, 1857). 

A certain man entered a certain pleasure garden through 7 doors, and he took from 

there a number of apples; when he wished to leave he had to give the first doorkeeper half 

of all the apples and one more; to the second doorkeeper he gave half of the remaining 

apples and one more. He gave to the other 5 doorkeepers similarly, and there was one 

apple left for him. It is sought how many apples there were that he collected; you do thus: 

for the one apple which remained for him you keep 1 to which you add the one apple that 

he gave to the last doorkeeper; there will be 2 that you double; there will be 4, and he had 

this many when he came to the last doorkeeper; to this you add the apple that he gave to 

the sixth doorkeeper; there will be 5 that you double; there will be 10, and this many 

remained after he left 5 doors; to this you add the one apple of the fifth doorkeeper; there 

will be 11 that you double; there will be 22 to which you add 1 for the apple that he gave 

the fourth doorkeeper; there will be 23 that you double; there will be 46 to which you add 

1 for the apple that he gave to the third doorkeeper; there will be 47 that you double; there 

will 94; to his you add 1 for the apple that he gave the second doorkeeper; there will be 95 

that you double; there will be 190 to which you add the 1 that he gave at the first door, and 

you double this amount; there will be 382, and this total is the number of apples; and thus 

reversing the order that was proposed you will be able to solve any similar problem. 

In another way you put the number of collected apples to be the thing from which he 

gave at the first door 
1

2
 of it and 1 apple. There remained therefore 

1

2
 thing minus 1 from 

which he gave one half and one apple at the second door; therefore there remained for him 

one quarter thing minus 
1

2
1

26
 apples from which he gave at the third door one half and 1 

apple. Therefore there remained for him 
1

8
 thing minus 

3

4
1 apples, half of which and one 

apple, he gave at the fourth door, and thus there remained for him 
1

16
 thing minus 

7

8
1 

apples; of this half and one apple more he gave at the fifth door; there remained for him 
1

32
 thing minus 

15

16
1 apples of which half and one apple more he gave at the sixth door; 

there remained for him 
1

64
 thing minus 

31

32
1 apples; of this still he gave at the seventh 

door half and one apple more; there remained for him 
1

128
 thing minus 

63

64
1 apples which 

is equal to one apple; this is namely the one which remained after his passing the seven 

doors. If 
63

64
1 apples are commonly added, then it will result that 

1

128
 thing is equal to 

63

64

2 apples. Therefore you multiply the 
63

64
2 by the 128; there will be similarly 382 apples. 

                                                           

26Inspired by the Maghrebian mathematics’ texts, the writing 
a

b
n

 
represents the sum n+

a

b
. 
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Appendix 2: the ‘Apple Orchard Problem’in the Liber augmenti et 

diminutionis 

I give below an English translation of the Latin text edited by Libri (1838, 336–339) and 

Hughes (2001, 140). 

A certain man went into an orchard and picked some apples. The orchard had three 

gates each guarded by a bailiff. So that man gave the first bailiff half of what he picked 

plus two apples more. He gave the second bailiff half [of what remained] and two more 

apples. He gave the third half [of what remained] and two apples more. The man was left 

with one [apple]. How many apples did he pick? 

The procedure consists in taking a platter
27

 with one hundred. You give half and two 

more to the first [bailiff]. You still have forty-eight [apples]. You give half and two more 

to the second. You still have twenty-two. You give half and two more to the third. You 

still have nine. So compare this with the one [apple] which was left. Thus now the error is 

eight by excess, that is the first error. 

Then take a second platter which is two hundred. And give half and two more to the 

first [bailiff]. You still have ninety-eight [apples]. And give half and two more to the 

second. You still have forty-seven. And give half and two more to the third. You still have 

twenty-one and a half. So compare this with the one [apple] which was left. Thus now the 

error is twenty and a half by excess, that is the second error. 

So multiply the first platter which is one hundred, by the error of the second platter 

which is twenty-one and a half. It results two thousands and fifty. Then multiply the 

second platter by the error of the first platter, that is to say multiply two hundred by eight 

and it results one thousand and six hundred. So take off the smaller of the two numbers 

from the larger, i.e. diminish one thousand and six hundred from two thousands and fifty. 

It remains four hundred and fifty. Then subtract one of both errors from the other, i.e. take 

off eight from twenty-one and a half. It remains twelve and a half. Then divide four 

hundred and fifty by it, and it results thirty-six. This is the number of apples picked. 
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