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First and Second Order Necessary Optimality

Conditions for Controlled Stochastic Evolution

Equations with Control and State Constraints

Hélène Frankowska ∗ and Qi Lü†

Abstract

The purpose of this paper is to establish first and second order necessary optimality con-
ditions for optimal control problems of stochastic evolution equations with control and state
constraints. The control acts both in the drift and diffusion terms and the control region is
a nonempty closed subset of a separable Hilbert space. We employ some classical set-valued
analysis tools and theories of the transposition solution of vector-valued backward stochastic
evolution equations and the relaxed-transposition solution of operator-valued backward stochas-
tic evolution equations to derive these optimality conditions. The correction part of the second
order adjoint equation, which does not appear in the first order optimality condition, plays a
fundamental role in the second order optimality condition.
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1. Introduction

Let T > 0 and (Ω,F ,F,P) a complete filtered probability space with the càdlàg (right continuous
with left limits) filtration F = {Ft}t∈[0,T ], on which a cylindrical Brownian motion {W (t)}t∈[0,T ]

taking values in a separable Hilbert space V is defined. Let H be a separable Hilbert space and
A be an unbounded linear operator generating a contractive C0-semigroup {S(t)}t≥0 on H. For a
nonempty closed subset U of a separable Hilbert space H1 define

Up ,
{
u(·) : [0, T ]→ U

∣∣∣ u(·) ∈ LpF(0, T ;H1)
}

and consider the following controlled stochastic evolution equation (SEE for short):{
dx(t) =

(
Ax(t) + a(t, x(t), u(t))

)
dt+ b(t, x(t), u(t))dW (t) in (0, T ],

x(0) = ν0 ∈ H,
(1.1)

where u ∈ U2. A process x(·) ≡ x(· ; ν0, u) ∈ L2
F(Ω;C([0, T ];H)) is called a mild solution of (1.1) if
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x(t) = S(t)ν0+

∫ t

0
S(t−s)a(s, x(s), u(s))ds+

∫ t

0
S(t−s)b(s, x(s), u(s))dW (s), P-a.s., ∀ t ∈ [0, T ].

Many controlled stochastic partial differential equations, such as controlled stochastic wave/heat/-
Schrödinger equations, can be regarded as a special case of the system (1.1).

Let V be a nonempty closed subset of H, and h : Ω × H → R, gj : H → R (j = 0, · · · , n).
Define a Mayer type cost functional J (·) (for the control system (1.1)) as

J (u(·), ν0) = Eh(x(T )) (1.2)

with the state constraint
Eg0(x(t)) ≤ 0, for all t ∈ [0, T ], (1.3)

and the initial-final states constraints

ν0 ∈ V, Egj(x(T )) ≤ 0, j = 1, · · · , n. (1.4)

The set of admissible controls at the initial datum ν0 is given by

Uν0
ad

4
=
{
u ∈ U2

∣∣ the corresponding solution x(·) of (1.1) satisfies (1.3) and (1.4)
}

and the one of admissible trajectory-control pairs by

Pad
4
=
{

(x(·), u(·))
∣∣ u ∈ Uν0

ad for some ν0 ∈ V
}
.

Remark 1.1. Here Uν0
ad depends on the choice of ν0. Different ν0 may give different Uν0

ad .

Under the usual assumptions, (1.1) has exactly one (mild) solution x(·, ν0) with initial value
ν0 ∈ V, which is called an admissible state.

We pose the optimal control problem for the system (1.1) as follows:

Problem (OP) Find (ν̄0, ū(·)) ∈ V × Uν0
ad such that

J (ν̄0, ū(·)) = inf
(ν0,u(·))∈V×Uν0ad

J (ν0, u(·)). (1.5)

In(1.5), ū(·) is said to be an optimal control and x̄(·) the corresponding optimal state. (x̄(·), ū(·))
is called an optimal pair and (ν̄0, x̄(·), ū(·)) is called an optimal triple.

Our purpose is to establish first and second order necessary optimality conditions for Problem
(OP).

We could also consider a more general Bolza-type cost functional

J (u(·), ν0) = E
[ ∫ T

0
h̃(t, x(t), u(t))dt+ h(x(T ))

]
.

However, it is well known that such optimal control problem can be reduced to Problem (OP)
by considering an extended control system:

dx(t) =
(
Ax(t) + a(t, x(t), u(t))

)
dt+ b(t, x(t), u(t))dW (t) in (0, T ],

dx̃(t) = h̃(t, x(t), u(t))dt in [0, T ],
x(0) = ν0 ∈ H, x̃(0) = 0

(1.6)

with the Mayer type cost functional

J (u(·), ν0) = h(x(T )) + x̃(T ),

under constraints
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Eg0(x(t)) ≤ 0, for all t ∈ [0, T ], ν0 ∈ V, Egj(x(T )) ≤ 0, j = 1, · · · , n.

It is one of the important issues in optimal control theory to establish necessary optimality
conditions for optimal controls, which is useful for characterizing optimal controls or solving the
optimal control problems numerically. Since the seminal work [34], necessary optimality conditions
are studied extensively for different kinds of control systems. We refer the readers to [15, 17, 19,
23, 38, 40, 41] and the rich references therein for the first and second order necessary optimality
conditions for systems governed by ordinary differential equations, by partial differential equations
and by stochastic differential equations.

It is natural to seek to extend the theory of necessary optimality conditions to those infinite
dimensional SEEs. The main motivation is to study the optimal control of systems governed by
stochastic partial differential equations, which are useful models for many processes in natural
sciences (see [5, 22] and the rich references therein).

We refer to [3] for a pioneering work on first order necessary optimality condition (Pontryagin-
type maximum principle) and subsequent extensions [19, 37, 42] and so on. Nevertheless, for a long
time, almost all of the works on the necessary conditions for optimal controls of infinite dimensional
SEEs addressed only the case that the diffusion term does NOT depend on the control variable
(i.e., the function b(·, ·, ·) in (1.1) is independent of u). As far as we know, the stochastic maximum
principle for general infinite dimensional nonlinear stochastic systems with control-dependent diffu-
sion coefficients and possibly nonconvex control domains had been a long standing problem till the
very recent papers ([10, 18, 29, 30, 31]). In these papers first order necessary optimality conditions
for controlled SEEs are established by several authors with no constraint on the state. Further,
in [27, 28], some second order necessary optimality conditions for controlled SEEs are obtained,
provided that there is no constraint on the state and U is convex. As far as we know, there are
no results on first or second order necessary optimality conditions for controlled SEEs with state
constraints and for a nonconvex set U .

Compared with [10, 18, 27, 28, 29, 30, 31], the main novelty of the present work is in employing
some sharp tools of set-valued analysis with the following advantages:

• only one adjoint equation is needed to get a first order necessary optimality condition even
when the diffusion term is control dependent and U is nonconvex;

• two second order necessary optimality conditions are obtained by using two adjoint equations;

• state constraints are presented.

The rest of this paper is organized as follows: in Section 2, we introduce some notations and
assumptions and recall some concepts and results from the set-valued analysis to be used in this
paper; Section 3 is devoted to establishing first order necessary optimality conditions; at last, in
Section 4, we obtain two integral-type second order necessary optimality conditions.

2. Preliminaries

2.1. Notations and assumptions

Let X be a Banach space. For each t ∈ [0, T ] and r ∈ [1,∞), denote by LrFt(Ω;X) the Banach
space of all (strongly) Ft-measurable random variables ξ : Ω → X such that E|ξ|rX < ∞, with the

norm |ξ|LrFt (Ω;X)
4
=
(
E|ξ|rX

)1/r
. Write DF([0, T ];Lr(Ω;X)) for the Banach space of all X-valued,

rth power integrable F-adapted processes ϕ(·) such that ϕ : [0, T ] → LrFT (Ω;X) is càdlàg, with
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the norm |ϕ(·)|DF([0,T ];Lr(Ω;X)) = supt∈[0,T ] (E|ϕ(t)|rX)1/r. Write CF([0, T ];Lr(Ω;X)) for the Banach
space of all X-valued, F-adapted processes ϕ(·) such that ϕ : [0, T ] → LrFT (Ω;X) is continuous,
with the norm inherited from DF([0, T ]; Lr(Ω;X)).

Denote by D([0, T ];X) the Banach space of all X-valued càdlàg functions ϕ(·) such that
supt∈[0,T ] |ϕ(t)|X < ∞, with the norm |ϕ|D([0,T ];X) = supt∈[0,T ] |ϕ(t)|X ; by L2

F(Ω;D([0, T ];X)) the

Banach space of all X-valued F-adapted càdlàg processes ϕ(·) such that E
(

supt∈[0,T ] |ϕ(t)|X
)2
<∞,

with the norm |ϕ|L2
F(Ω;D([0,T ];X)) =

[
E
(

supt∈[0,T ] |ϕ(t)|X
)2] 1

2 ; by L2
F(Ω;C([0, T ];X)) the space of all

F-adapted continuous processes ϕ(·) such that E
(

supt∈[0,T ] |ϕ(t)|X
)2
<∞, with the norm inherited

from L2
F(Ω;D([0, T ];X)); by L2

F(Ω;BV ([0, T ];X)) the Banach space of all X-valued, F-adapted
processes ϕ(·) whose sample paths have bounded variation, P-a.s., such that E |ϕ(·, ω)|2BV [0,T ] <

+∞, with the norm
(
E|ϕ(·, ω)|2BV [0,T ]

) 1
2 ; and by L2

F(Ω;BV0([0, T ];X)) the space of processes

ϕ ∈ L2
F(Ω;BV ([0, T ];X)) satisfying ϕ(0) = 0, with the norm inherited from L2

F(Ω;BV ([0, T ];X)).
For any ϕ ∈ L2

F(Ω;BV0([0, T ];X)), one can find a ϕ̃ ∈ L2
F(Ω;BV0([0, T ];X)) ∩ L2

F(Ω;D([0, T ];X))
such that ϕ = ϕ̃ for a.e. (t, ω) ∈ [0, T ] × Ω. Hence, in this paper, without loss of generality, any
ϕ ∈ L2

F(Ω;BV0([0, T ];X)) can be considered as an element in L2
F(Ω;D([0, T ];X)).

Fix any r1, r2 ∈ [1,∞]. Put

Lr1F (Ω;Lr2(0, T ;X)) =
{
ϕ : (0, T )× Ω→ X

∣∣∣ ϕ(·) is F-adapted and E
(∫ T

0
|ϕ(t)|r2Xdt

) r1
r2 <∞

}
,

Lr2F (0, T ;Lr1(Ω;X)) =
{
ϕ : (0, T )× Ω→ X

∣∣∣ ϕ(·) is F-adapted and

∫ T

0

(
E|ϕ(t)|r1X

) r2
r1 dt <∞

}
.

Clearly, the above two sets are Banach spaces with the following norms respectively

|φ(·)|Lr1F (Ω;Lr2 (0,T ;X))

4
=
[
E
(∫ T

0
|φ(t)|r2Xdt

) r1
r2

] 1
r1

and

|φ(·)|Lr2F (0,T ;Lr1 (Ω;X))

4
=
[ ∫ T

0

(
E|φ(t)|r1Xdt

) r2
r1

] 1
r2 .

If r1 = r2, we simply write Lr1F (0, T ;X) for the above spaces. As usual, if there is no danger of
confusion, we omit the ω (∈ Ω) argument in the notations of functions and operators.

Let H be a separable Hilbert space and A be an unbounded linear operator (with the domain
D(A)) on H, which generates a contractive C0-semigroup {S(t)}t≥0 on H. It is well known that
D(A) is a Hilbert space with the usual graph norm. By A∗, we denote the adjoint operator of A,
which generates the adjoint C0-semigroup {S∗(t)}t≥0. Denote by L2 the space of all Hilbert-Schmidt
operators from V to H, which is a Hilbert space with the canonical norm.

Throughout this paper, we use C to denote a generic constant, which may change from line to
line.

Let us introduce the following condition:

(AS1) a(·, ·, ·, ·) : [0, T ]×H×H1×Ω→ H and b(·, ·, ·, ·) : [0, T ]×H×H1×Ω→ L2 are two maps such
that: i) For any (x, u) ∈ H ×H1, a(·, x, u, ·) : [0, T ]× Ω→ H and b(·, x, u, ·) : [0, T ]× Ω→ L2 are
B([0, T ])×F measurable and F-adapted; ii) For any (t, x, ω) ∈ [0, T ]×H×Ω, a(t, x, ·, ω) : H1 → H
and b(t, x, ·, ω) : H1 → L2 are continuous, and

|a(t, x1, u, ω)−a(t, x2, u, ω)|H + |b(t, x1, u, ω)−b(t, x2, u, ω)|L2≤C|x1 − x2|H ,
∀ (t, x1, x2, u, ω) ∈ [0, T ]×H ×H ×H1 × Ω,

|a(t, 0, u, ω)|H + |b(t, 0, u, ω)|L2 ≤ C, ∀ (t, u, ω) ∈ [0, T ]×H1 × Ω.

(2.1)
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We have the following result:

Lemma 2.1. Let (AS1) hold. Then the equation (1.1) admits a unique mild solution. Furthermore,
for some C > 0 and all ν0 ∈ H,

|x(·)|L2
F(Ω;C([0,T ];H)) ≤ C

(
1 + |ν0|H

)
.

The proof of Lemma 2.1 can be found in [7, Chapter 7].

2.2. Set-valued analysis

For readers’ convenience, we collect some basic facts from set-valued analysis. More information
can be found in [2].

Let Z (resp. Z̃) be a Banach (resp. separable Banach) space with the norm | · |Z (resp. | · |
Z̃

).

Denote by Z∗ (resp. Z̃∗) the dual space of Z (resp. Z̃). For any subset K ⊂ Z, denote by intK
and clK the interior and closure of K, respectively. K is called a cone if αz ∈ K for every α ≥ 0
and z ∈ K. Define the distance between a point z ∈ Z and K as

dist (z,K)
4
= inf

y∈K
|y − z|Z

and the metric projection of z onto K as

ΠK(z)
4
= {y ∈ K | |y − x|Z = dist (z,K)}.

Definition 2.1. For z ∈ K, the Clarke tangent cone CK(z) to K at z is

CK(z)
4
=
{
v ∈ Z

∣∣∣ lim
ε→0+,y∈K,y→z

dist (y + εv,K)

ε
= 0
}
.

and the adjacent cone T bK(z) to K at z is

T bK(z)
4
=
{
v ∈ Z

∣∣∣ lim
ε→0+

dist (z + εv,K)

ε
= 0
}
.

CK(z) is a closed convex cone in Z and CK(z) ⊂ T bK(z). When K is convex, CK(z) = T bK(z) =
cl{α(ẑ − z)|α ≥ 0, ẑ ∈ K}.

Definition 2.2. For z ∈ K and v ∈ T bK(z), the second order adjacent subset to K at (z, v) is defined
by

T
b(2)
K (z, v)

4
=
{
h ∈ Z

∣∣∣ lim
ε→0+

dist (z + εv + ε2h,K)

ε2
= 0
}
.

The dual cone of the Clarke tangent cone CK(z), denoted by NK(z), is called the normal cone
of K at z, i.e.,

NK(z)
4
=
{
ξ ∈ Z∗

∣∣∣ 〈ξ, v〉Z∗,Z ≤ 0, ∀ v ∈ CK(z)
}
.

Definition 2.3. Let (Ξ,Σ) be a measurable space, and F : Ξ ; Z be a set-valued map. For any

ξ ∈ Ξ, F (ξ) is called the value of F at ξ. The domain of F is Dom (F )
4
= {ξ ∈ Ξ | F (ξ) 6= ∅}. F is

called measurable if F−1(B)
4
= {ξ ∈ Ξ | F (ξ) ∩ B 6= ∅} ∈ Σ for any B ∈ B(Z), where B(Z) is the

Borel σ-algebra on Z.
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Lemma 2.2. [16, Lemma 2.7] Suppose that (Ξ,Σ, µ) is a complete finite measure space, p ≥ 1 and
K is a closed nonempty subset of Z̃. Put

K 4
=
{
ϕ(·) ∈ Lp(Ξ,Σ, µ; Z̃)

∣∣ ϕ(ξ) ∈ K, µ-a.e. ξ ∈ Ξ
}
. (2.2)

Then for any ϕ(·) ∈ K, the set-valued map T bK(ϕ(·)): ξ ; T bK(ϕ(ξ)) and CK(ϕ(·)) : ξ  CK(ϕ(ξ))
are Σ-measurable, and{

v(·) ∈ Lp(Ξ,Σ, µ;Z) | v(ξ) ∈ T bK(ϕ(ξ)), µ-a.e. ξ ∈ Ξ
}
⊂ T bK(ϕ(·)),{

v(·) ∈ Lp(Ξ,Σ, µ;Z) | v(ξ) ∈ CK(ϕ(ξ)), µ-a.e. ξ ∈ Ξ
}
⊂ CK(ϕ(·)).

The following result provides a criteria for the measurability of set-valued maps.

Lemma 2.3. [2, Theorem 8.1.4] Let (Ξ,Σ, µ) be a complete σ-finite measure space and F be a
set-valued map from Ξ to Z̃ with nonempty closed images. Then F is measurable if and only if the
graph of F belongs to Σ⊗ B(Z̃).

Definition 2.4. We call a map ζ : (Ω,F) ; Z a set-valued random variable if it is measurable.
We call a map Ψ : [0, T ]×Ω ; Z a measurable set-valued stochastic process if Ψ is B([0, T ])⊗F-

measurable.
We say that a measurable set-valued stochastic process Ψ is F-adapted if Ψ(t, ·) is Ft-measurable

for all t ∈ [0, T ].

Let
G 4=

{
B ∈ B([0, T ])⊗F

∣∣ Bt ∈ Ft, ∀ t ∈ [0, T ]
}
, (2.3)

where Bt
4
= {ω ∈ Ω | (t, ω) ∈ B} is the t-section of B. Obviously, G is a sub-σ-algebra of

B([0, T ])⊗F . Denote by m the Lebesgue measure on [0, T ]. The measure space ([0, T ]×Ω,G,m×P)
may be incomplete. Let us give a completed version of it.

Let G̃ be the collection of B ⊂ [0, T ]×Ω for which there exist B1, B2 ∈ G such that B1 ⊂ B ⊂ B2

and (m×P)(B2\B1) = 0. One can define a function µ̃ on G̃ as µ̃(B) = [m×P](B1) for any B ∈ G̃. By
Proposition 1.5.1 in [6], the measure space ([0, T ]×Ω, G̃, µ̃) is a completion of ([0, T ]×Ω,G,m×P).

Define

L2
F(0, T ;H1)

4
=
{
y : [0, T ]×Ω→H1

∣∣y(·) is G̃-measurable,

∫
[0,T ]×Ω

|y(s, ω)|2H1
dµ̃(s, ω)<∞

}
,

Ũν0
ad

4
=
{
u : [0, T ]×Ω→ H1

∣∣ u(·) is G̃-measurable, u(t) ∈ U, µ̃-a.e., the corresponding

solution x(·) of (1.1) satisfies (1.3) and (1.4)
}
.

Clearly, Uν0
ad ⊂ Ũ

ν0
ad and L2

F(0, T ;H1) ⊂ L2
F(0, T ;H1).

Let Ξ = [0, T ]× Ω, µ = µ̃ and Z = H1. From Lemma 2.2, we deduce the following result.

Corollary 2.1. For any u(·) ∈ Ũν0
ad , CU (u(·)) : [0, T ]× Ω H1 is G̃-measurable and

Tu
4
=
{
v(·) ∈ L2

F(0, T ;H1)
∣∣ v(t) ∈ CU (u(t)), µ̃-a.e.

}
⊂ CŨν0ad (u(·)). (2.4)

The next result concerns the completion of a measure space, which is a corollary of Proposition
1.5.1 in [6].

Lemma 2.4. Let (Ξ,Σ, µ) be a σ-finite measure space with the completion (Ξ, Σ̃, µ̃), and f be
a Σ̃-measurable function from Ξ to Z. Then there exists a Σ-measurable function g such that
µ̃(g(ξ) 6= f(ξ)) = 0.
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Due to Lemma 2.4, in what follows, we omit ˜ to simplify notation.

Lemma 2.5. Let H be a separable Hilbert space. A set-valued stochastic process F : [0, T ]×Ω ; H
is B([0, T ])⊗F-measurable and F-adapted if and only if F is G-measurable.

Proof. Since H is separable, it has an orthonormal basis {ek}∞k=1. Denote by Γk the projection

operator from H to Hk
4
= span {ek}. Let Fk(·) =

〈
F (·), ek

〉
H

. From [21, p. 96], we know that the
set-valued stochastic process Fk : [0, T ]×Ω ; R is B([0, T ])⊗F-measurable and F-adapted if and

only if Fk is G-measurable. Then Lemma 2.5 follows from the fact that F (·) =

∞∑
k=1

Fk(·)ek.

Next, we recall the notion of measurable selection for a set-valued map.

Definition 2.5. Let (Ξ,Σ) be a measurable space and Ẑ a complete separable metric space. Let F
be a set-valued map from Ξ to Ẑ. A measurable map f : Ξ→ Ẑ is called a measurable selection of
F if f(ξ) ∈ F (ξ) for all ξ ∈ Ξ.

A result concerning the measurable selection is given below.

Lemma 2.6. [2, Theorem 8.1.3] Let Ẑ be a complete separable metric space, (Ξ,Σ) a measurable
space, and F : Ξ ; Ẑ a measurable set-valued map with nonempty closed values. Then there exists
a measurable selection of F .

The following result is a special case of [2, Corollary 8.2.13].

Lemma 2.7. Suppose that (Ξ,Σ, µ) is a complete σ-finite measure space, K is a closed nonempty
subset in Z̃ and ϕ(·) is a Σ-measurable map from Ξ to Z̃. Then the projection map ξ  ΠK(ϕ(ξ)) is
Σ-measurable. If ΠK(ϕ(ξ)) 6= ∅ for all ξ ∈ Ξ, then there exists a Σ-measurable, Z̃-valued selection
ψ(·) such that |ψ(ξ)− ϕ(ξ)|

Z̃
= dist (ϕ(ξ),K), µ-a.e.

At last, let us recall some results concerning convex cones.

Definition 2.6. For a cone K in Z, the convex closed cone K− = {ξ ∈ Z∗|ξ(z) ≤ 0 for all z ∈ K}
is called the dual cone of K.

Lemma 2.8. [16, Lemma 2.4] Let m ∈ N. Let K1, · · · ,Km be convex cones in Z̃ and
m⋂
j=1

intKj 6= ∅.

Then for any convex cone K0 such that K0

⋂( m⋂
j=1

Kj
)
6= ∅, we have

( m⋂
j=0

Kj
)−

=
m∑
j=0

K−j .

Definition 2.7. We call K a nonempty closed polyhedron in Z if for some n ∈ N, {z∗1 , · · · , z∗n} ⊂
Z∗ \ {0} and {b1, · · · , bn} ⊂ R,

K 4= {y ∈ Z̃| 〈yj , y〉Z̃ + bj ≤ 0, ∀ j = 1, · · · , n}.

Lemma 2.9. [16, Lemma 2.5] Let Ẑ be a Hilbert space. Let K be a nonempty closed polyhedron
in Ẑ. Then, for any 0 6= ξ ∈ Ẑ such that supy∈K〈ξ, y〉Ẑ < +∞, this supremum is attained at some
ȳ ∈ ∂K. Furthermore, ξ ∈

∑
j∈In(ȳ) R+yj, where

In(ȳ)
4
=
{
j ∈ {1, · · · , n}|〈yj , y〉Ẑ + bj = 0

}
and

R+yj
4
=
{
αyj |α > 0

}
.
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Lemma 2.10. Let M0,M1, . . . ,Mn be nonempty convex subsets of Z such that Mj is open for all
j ∈ {1, · · · , n}. Then

M0 ∩M1 ∩ . . . ∩Mn = ∅ (2.5)

if and only if there are z∗0 , z
∗
1 , · · · , z∗n ∈ Z∗, not vanishing simultaneously, such that

z∗0 + z∗1 + · · ·+ z∗n = 0, inf
z∈M0

z∗0(z) + inf
z∈M1

z∗1(z) + · · ·+ inf
z∈Mn

z∗n(z) ≥ 0. (2.6)

Furthermore, if (2.6) holds true and for some j ∈ {0, . . . , n} there is a nonempty cone Kj ⊂ Z and
zj ∈ Z such that zj +Kj ⊂Mj, then −z∗j ∈ K

−
j .

Proof of the above lemma can be found in [13].

3. First order necessary conditions

This section is devoted to establishing a first order necessary optimality condition for Problem
(OP). Let us first impose the following assumptions:

(AS2) For a.e. (t, ω) ∈ [0, T ] × Ω, the functions a(t, ·, ·, ω) : H × H1 → H and b(t, ·, ·, ω) :
H×H1 → L2 are differentiable, and (ax(t, x, u, ω), au(t, x, u, ω)) and (bx(t, x, u, ω), bu(t, x, u, ω)) are
uniformly continuous with respect to x ∈ H and u ∈ U . For any p ≥ 1, there exists a nonnegative
η ∈ L2

F(0, T ;R) such that for a.e. (t, ω) ∈ [0, T ]× Ω and for all x ∈ H and u ∈ H1,{
|a(t, 0, u, ω)|H + |b(t, 0, u, ω)|L2 ≤ C(η(t, ω) + |u|H1),

|ax(t, x, u, ω)|L(H)+|au(t, x, u, ω)|L(H1;H)+|bx(t, x, u, ω)|L(H;L2)+|bu(t, x, u, ω)|L(H1;L2) ≤ C.

(AS3) The functional h(·, ω) : H → R is differentiable, P-a.s., and there exists an η ∈ L2
FT (Ω)

such that for any x, x̃ ∈ H,{
|h(x, ω)| ≤ C(η(ω)2 + |x|2H), |hx(0, ω)|H ≤ Cη(ω), P-a.s.,

|hx(x, ω)− hx(x̃, ω)|H ≤ C|x− x̃|H , P-a.s.

(AS4) For j = 0, · · · , n, the functional gj : H → R is differentiable, and for any x, x̃ ∈ H,

|gj(x)| ≤ C(1 + |x|2H), |gjx(x)− gjx(x̃)|H ≤ C|x− x̃|H .

Remark 3.1. (AS2) is a condition about the regularity of a and b. It is used to compute the
Taylor expansion of the cost functional with respect to the control u. The Fréchet differentiability
can be relaxed if one assume that the semigroup {S(t)}g≥0 has some smoothing effect. In this paper,
we purpose to present the key idea in a simple way and do not consider this case.

Remark 3.2. Typical examples fulfill (AS3) and (AS4) are quadratic functional. For instance,
h(x, ω) = η(ω)2 + |x|2H and gj(x) = |x|2H − 1 (j = 0, · · · , n) for x ∈ H.

Let Φ be a set-valued stochastic process satisfying

1. Φ is B([0, T ])⊗F-measurable and F-adapted;

2. for a.e. (t, ω) ∈ [0, T ]× Ω, Φ(t, ω) is a nonempty closed convex cone in H1;

3. Φ(t, ω) ⊂ T bU (ū(t, ω)), for a.e. (t, ω) ∈ [0, T ]× Ω.
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Let
TΦ(ū)

4
=
{
u(·) ∈ L2

F(0, T ;H1)
∣∣u(t, ω) ∈ Φ(t, ω), a.e. (t, ω) ∈ [0, T ]× Ω

}
.

Clearly, TΦ(ū) is a closed convex cone in L2
F(0, T ;H1). Since 0 ∈ TΦ(ū), TΦ(ū) is nonempty. By

Lemma 2.2, we can choose Φ(t, ω) = CU (ū(t, ω)). However, in general, there may exist a Φ(t, ω) as
above such that CU (ū(t, ω)) ( Φ(t, ω) ⊂ T bU (ū(t, ω)).

For ϕ equal to a, b, f , g or h, write

ϕ1[t] = ϕx(t, x̄(t), ū(t)), ϕ2[t] = ϕu(t, x̄(t), ū(t)).

Consider the following linearized stochastic control system:{
dx1(t) =

(
Ax1(t) + a1[t]x1(t) + a2[t]u1(t)

)
dt+

(
b1[t]x1(t) + b2[t]u1(t)

)
dW (t) in (0, T ],

x1(0) = ν1.
(3.1)

It is a classical result that, under (AS1), for any u1 ∈ TΦ(ū) and ν1 ∈ T bK(x̄0), (3.1) admits a
unique solution x1(·) ∈ L2

F(Ω;C([0, T ];H)) (e.g.[7, Chapter 6]).
By Lemma 2.2, TΦ(ū) ⊂ T bU2(ū). For any ε > 0, choose νε1 ∈ H and vε ∈ L2

F(0, T ;H1) such that

νε0
4
= ν̄0 + ενε1 ∈ V, uε

4
= ū+ εvε ∈ U2

and νε1 → ν1 in H and vε → u1 in L2
F(0, T ;H1) as ε→ 0+.

Let xε(·) be the solution of (1.1) corresponding to the control uε(·) and the initial datum νε0, and
put

δxε(·) = xε(·)− x̄(·), rε1(·) 4= δxε(·)− εx1(·)
ε

. (3.2)

We have the following results:

Lemma 3.1. If (AS1)–(AS2) hold, then for p ≥ 2,

|x1|L∞F (0,T ;Lp(Ω;H)) ≤ C
(
|ν1|H + |u1|LpF(Ω;L2(0,T ;H))

)
, (3.3)

|δxε|L∞F (0,T ;Lp(Ω;H)) = O(ε), (3.4)

and
lim
ε→0+

|rε1|L∞F (0,T ;Lp(Ω;H)) = 0. (3.5)

Proof of Lemma 3.1 is provided in Appendix A.

Next, we give a result which is very useful to get the first order pointwise necessary condition.

Lemma 3.2. Let ũ(·) ∈ Uν0
ad , and F : [0, T ]× Ω→ H1 be an F-adapted process such that

E
∫ T

0
〈F (t), v(t)〉H1

dt ≤ 0, ∀ v(·) ∈ CUν0ad (ũ(·)).

Then, for a.e. (t, ω) ∈ [0, T ]× Ω, 〈F (t, ω), v〉H1
≤ 0, ∀ v ∈ CU (ũ(t, ω)).

Proof of Lemma 3.2 is postponed to Appendix C.

Lemma 3.3. For each bounded linear functional Λ on L2
F(Ω;C([0, T ];H)), there exists a process

ψ ∈ L2
F(Ω;BV0([0, T ];H)) such that

Λ(z(·)) = E
∫ T

0
〈z(t), dψ(t)〉H , ∀ z(·) ∈ L2

F(Ω;C([0, T ];H)), (3.6)

and
|Λ|L2

F(Ω;C([0,T ];H))∗ = |ψ|L2
F(Ω;BV ([0,T ];H)). (3.7)
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Proof of Lemma 3.3 is given in Appendix D.

Let TK(ν̄0) be a nonempty closed convex cone contained in T bK(ν̄0). Put

X(1)
4
=
{
x1(·)∈L2

F(Ω;C([0, T ];H))
∣∣x1(·) solves (3.1) withu1∈TΦ(ū) and ν1∈TK(ν̄0)

}
, (3.8)

I0(x̄)
4
= {t ∈ [0, T ] |Eg0(x̄(t)) = 0}, (3.9)

I(x̄) =
{
j ∈ {1, · · · , n} |Egj(x̄(T )) = 0

}
,

G0
(1) =

{
z(·) ∈ L2

F(Ω;C([0, T ];H))
∣∣ E 〈g0

x(x̄(t)), z(t)
〉
H
< 0, ∀ t ∈ I0(x̄)

}
, (3.10)

Gj(1)

4
=
{
z(·) ∈ L2

F(Ω;C([0, T ];H))
∣∣ E 〈gjx(x̄(T )), z(T )

〉
H
< 0
}
, ∀j ∈ I(x̄), (3.11)

G(1)
4
=

⋂
j∈I(x̄)

Gj(1), (3.12)

Gj(1)(T )
4
=
{
ζ ∈ L2

FT (Ω;H)
∣∣ E 〈gjx(x̄(T )), ζ

〉
H
< 0
}
, j ∈ I(x̄), (3.13)

G(1)(T )
4
=

⋂
j∈I(x̄)

Gj(1)(T ), (3.14)

H(1)
4
= {z(·) ∈ L2

F(Ω;C([0, T ];H))|E〈hx(x̄(T )), z(T )〉H < 0},

and
H(1)(T )

4
= {z ∈ L2

FT (Ω;H) |E〈hx(x̄(T )), z〉H < 0}.

Since TΦ(ū) and TK(ν̄0) are nonempty convex cones, X(1) is a nonempty convex cone in L2
F(Ω;

C([0, T ];H)).
If I0(x̄) = ∅ (resp. I(x̄) = ∅), we set G0

(1) = L2
F(Ω;C([0, T ];H)) (resp. G(1) = L2

F(Ω;C([0, T ];

H))). If hx(x̄(T )) = 0, P-a.s., then H(1) = ∅ and H(1)(T ) = ∅.
Define a map Γ : L2

F(Ω;C([0, T ];H))→ L2
FT (Ω;H) as

Γ(z) = z(T ), ∀ z(·) ∈ L2
F(Ω;C([0, T ];H)). (3.15)

Denote by Γ∗ the adjoint operator of Γ. Clearly, Γ is surjective. From (3.11) to (3.14), we see that

Gj(1)(T ) = Γ(Gj(1)), j ∈ I(x̄), G(1)(T ) = Γ(G(1)). (3.16)

If G0
(1) and G(1) are nonempty, then

clG0
(1) =

{
z(·) ∈ L2

F(Ω;C([0, T ];H))
∣∣E 〈gx(x̄(t)), z(t)〉H ≤ 0, ∀ t ∈ I0(x̄)

}
,

and
clG(1) =

{
z(·) ∈ L2

F(Ω;C([0, T ];H))
∣∣ E 〈gjx(x̄(T )), z(T )

〉
H
≤ 0, ∀ j ∈ I(x̄)

}
.

Lemma 3.4. G0
(1) is an open convex cone in L2

F(Ω;C([0, T ];H)).

Proof. Clearly, G0
(1) is a cone. It is sufficient to prove that it is open.

Let z(·) ∈ G0
(1). Since x̄(·) ∈ L2

F(Ω;C([0, T ];H)), I0(x̄) is a compact subset of [0, T ]. This,

together with the fact that E 〈gx(x̄(·)), z(·)〉H is continuous with respect to t, implies that there
exists a constant ρ > 0 such that

E 〈gx(x̄(t)), z(t)〉H < −ρ, ∀ t ∈ I0(x̄).
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Let
δ =

ρ

2|gx(x̄(·))|L∞F (0,T ;L2(Ω;H))
.

Then for any η ∈ L2
F(Ω;C([0, T ];H)) with ‖η‖L2

F(Ω;C([0,T ];H)) ≤ δ,

E 〈gx(x̄(t)), z(t) + η(t)〉H < −ρ
2
, ∀ t ∈ I0(x̄).

This proves that z ∈ intG0
(1).

Now we introduce the first order adjoint equation for (3.1):{
dy(t) = −

(
A∗y(t) + a1[t]∗y(t) + b1[t]∗Y (t)

)
dt+ dψ(t) + Y (t)dW (t) in [0, T ),

y(T ) = yT ,
(3.17)

where yT ∈ L2
FT (Ω;H) and ψ ∈ L2

F(Ω;BV0([0, T ];H)).
Since neither the usual natural filtration condition nor the quasi-left continuity is assumed for

the filtration F in this paper, one cannot apply the existence results for mild or weak solution of
infinite dimensional BSEEs (e.g. [20, 32]) to obtain the well-posedness of the equation (3.17). Thus,
we use the notion of transposition solution here. To this end, consider the following (forward) SEE:{

dφ(s) =
(
Aφ(s) + f1(s)

)
ds+ f2(s)dW (s) in (t, T ],

φ(t) = η,
(3.18)

where t ∈ [0, T ], f1 ∈ L1
F(t, T ;L2(Ω;H)), f2 ∈ L2

F(t, T ;L2), η ∈ L2
Ft(Ω;H) (See [7, Chapter 6] for

the well-posedness of (3.18) in the sense of mild solution). We now introduce the following notion.

Definition 3.1. We call (y(·), Y (·)) ∈ DF([0, T ];L2(Ω;H))× L2
F(0, T ;L2) a transposition solution

of (3.17) if for any t ∈ [0, T ], f1(·) ∈ L1
F(t, T ;L2(Ω;H)), f2(·) ∈ L2

F(t, T ;L2), η ∈ L2
Ft(Ω;H) and

the corresponding solution φ ∈ L2
F(Ω;C([t, T ];H)) to the equation (3.18), we have

E
〈
φ(T ), y(T )

〉
H

+ E
∫ T

t

〈
φ(s), a1[s]∗y(s) + b1[s]∗Y (s))

〉
H
ds

= E
〈
η, y(t)

〉
H

+ E
∫ T

t

〈
f1(s), y(s)

〉
H
ds+ E

∫ T

t

〈
f2(s), Y (s)

〉
L2
ds+ E

∫ T

t

〈
φ(s), dψ(s)

〉
H
.

(3.19)

Lemma 3.5. Assume that (AS1)–(AS2) hold and ψ ∈ L2
F(Ω;BV0([0, T ];H)). Then the equation

(3.17) admits a unique transposition solution (y, Y ) ∈ DF([0, T ];L2(Ω;H))× L2
F(0, T ;L2).

If ψ = 0 and W (·) is a one dimensional Brownian motion, Lemma 3.5 is proved in [29, Chapter
3]. The proof for the case ψ 6= 0 is similar. We only give a sketch in Appendix E.

Define the Hamiltonian

H(t, x, u, p, q, ω)
4
= 〈p, a(t, x, u, ω)〉H + 〈q, b(t, x, u, ω)〉L2

, (3.20)

where (t, x, u, p, q, ω) ∈ [0, T ]×H ×H1 ×H × L2 × Ω.

Now we state a first order necessary optimality condition in the integral form.

Theorem 3.1. Let (AS1)–(AS4) hold and (x̄(·), ū(·), ν̄0) be an optimal triple for Problem (OP).
If E|g0

x(x̄(t))|H 6= 0 for any t ∈ I0(x̄), then there exist λ0 ∈ {0, 1}, λj ≥ 0 for j ∈ I(x̄) and

ψ ∈
(
G0

(1)

)−
with ψ(0) = 0 satisfying

λ0 +
∑
j∈I(x̄)

λj + |ψ|L2
F(Ω;BV (0,T ;H)) 6= 0, (3.21)
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such that the corresponding transposition solution (y(·), Y (·)) of the first order adjoint equation

(3.17) with y(T ) = −λ0hx(x̄(T ))−
∑
j∈I(x̄)

λjg
j
x(x̄(T )) verifies that

E 〈y(0), ν〉H + E
∫ T

0
〈Hu[t], v(t)〉H1

dt ≤ 0, ∀ ν ∈ TK(ν̄0), ∀ v(·) ∈ TΦ(ū), (3.22)

where Hu[t] = Hu(t, x̄(t), ū(t), y(t), Y (t), ω). In addition, if G0
(1) ∩ X(1) ∩ G(1) 6= ∅, the above holds

with λ0 = 1.

Remark 3.3. If ū takes an isolated point of U in a positive measure set of [0, T ]×Ω, then (3.22)
does not give us any information about the optimal control at these point since ar these points,
v(t, ω) = 0 for v(·) ∈ TΦ(ū). This is a drawback of Theorem 3.1. In handle such case, one should
employ the spike variation technique. The cost is that one should use two adjoint equations. More
details can be found in [29, 30, 31].

Remark 3.4. In Theorem 3.1, we assume that E|g0
x(x̄(t))|H 6= 0 for any t ∈ I0(x̄). This can be

verified by many concrete g0. For example, let g0(η) = |η|2H − 1 for any η ∈ H. If t ∈ I0(x̄), then
E|x̄(t)|2H = 1. Therefore, E|g0

x(x̄(t))|H = 2E|x̄(t)|H 6= 0.

Proof of Theorem 3.1. We first claim that

X(1) ∩ G0
(1) ∩ G(1) ∩H(1) = ∅. (3.23)

If this is not the case, then there would exist x̃1(·) ∈ X(1) ∩ G0
(1) ∩ G(1) such that

E 〈hx(x̄(T )), x̃1(T )〉H < 0. (3.24)

Let ν̃1 ∈ TK(ν̄0) be the initial datum and ũ1(·) ∈ TΦ(ū(·)) the control corresponding to x̃1(·). Let
µε ∈ H with |µε| = o(ε) and ηε(·) ∈ L2

F(0, T ;H1) with |ηε|L2
F(0,T ;H1) = o(ε) be such that

νε0
4
= ν̄0 + εν̃1 + µε ∈ V, uε(·) 4= ū(·) + εũ1(·) + ηε(·) ∈ U2.

Let xε(·) be the solution of the control system (1.1) with the initial datum νε0 and the control uε(·).
Since x̃1(·) ∈ G0

(1), we know that E
〈
g0
x(x̄(·)), x̃1(·)

〉
H

is continuous with respect to t. This,

together with the compactness of I0(x̄), implies that there exists ρ0 > 0 such that

E
〈
g0
x(x̄(t)), x̃1(t)

〉
H
< −ρ0 for every t ∈ I0(x̄).

Moreover, there exists δ > 0 (independent of t ∈ I0(x̄)) such that

E
〈
g0
x(x̄(s)), x̃1(s)

〉
H
< −ρ0

2
,∀ s ∈ (t− δ, t+ δ) ∩ [0, T ] and t ∈ I0(x̄).

By Lemma 3.1, there is an ε0 > 0 such that for every ε ∈ [0, ε0],

Eg0(xε(s)) = Eg(x̄(s)) + εE 〈gx(x̄(s)), x̃1(s)〉H + o(ε)

≤ εE 〈gx(x̄(s)), x̃1(s)〉H + o(ε)

< −ερ0

4
< 0, ∀ s ∈ (t− δ, t+ δ) ∩ [0, T ], t ∈ I0(x̄).

(3.25)
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Since Icδ
4
= [0, T ] \

⋃
t∈I0(x̄)(t− δ, t+ δ) is compact, there exist ρ1 > 0 and ε1 > 0 such that for any

ε ∈ [0, ε1],
Eg(xε(t)) = Eg(x̄(t)) + εE 〈gx(x̄(t)), x̃1(t)〉H + o(ε)

< −ρ1 + εE 〈gx(x̄(t)), x̃1(t)〉H + o(ε)

< −ρ1

2
< 0, ∀ t ∈ Icδ .

(3.26)

By (3.25) and (3.26), xε(·) satisfies the state constraint (1.3) for ε < min{ε0, ε1}.
Since x̃1(T ) ∈ G(1)(T ), E〈gjx(x̄(T )), x̃1(T )〉H < 0 for every j ∈ I(x̄). Similar to the proof of

(3.26), for every sufficiently small ε, xε(·) satisfies the final state constraint (1.4), and (xε(·), uε(·)) ∈
Pad. Following (3.24), there exists ρ2 > 0 such that for all sufficiently small ε,

Eh(xε(T )) = Eh(x̄(T )) + εE 〈hx(x̄(T )), x̃1(T )〉H + o(ε)

< Eh(x̄(T ))− ερ2 + o(ε) < Eh(x̄(T )),

contradicting the optimality of (x̄(·), ū(·)). This completes the proof of (3.23).

To finish the proof, we consider three different cases.

Case 1: G0
(1) ∩ X(1) = ∅.

Noting that G0
(1) is nonempty, open and convex, and X(1) is nonempty and convex, by the Hahn-

Banach separation theorem and Lemma 3.3, there exists a nonzero ψ(·) ∈ L2
F(Ω; BV0([0, T ];H))

such that

sup
z∈G0

(1)

E
∫ T

0
〈z(t), dψ(t)〉H ≤ inf

z̃∈X(1)

E
∫ T

0
〈z̃(t), dψ(t)〉H .

Since G0
(1) and X(1) are cones,

0 = sup
z∈G0

(1)

E
∫ T

0
〈z(t), dψ(t)〉H = inf

z̃∈X(1)

E
∫ T

0
〈z̃(t), dψ(t)〉H .

Therefore, ψ ∈
(
G0

(1)

)−
and −ψ ∈

(
X(1)

)−
. Consequently, for all z1(·) ∈ X(1),

E
∫ T

0
〈z1(t), dψ(t)〉H ≥ 0. (3.27)

Furthermore, it follows from the definition of the transposition solution to (3.17) that for every x1

solving (3.1) with u1 ∈ TΦ(ū) and ν1 ∈ T bK(x̄0),

E 〈y(T ), x1(T )〉H − 〈y(0), ν1〉H

= E
∫ T

0

(
〈y(t), a1[t]x1(t)〉H + 〈y(t), a2[t]u1(t)〉H − 〈a1[t]∗y(t), x1(t)〉H −〈b1[t]∗Y (t), x1(t)〉H

+〈Y (t), b1[t]x1(t)〉L2
+〈Y (t), b2[t]u1(t)〉L2

)
dt+E

∫ T

0
〈x1(t), dψ(t)〉H (3.28)

= E
∫ T

0

(
〈y(t), a2[t]u1(t)〉H + 〈Y (t), b2[t]u1(t)〉L2

)
dt+ E

∫ T

0
〈x1(t), dψ(t)〉H .

Set λ0 = 0, λj = 0, j ∈ I(x̄) and y(T ) = 0. Then, (3.21) holds and (3.22) follows from (3.27) and
(3.28).

Case 2: G0
(1) ∩ X(1) 6= ∅ and G0

(1) ∩ X(1) ∩ G(1) = ∅.

If G(1) = ∅, we claim that for each j ∈ I(x̄), there exists λj ≥ 0 such that
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∑
j∈I(x̄)

λj > 0,
∑
j∈I(x̄)

λjg
j
x(x̄(T )) = 0. (3.29)

Indeed, if there is a j0 ∈ I(x̄) such that gj0x (x̄(T )) = 0, then we can take λj0 = 1 and λj = 0 for all
j ∈ I(x̄) \ {j0}. In this context, (3.29) hold.

If gjx(x̄(T )) 6= 0 for all j ∈ I(x̄), then Gj(1) 6= ∅ for all j ∈ I(x̄) since Γ is surjective (recall (3.11)

for the definition of Gj(1)). From (3.16), we find that Gj(1)(T ) 6= ∅ for all j ∈ I(x̄). On the other

hand, since G(1) =
⋂
j∈I(x̄) G

j
(1) = ∅, by (3.16), we get that G(1)(T ) =

⋂
j∈I(x̄) G

j
(1)(T ) = ∅. Then

one can find a j0 ∈ I(x̄) and a subset Ij0 ⊂ I(x̄) \ {j0} such that
⋂
j∈Ij0

Gj(1)(T ) 6= ∅ and

E(1,j0)
T

⋂( ⋂
j∈Ij0

Gj(1)(T )
)

= ∅.

By the Hahn-Banach separation theorem, there exists a nonzero ξ ∈ L2
FT (Ω;H) such that

sup
η∈E(1,j0)

T

E〈ξ, η〉H ≤ inf
η∈

⋂
j∈Ij0

Gj
(1)

(T )
E〈ξ, η〉H .

Noting that Gj(1)(T ) (j ∈ I(x̄)) is a cone, ξ ∈
(
E(1,j0)
T

)−
and −ξ ∈

(⋂
j∈Ij0

Gj(1)(T )
)−

. By Lemma

2.8, ξ = λj0g
j0
x (x̄(T )) for some λj0 > 0. Further, for every j ∈ Ij0 , there exists λj ≥ 0 such that

−ξ =
∑
j∈Ij0

λjg
j
x(x̄(T )). Let λj = 0 for j ∈ I(x̄) \ (Ij0 ∪ {j0}), we get (3.29).

By taking λ0 = 0, ψ = 0 and y(T ) = 0, we have (3.21) and the condition (3.22) holds trivially
with (y, Y ) ≡ 0.

If G(1) 6= ∅, then Γ
(
G0

(1) ∩ X(1)

)
∩ G(1)(T ) = ∅. By the Hahn-Banach theorem, there exists a

nonzero ξ∈L2
FT (Ω;H) such that

sup
α∈Γ(G0

(1)
∩X(1))

E 〈ξ, α〉H ≤ inf
β∈G(1)(T )

E 〈ξ, β〉H .

Since both Γ(G0
(1) ∩ X(1)) and G(1)(T ) are cones,

0 = sup
α∈Γ(G0

(1)
∩X(1))

E 〈ξ, α〉H = inf
β∈G(1)(T )

E 〈ξ, β〉H .

Therefore, ξ ∈
(
Γ(G0

(1) ∩ X(1))
)−

and −ξ ∈
(
G(1)(T )

)−
.

By Lemma 2.8, for each j ∈ I(x̄), there exists λj ≥ 0 such that∑
j∈I(x̄)

λj > 0, −ξ =
∑
j∈I(x̄)

λjg
j
x(x̄(T )).

Since 0 ≥ E 〈ξ,Γ(z)〉H for all z ∈ G0
(1) ∩ X(1), we have that Γ∗(ξ) ∈

(
G0

(1) ∩ X(1)

)−
. By Lemma 2.8,

there exists ψ ∈
(
G0

(1)

)−
with ψ(0) = 0 such that Γ∗(ξ)− ψ ∈

(
X(1)

)−
. Thus, for all z(·) ∈ X(1),

0 ≥ E 〈ξ, z(T )〉H − E
∫ T

0
〈z(t), dψ(t)〉H . (3.30)

Let λ0 = 0. Since ξ 6= 0, (3.21) holds. Set y(T ) = −
∑
j∈I(x̄)

λjg
j
x(x̄(T )). By (3.28) and (3.30), we

obtain (3.22).

Case 3: G0
(1) ∩ X(1) ∩ G(1) 6= ∅.
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In this case, it holds that Γ
(
G0

(1) ∩ X(1)

)
∩ G(1)(T ) 6= ∅. By (3.23),

E 〈hx(x̄(T )), z(T )〉H ≥ 0, ∀z(·) ∈ G0
(1) ∩ X(1) ∩ G(1).

This yields that
E 〈hx(x̄(T )), ζ〉H ≥ 0, ∀ ζ ∈ Γ

(
G0

(1) ∩ X(1)

)
∩ G(1)(T ).

Consequently,
−hx(x̄(T )) ∈

[
Γ
(
G0

(1) ∩ X(1)

)
∩ G(1)(T )

]−
.

By Lemma 2.8, [
Γ
(
G0

(1) ∩ X(1)

)
∩ G(1)(T )

]−
=
[
Γ
(
G0

(1) ∩ X(1)

)]−
+
(
G(1)(T )

)−
.

Then, for each j ∈ I(x̄), there exists λj ≥ 0 such that

ξ
4
=
∑
j∈I(x̄)

λjg
j
x(x̄(T )) ∈

(
G(1)(T )

)−
and that

−hx(x̄(T ))−
∑
j∈I(x̄)

λjg
j
x(x̄(T )) ∈

[
Γ
(
G0

(1) ∩ X(1)

)]−
.

Therefore,

Γ∗
(
− hx(x̄(T ))−

∑
j∈I(x̄)

λjg
j
x(x̄(T ))

)
∈
(
G0

(1) ∩ X(1)

)−
=
(
G0

(1)

)−
+
(
X(1)

)−
.

Let ψ ∈
(
G0

(1)

)−
with ψ(0) = 0 be such that

Γ∗
(
− hx(x̄(T ))−

∑
j∈I(x̄)

λjg
j
x(x̄(T ))

)
− ψ ∈

(
X(1)

)−
.

Set λ0 = 1 and y(T ) = −hx(x̄(T ))−
∑

j∈I(x̄)

λjg
j
x(x̄(T )). Then, (3.21) holds and for all z ∈ X(1),

0 ≥ −E 〈hx(x̄(T ))), z(T )〉H −
∑
j∈I(x̄)

λjE
〈
gjx(x̄(T )), z(T )

〉
H
− E

∫ T

0
〈z(t), dψ(t)〉H . (3.31)

Combining (3.31) with (3.28), we obtain (3.22). This completes the proof of Theorem 3.1.

Let Φ(t, ω) = CU (ū(t, ω)), for a.e. (t, ω) ∈ [0, T ] × Ω and TV(ν̄0) = CV(ν̄0). From Theorem 3.1
and Lemma 3.2, it is easy to obtain the following pointwise first order necessary condition.

Theorem 3.2. Let (AS1)–(AS4) hold and (x̄(·), ū(·), ν̄0) be an optimal triple for Problem (OP)
such that E|g0

x(x̄(t))|H 6= 0 for any t ∈ I0(x̄). Then for (y, Y ) as in Theorem 3.1,

y(0) ∈ NV(ν̄0), Hu[t] ∈ NU (ū(t)), a.e. t ∈ [0, T ], P-a.s. (3.32)

Remark 3.5. If both the control set U and the initial state constraint set V are convex, then NC
U (ū)

and NC
V (x̄0) are simply the normal cones of convex analysis.

Remark 3.6. Let

H(t, x, u, ω) = H(t, x, u, y(t), Y (t), ω)− 1

2
〈P (t)b(t, x̄(t), ū(t), ω), b(t, x̄(t), ū(t), ω)〉L2

+
1

2

〈
P (t)

(
b(t, x, u, ω)− b(t, x̄(t), ū(t), ω)

)
, b(t, x, u, ω)− b(t, x̄(t), ū(t), ω)

〉
L2
,
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where P (·) is the first element of the solution of the second order adjoint process with respect to
(x̄(·), ū(·), ν̄0) (defined by (4.1) in Section 4). If there is no state constraint, the stochastic maximum
principle (e.g. [29, 30]) says that, if (x̄(·), ū(·), ν̄0) is an optimal triple, then

H(t, x̄(t), ū(t)) = max
v∈U
H(t, x̄(t), v), a.e. t ∈ [0, T ], P-a.s. (3.33)

This implies that

〈Hu(t, ω), v〉H1
≤ 0, ∀ v ∈ CU (ū(t, ω)), a.e. (t, ω) ∈ [0, T ]× Ω,

i.e., the second condition in (3.32) holds. However, to derive (3.33), one has to assume that a, b
and h are C2 with respect to the variable x. Therefore, in practice, under some usual structural
assumptions on U , it is more convenient to use the condition (3.32) directly.

As for the deterministic optimal control problems with state constraints, we call the first order
necessary condition (3.22) normal if the Lagrange multiplier λ0 6= 0. By Theorem 3.1, this is the
case when X(1) ∩ G0

(1) ∩ G(1) 6= ∅. Let us give some conditions to guarantee it. To this end, we first
introduce the following equation:{

dỹ(t) = −
(
A∗ỹ(t) + a1[t]∗ỹ(t) + b1[t]∗Ỹ (t) + α(t)

)
ds+ Ỹ (t)dW (t) in [0, T ),

ỹ(T ) = 0,
(3.34)

where α(·) ∈ L2
F(0, T ;H). The equation (3.34) is a special case of (3.17), where dψ(·) = α(·)ds.

Let us make the following assumptions:

(AAS1) α(·) = 0 whenever a1(·)∗ỹ[·] + b1[·]∗Ỹ (·) = 0.

(AAS2) CU (ū(t, ω)) = H1, for a.e. (t, ω) ∈ [0, T ]× Ω.

(AAS3) There is a β(·) ∈ CF([0, T ];L2(Ω;H)) such that{
E
〈
g0
x(x̄(t)), β(t)

〉
H
< 0, ∀ t ∈ I0(x̄),

E
〈
gjx(x̄(T )), β(T )

〉
H
< 0, ∀ j ∈ I(x̄).

Remark 3.7. (AAS1) is a condition about the unique continuation for the solution of (3.34).
It means that if a1[·]∗ỹ(·) + b1[·]∗Ỹ (·) = 0, then the nonhomogeneous term α(·) must be zero. A
sufficient condition for (AAS1) is that a1[·]∗ is injective and b1[·]∗ = 0.

Remark 3.8. (AAS2) means that TΦ(ū) = L2
F(0, T ;H1). This, together with (AAS1), guarantees

that the solution set of (3.1) is rich enough for us to choose one belonging to G0
(1) ∩ G(1). (AAS2)

holds for some trivial cases. For example, U = H1 or ū(t, ω) ∈ intU , P-a.s. for a.e. t ∈ [0, T ].
Note that we put state constraints (1.3) and (1.4) in the control problem. Hence, even for U = H1,
the optimal control problem is not trivial. We believe that for some concrete control problem, both
(AAS1) and (AAS2) can be dropped. A possible way to do it is to follow the idea in the proof
of Proposition 3.3 in [12]. The detailed analysis is beyond the scope of this paper and will be
investigated in future work.

Remark 3.9. From the definition of X(1), G0
(1) and G(1), it is clear that (AAS3) is necessary for

X(1) ∩ G0
(1) ∩ G(1) 6= ∅.

Proposition 3.1. Let (AS1)–(AS4) and (AAS1)–(AAS3) hold. Then X(1) ∩ G0
(1) ∩ G(1) 6= ∅.
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Proof. We divide the proof into two steps.
Step 1. It follows from (AAS2) that TΦ(ū) = L2

F(0, T ;H1). Define a map Π : TΦ(ū) →
L2
F(0, T ;H) in the following way:

Π(u1)(·) = x1(·),
where x1(·) is the solution of (3.1) for some u1(·) ∈ TΦ(ū).

We claim that
Π(TΦ(ū)) is dense in L2

F(0, T ;H). (3.35)

Let us prove (3.35) by a contradiction argument. Without loss of generality, we assume that
ν1 = 0. If (3.35) was false, then there would exist a nonzero β0(·) ∈ L2

F(0, T ;H) such that for any
u1(·) ∈ TΦ(ū),

E
∫ T

0

〈
x1(t), β0(t)

〉
H
dt = 0. (3.36)

Let α = β0. By the definition of the transposition solution of (3.34), we have that for any u1(·) ∈
TΦ(ū),

0=E
∫ T

0

〈
x1(t), β0(t)

〉
H
dt=E

∫ T

0

〈
u1(t), a2(t)∗ỹ(t)

〉
H1
ds+ E

∫ T

0

〈
u1(t), b2(t)∗Ỹ (t)

〉
H1
dt. (3.37)

This, together with the choice of u1(·), implies that a1[·]∗ỹ(·) + b1[·]∗Ỹ (·) = 0 for a.e. t ∈ [0, T ]. By
(AAS1), we see α = 0 in L2

F(0, T ;H), a contradiction. Consequently, (3.35) holds.

Step 2. Since I0(x̄) is compact, by (AAS3), one can find a β(·) ∈ CF([0, T ];L2(Ω;H)) such
that, there are ε0 > 0 and M0 > 0 so thatE

〈
g0
x(x̄(t)), β(t)

〉
H
< −ε0, |g0

x(x̄(t))|L2
Ft

(Ω;H) ≤M0, ∀ t ∈ I0(x̄),

E
〈
gjx(x̄(T )), β(T )

〉
H
< −ε0, |gjx(x̄(T ))|L2

Ft
(Ω;H) ≤M0, ∀ j ∈ I(x̄).

(3.38)

It follows from (3.35) that for every k ∈ N, there is u1,k ∈ TΦ(ū) such that the corresponding
solution x1,k = Π(u1,k) satisfies that

|x1,k − β|L2
F(0,T ;H) <

1

k
.

Consequently, there is a subsequence {u1,kj}∞j=1 of {u1,k}∞k=1 such that

lim
j→∞

x1,kj (t) = β(t) in L2
FT (Ω;H), for a.e. t ∈ [0, T ]. (3.39)

Since both x1,kj (·) and β(·) belong to CF([0, T ];L2(Ω;H)), we get from (3.39) that

lim
j→∞

x1,kj (·) = β(·) in CF([0, T ];L2(Ω;H)).

Hence, there exists N ∈ N such that

|x1,N (t)− β(t)|L2
FT

(Ω;H) <
ε0

2M0
for all t ∈ [0, T ].

This, together with (AAS3) and (3.38), implies that

E
〈
g0
x(x̄(t)), x1(t)

〉
H

= E
〈
g0
x(x̄(t)), x1(t)− β(t)

〉
H

+ E
〈
g0
x(x̄(t)), β(t)

〉
H

≤M0 ×
ε0

2M0
− ε0 < 0, ∀ t ∈ I0(x̄)

and
E
〈
gjx(x̄(T )), x1(T )

〉
H

= E
〈
gjx(x̄(T )), x1(T )− β(T )

〉
H

+ E
〈
gjx(x̄(T )), β(T )

〉
H

≤M0 ×
ε0

2M0
− ε0 < 0, ∀ j ∈ I(x̄).

This completes the proof.
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4. Second order necessary conditions

In this section, we establish second order necessary conditions for the optimal triple of Problem
(OP). In addition to (AS1)–(AS4), we impose the following:

(AS5) For a.e. (t, ω) ∈ [0, T ] × Ω, the operators a(t, ·, ·, ω) : H × H1 → H and b(t, ·, ·, ω) :
H ×H1 → L2 are C2, and axu(t, x, u, ω) and bxu(t, x, u, ω) are uniformly continuous with respect
to x ∈ H and u ∈ H1, and

|axx(t, x, u, ω)|L(H×H;H) + |axu(t, x, u, ω)|L(H×H1;H) + |auu(t, x, u, ω)|L(H1×H1;H)

+|bxx(t, x, u, ω)|L(H×H;L2) + |bxu(t, x, u, ω)|L(H×H1;L2) + |buu(t, x, u, ω)|L(H1×H1;L2) ≤ C,
∀ (x, u) ∈ H ×H1.

(AS6) The functional h(·, ω) : H → R is C2, P-a.s., and for any x, x̃ ∈ H,

|hxx(x, ω)|L(H×H;R) ≤ C, |hxx(x, ω)− hxx(x̃, ω)|L(H×H;R) ≤ C|x− x̃|H .

(AS7) For j = 0, 1, · · · , n, the functional gj(·) : H → R is C2, and for any x, x̃ ∈ H,

|gjxx(x, ω)|L(H×H;R) ≤ C, |gjxx(x, ω)− gjxx(x̃, ω)|L(H×H;R) ≤ C|x− x̃|H .

(AS8) The optimal control ū ∈ U4.

In what follows, U4 is viewed as a subset of L4
F(0, T ;H1) in the definitions of T bU4(ū) and

T
b(2)
U4 (ū, v).

(AS9) (Ω,FT ,P) is separable.

Remark 4.1. Similar to (AS2), (AS5) is used to compute the Taylor expansion of the cost
functional with respect to the control u. On the other hand, typical examples fulfill (AS6) and
(AS7) are quadratic functional. For instance, h(x, ω) = η(ω)2 + |x|2H and gj(x) = |x|2H − 1
(j = 0, · · · , n) for x ∈ H.

Remark 4.2. If U is bounded and the optimal control exists, then (AS7) holds.

Remark 4.3. Recall that (Ω,FT ,P) is separable if there exists a countable family D ⊂ FT such
that, for any ε > 0 and B ∈ FT one can find B1 ∈ D with P

(
(B \B1) ∪ (B1 \B)

)
< ε. Probability

space enjoying such kind of property is called a standard probability space. Except some artificial
examples, almost all frequently used probability spaces are standard ones(e.g. [36]). From [4, Section
13.4], if (AS9) holds, then LpFT (Ω) (1 ≤ p <∞) is separable.

Consider the following L(H)-valued BSEE∗:{
dP =−(A∗+J∗)Pdt−P (A+J)dt−K∗PKdt− (K∗Q+QK)dt+Fdt+QdW (t) in [0, T ),

P (T ) = PT ,
(4.1)

where F ∈ L1
F(0, T ;L2(Ω;L(H))), PT ∈ L2

FT (Ω;L(H)), J ∈ L4
F(0, T ;L∞(Ω;L(H))) and K ∈

L4
F(0, T ;L∞(Ω;L(H;L2))). In (4.1), the unknown (or solution) is a pair (P,Q).

∗Throughout this paper, for any operator-valued process (resp. random variable) R, we denote by R∗ its
pointwisely dual operator-valued process (resp. random variable), e.g., if R ∈ Lr1F (0, T ;Lr2(Ω;L(H))), then
R∗ ∈ Lr1F (0, T ;Lr2(Ω;L(H))), and ‖R‖Lr1

F (0,T ;Lr2 (Ω;L(H))) = ‖R∗‖Lr1
F (0,T ;Lr2 (Ω;L(H))).
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Let us first recall the definition of the relaxed transposition solution of (4.1). To this end,
consider two SEEs:{

dφ1(s) =
[
(A+ J)φ1(s) + f̃1(s)

]
ds+

(
Kφ1(s) + f̂1(s)

)
dW (s) in (t, T ],

φ1(t) = ξ1

(4.2)

and {
dφ2(s) =

[
(A+ J)φ2(s) + f̃2(s)

]
ds+

(
Kφ2(s) + f̂2(s)

)
dW (s) in (t, T ],

φ2(t) = ξ2.
(4.3)

Here t ∈ [0, T ), ξ1, ξ2 ∈ L4
Ft(Ω;H), f̃1, f̃2 ∈ L2

F(t, T ;L4(Ω;H)) and f̂1, f̂2 ∈ L2
F(t, T ;L4(Ω;L2)).

Write

P[0, T ]

4
=
{
P (·, ·)

∣∣∣ P (·, ·) ∈ L
(
L2
F(0, T ;L4(Ω;H)), L2

F(0, T ;L
4
3 (Ω;H))

)
, P (t, ω) ∈ L(H) for a.e.

(t, ω)∈ [0, T ]×Ω, and for every t∈ [0, T ] and ξ∈L4
Ft(Ω;H), P (·, ·)ξ∈DF([t, T ];L

4
3 (Ω;H))

and ‖P (·, ·)ξ‖
DF([t,T ];L

4
3 (Ω;H))

≤ C‖ξ‖L4
Ft

(Ω;H)

}
and

Q[0, T ]
4
=
{(
Q(·), Q̂(·)) ∣∣∣ For any t ∈ [0, T ], both Q(t) and Q̂(t) are bounded linear operators

from L4
Ft(Ω;H)× L2

F(t, T ;L4(Ω;H))× L2
F(t, T ;L4(Ω;L2)) to L2

F(t, T ;L
4
3 (Ω;L2))

and Q(t)(0, 0, ·)∗ = Q̂(t)(0, 0, ·)
}
.

In what follows, for P ∈ P[0, T ], we write |P |P[0,T ] for |P |
L
(
L2
F(0,T ;L4(Ω;H)), L2

F(0,T ;L
4
3 (Ω;H))

). Simi-

larly, for
(
Q(·), Q̂(·)) ∈ Q[0, T ], we put

|
(
Q(·), Q̂(·))|Q[0,T ]

4
= |
(
Q(·), Q̂(·))|

L
(
L4
Ft

(Ω;H)×L2
F(t,T ;L4(Ω;H))×L2

F(t,T ;L4(Ω;L2));L2
F(t,T ;L

4
3 (Ω;L2))

).
Definition 4.1. We call

(
P (·), (Q(·), Q̂(·))

)
∈ P[0, T ] × Q[0, T ] a relaxed transposition solution of

(4.1) if for every t ∈ [0, T ], ξ1, ξ2 ∈ L4
Ft(Ω;H), f̃1(·), f̃2(·) ∈ L2

F(t, T ; L4(Ω;H)) and f̂1(·), f̂2(·) ∈
L2
F(t, T ;L4(Ω;L2)), the following is satisfied

E
〈
PTφ1(T ), φ2(T )

〉
H
− E

∫ T

t

〈
F (s)φ1(s), φ2(s)

〉
H
ds

= E
〈
P (t)ξ1, ξ2

〉
H

+ E
∫ T

t

〈
P (s)f̃1(s), φ2(s)

〉
H
ds+ E

∫ T

t

〈
P (s)φ1(s), f̃2(s)

〉
H
ds

+E
∫ T

t

〈
P (s)K(s)φ1(s), f̂2(s)

〉
L2
ds+ E

∫ T

t

〈
P (s)f̂1(s),K(s)φ2(s) + f̂2(s)

〉
L2
ds

+E
∫ T

t

〈
f̂1(s), Q̂(t)(ξ2, f̃2, f̂2)(s)

〉
L2
ds+ E

∫ T

t

〈
Q(t)(ξ1, f̃1, f̂1)(s), f̂2(s)

〉
L2
ds.

(4.4)

Here, φ1(·) and φ2(·) solve (4.2) and (4.3), respectively.

Lemma 4.1. Let (AS9) hold. Then the equation (4.1) admits a unique relaxed transposition
solution

(
P (·), (Q(·), Q̂(·))

)
∈ P[0, T ]×Q[0, T ]. Furthermore,

|P |P[0,T ] + |
(
Q(·), Q̂(·))|Q[0,T ] ≤ C

(
|F |L1

F(0,T ;L2(Ω;L(H))) + |PT |L2
FT

(Ω;L(H))

)
.

19



The proof is almost the same as the one of [29, Theorem 6.1]. The only difference is that one
should replace the inner product of H by L2 for terms involving f̂1 and f̂2. Hence we omit it.

For ϕ equal to a or b, let

ϕ11[t] = ϕxx(t, x̄(t), ū(t)), ϕ12[t] = ϕxu(t, x̄(t), ū(t)), ϕ22[t] = ϕuu(t, x̄(t), ū(t)).

For ν1 ∈ T bV(x̄0), u1 ∈ T bU4(ū), ν2 ∈ T b(2)
V (x̄0, ν1) and u2 ∈ T b(2)

U4 (ū, u1), consider the following
second order variational equation:

dx2(t) =
[
Ax2(t) + a1[t]x2(t) + a2[t]u2(t) +

1

2
a11[t]

(
x1(t), x1(t)

)
+ a12[t]

(
x1(t), u1(t)

)
+

1

2
a22[t]

(
u1(t), u1(t)

)]
dt+

[
b1[t]x2(t) + b2[t]u2(t) +

1

2
b11[t]

(
x1(t), x1(t)

)
+b12[t]

(
x1(t), u1(t)

)
+

1

2
b22[t]

(
u1(t), u1(t)

)]
dW (t) in (0, T ],

x2(0) = ν2,

(4.5)

where x1(·) is the solution of the first order variational equation (3.1) (for u1(·) and ν1 as above).
Further, from (AS5), we know that a11[t]

(
x1(t), x1(t)

)
∈ H. So do the other terms such as

b11[t]
(
x1(t), x1(t)

)
.

By the definition of the second order adjacent tangent, for any ε > 0, there exist νε2 ∈ H and
uε2(·) ∈ L4

F(0, T ;H1) such that

νε0
4
= ν̄0 + εν1 + ε2νε2 ∈ V, uε(·) 4= ū(·) + εu1(·) + ε2uε2(·) ∈ U4

and
lim
ε→0+

νε2 = ν2 in H, lim
ε→0+

uε2 = u2 in L4
F(0, T ;H1).

Denote by xε(·) the solution of (1.1) corresponding to the control uε(·) and the initial datum
νε0. Put

δxε(·) 4= xε(·)− x̄(·), rε2(·) 4= δxε(·)− εx1(·)− ε2x2(·)
ε2

.

We have the following result.

Lemma 4.2. Suppose that (AS1), (AS2) and (AS5) hold. Then, for ν1,ν2, ν
ε
2∈H and u1(·), u2(·),

uε2(·) ∈ L4
F(0, T ;H1) as above, we have

‖x2‖L∞F (0,T ;L2(Ω;H)) ≤ C
(
|ν2|H + |ν1|2H + |u1|2L4

F(0,T ;H1) + |u2|L2
F(0,T ;H1)

)
and

lim
ε→0+

|rε2|L∞F (0,T ;L2(Ω;H)) = 0. (4.6)

Proof of Lemma 4.2 is provided in Appendix B.
Put

Y(x̄, ū)
4
=
{

(x1(·), u1(·), ν1) ∈ CF([0, T ];L4(Ω;H))× T bU4(ū)× T bV(ν̄0)
∣∣ x1(·) solves (3.1),

x1(·) ∈ clG0
(1) ∩ clG(1) and E〈gjx(x̄(T )), x1(T )〉H ≤ 0, ∀ j ∈ I(x̄)

} (4.7)

and define the critical cone

Z(x̄, ū)
4
=
{

(x1(·), u1(·), ν1) ∈ Y(x̄, ū)
∣∣∣ E〈hx(x̄(T )), x1(T )〉H = 0

}
. (4.8)
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For a fixed (x1(·), u1(·), ν1) ∈ Z(x̄, ū), letW(ν̄0, ν1) andM(ū, u1) be convex subsets of T
b(2)
V (ν̄0, ν1)

and T
b(2)
U4 (ū, u1), respectively. Put

X(2)(x1, u1)
4
=
{
x2(·) ∈ L2

F(Ω;C([0, T ];H))
∣∣x2(·) is the solution of (4.5) corresponding

to some (ν2, u2) ∈ W(ν̄0, ν1)×M(ū, u1)
}
.

(4.9)

Let
I0(x̄, x1)

4
=
{
t ∈ I0(x̄)| E〈g0

x(x̄(t)), x1(t)〉H = 0
}
,

I(x̄, x1)
4
=
{
j ∈ I(x̄)| E〈gjx(x̄(T )), x1(T )〉H = 0

}
,

τ g(x̄)
4
=
{
t ∈ [0, T ]

∣∣ ∃ {sk}∞k=1 ⊂ [0, T ] such that lim
k→∞

sk = t, Eg0(x̄(sk)) < 0,

E
〈
g0
x(x̄(sk)), x1(sk)

〉
H
> 0, ∀ k = 1, 2, · · ·

}
,

(4.10)

e(t)
4
=


lim
s→t

E g0(x̄(s))<0

E〈g0
x(x̄(s)),x1(s)〉

H
>0

∣∣E 〈g0
x(x̄(s)), x1(s)

〉
H

∣∣2
4
∣∣Eg0(x̄(s))

∣∣
H

, t ∈ τ g(x̄),

0, otherwise,

(4.11)

G0
(2)(x1)

4
=
{
z ∈ L2

F(Ω;C([0, T ];H))
∣∣∣ for all t ∈ I0(x̄, x1),

E〈g0
x(x̄(t)), z(t)〉H +

1

2
E〈g0

xx(x̄(t))x1(t), x1(t)〉H + e(t) < 0
}
,

(4.12)

Gj(2)(x1)
4
=
{
z∈L2

F(Ω;C([0, T ];H))
∣∣∣E〈gjx(x̄(T )), z(T )〉H+

1

2
E〈gjxx(x̄(T ))x1(T ), x1(T )〉H<0

}
,

G(2)(x1)
4
=

⋂
j∈I(x̄,x1)

Gj(2)(x1), (4.13)

and

H(2)(x1)
4
=
{
z(·) ∈ L2

F(Ω;C([0, T ];H))
∣∣∣E〈hx(x̄(T )), z(T )〉H +

1

2
E〈hxx(x̄(T ))x1(T ), x1(T )〉H < 0

}
.

(4.14)

Remark 4.4. If x1 ∈ G0
(1), then I0(x̄, x1) = ∅. Consequently, G0

(2)(x1) = L2
F(Ω;C([0, T ];H)). In

addition, if there exists δ > 0 such that

E 〈gx(x̄(s)), x1(s)〉H ≤ 0, ∀ s ∈ (t− δ, t+ δ) ∩ [0, T ], t ∈ I0(x̄),

then e(t) = 0 for any t ∈ I0(x̄, x1). In this case,

G0
(2)(x1) =

{
z(·) ∈ L2

F(Ω;C([0, T ];H))
∣∣∣ For all t ∈ I0(x̄, x1),

E
〈
g0
x(x̄(t)), z(t)

〉
H

+
1

2
E
〈
g0
xx(x̄(t))x1(t), x1(t)

〉
H
< 0
}
.

Remark 4.5. Let z1 ∈ G0
(1) and z2 ∈ G0

(2)(x1). Then for every t ∈ I0(x̄, x1) ⊂ I0(x̄), we have

E〈g0
x(x̄(t)), z1(t)〉H < 0 and E〈g0

x(x̄(t)), z2(t)〉H +
1

2
E〈g0

xx(x̄(t))x1(t), x1(t)〉H + e(t) < 0. Therefore,

E〈g0
x(x̄(t)), z1(t) + z2(t)〉H +

1

2
E〈g0

xx(x̄(t))x1(t), x1(t)〉H + e(t) < 0,

which implies that z1 + z2 ∈ G0
(2)(x1). Consequently, G0

(1) + G0
(2)(x1) ⊂ G0

(2)(x1). Similarly, if

Φ(t, ω) = CU (ū(t, ω)), then we can prove that X(1) + X(2)(x1, u1) ⊂ X(2)(x1, u1).
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Let (y, Y ), ψ and λj , j ∈ I(x̄) be defined as in the proof of Theorem 3.1 in the case when X(1)∩
G0

(1) ∩ G(1) 6= ∅ (See (3.8), (3.10) and (3.12) for the definitions of X(1), G0
(1) and G(1), respectively),

where y(T ) = −hx(x̄(T ))−
∑
j∈I(x̄)

λjg
j
x(x̄(T )).

Let (P (·), (Q(·), Q̂(·))) be the relaxed transposition solution of the equation (4.1) in which PT ,
J(·), K(·) and F (·) are given by

PT = −hxx
(
x̄(T )

)
, J(t) = a1[t], K(t) = b1[t],

F (t) = −Hxx[t]
4
= −Hxx(t, x̄(t), ū(t), y(t), Y (t), ω).

We have the following result.

Theorem 4.1. Suppose that (AS1)–(AS9) hold and that X(1)∩G0
(1)∩G(1) 6= ∅ for an optimal triple

(x̄(·), ū(·), ν̄0) of Problem (OP). If X(2)(x1, u1) ∩ G0
(2)(x1) ∩ G(2)(x1) 6= ∅, then for any x2(·) ∈

X(2)(x1, u1) ∩ clG0
(2)(x1) ∩ clG(2)(x1) with the corresponding ν2 ∈ W(ν̄0, ν1) and u2(·) ∈ M(ū, u1),

we have

〈y(0), ν2〉H +
1

2
〈P (0)ν1, ν1〉H +

∑
j∈I(x̄)

E
〈
λjg

j
x(x̄(T )), x2(T )

〉
H

+E
∫ T

0

(〈
Hu[t], u2(t)

〉
H1

+
1

2

〈
Huu[t]u1(t), u1(t)

〉
H1

+
1

2

〈
b2[t]∗P (t)b2[t]u1(t), u1(t)

〉
H1

+
〈(
Hxu[t] + a2[t]∗P (t) + b2[t]∗P (t)b1[t]

)
x1(t), u1(t)

〉
H1

+
1

2

〈(
Q̂(0) +Q(0)

)(
0, a2[t]u1(t), b2[t]u1(t)

)
, b2[t]u1(t)

〉
L2

)
dt+ E

∫ T

0
〈x2(t), dψ(t)〉H ≤ 0,

(4.15)

where

Huu[t]
4
= Huu(t, x̄(t), ū(t), y(t), Y (t), ω), Hxu[t]

4
= Hxu(t, x̄(t), ū(t), y(t), Y (t), ω).

Remark 4.6. Similar to Theorem 3.1, if ū takes an isolated point of U in a positive measure set
of [0, T ]×Ω, then (4.15) does not give us any information about the optimal control at these point
since ar these points. This is a drawback of Theorem 4.1. As the first order necessary condition,
one may use the spike variation technique. However, in such case, one has to use four adjoint
equations. A detailed analysis of this is beyond of the scope of this paper.

Remark 4.7. In Theorem 4.1, we take λ0 = 1 and (y, Y ), ψ and λj, j ∈ I(x̄) as in Theorem

3.1. Accordingly, the terms
∑
j∈I(x̄)

E
〈
λjg

j
x(x̄(T )), x2(T )

〉
H

and E
∫ T

0
〈x2(t), dψ(t)〉H appear. By

doing so, our second order condition is valid for any normal multiplier appearing in the first order
conditions.

In Theorem 4.1 we assumed that X(2)(x1, u1) ∩ G0
(2)(x1) ∩ G(2)(x1) 6= ∅. It seems that this

condition is not easy to verify. Let us give a result concerning this below.

Proposition 4.1. Assume that there is (x1, u1, ν1) ∈ Z(x̄, ū) such that the function e(·) defined

by (4.11) is bounded on I0(x̄, x1), and that T
b(2)
V (ν̄0, ν1) and T

b(2)
U4 (ū, u1) are nonempty. If X(1) ∩

G0
(1) ∩ G(1) 6= ∅ (with TK(ν̄0) and TΦ(ū) being replaced by CK(ν̄0) and CU4(ū), respectively), then

X(2)(x1, u1) ∩ G0
(2)(x1) ∩ G(2)(x1) 6= ∅.
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Proof. If X(1) ∩ G0
(1) ∩ G(1) 6= ∅ (with TK(ν̄0) and TΦ(ū) being replaced by CK(ν̄0) and CU4(ū),

respectively), then there exists x̂1(·) ∈ X(1) ∩G0
(1) ∩G(1) with the initial datum ν̂1 ∈ CK(ν̄0) and the

control û1(·) ∈ CU4(ū).

Since T
b(2)
K (ν̄0, ν1) and T

b(2)
U4 (ū, v) are nonempty, they contain some nonempty convex subsets

W1(ν̄0, ν1) and M1(ū, u1), respectively.
Put

W(ν̄0, ν1)
4
= CK(ν̄0) +W1(ν̄0, ν1), M(ū, u1)

4
= CU4(ū) +M1(ū, u1).

It follows from Lemma 2.4 in [11] that W(ν̄0, ν1) ⊂ T
b(2)
K (ν̄0, ν1) and M(ū, u1) ⊂ T

b(2)
U4 (ū, u1).

Moreover, for every ν̃2 ∈ W1(ν̄0, ν1), ũ2 ∈ M1(ū, u1) and δ ≥ 0, we have δν̂1 + ν̃2 ∈ W(ν̄0, ν1) and
δû1 + ũ2 ∈M(ū, u1).

Fixing δ ≥ 0 and letting x2,δ(·)(resp. x̃2) be the solution of (4.5) corresponding to δν̂1 + ν̃2

(resp. ν̃2) and δû1 + ũ2 (resp. ũ2), we have x2,δ(·) = δx̂1(·) + x̃2(·). It follows from Lemma 4.2 that

|x̃2|2L∞F (0,T ;L2(Ω;H)) ≤ C
(
|ν̃2|2H + |û1|4L4

F(0,T ;H) + |ũ2|2L2
F(0,T ;H)

)
.

Since x̂1(·) ∈ X(1) ∩G0
(1) ∩G(1), and I0(x̄) and I0(x̄, x̂1) are compact sets, for all sufficiently large δ,

E 〈hx(x̄(t)), x2,δ(t)〉H +
1

2
E 〈hxx(x̄(t))x1(t), x1(t)〉H + e(t)

= δE 〈hx(x̄(t)), x̂1(t)〉H + E 〈hx(x̄(t)), x̃2(t)〉H +
1

2
E 〈hxx(x̄(t))x1(t), x1(t)〉H + e(t)

< 0, ∀ t ∈ I0(x̄, x̂1),

and for every j ∈ I(x̄, x̂1), and all δ sufficiently large

E
〈
gjx(x̄(T )), x2,δ(T )

〉
H

+
1

2
E
〈
gjxx(x̄(T ))x1(T ), x1(T )

〉
H

= δE
〈
gjx(x̄(T )), x̂1(T )

〉
H

+ E
〈
gjx(x̄(T )), x̃1(T )

〉
H

+
1

2
E
〈
gjxx(x̄(T ))x1(T ), x1(T )

〉
H
< 0.

Therefore, when δ is large enough, x2,δ(·) ∈ X(2)(x1, u1) ∩ G0
(2)(x1) ∩ G(2)(x1). This yields that

X(2)(x1, u1) ∩ G0
(2)(x1) ∩ G(2)(x1) 6= ∅

Proof of Theorem 4.1. If I0(x̄, x1) = ∅, then G0
(2)(x1) = L2

F(Ω;C([0, T ];H)). Hence,

X(2)(x1, u1) ∩ G0
(2)(x1) ∩ G(2)(x1) = X(2)(x1, u1) ∩ G(2)(x1).

In such case, without loss of generality, we can ignore the constraint (1.3) and put ψ = 0. Thus,
we only need to consider the case I0(x̄, x1) 6= ∅.

The proof is divided into five steps. In the first four steps, we deal with the special case when
x2(·) ∈ X(2)(x1, u1) ∩ G0

(2)(x1) ∩ G(2)(x1). Then, in the last step, we handle the general case.

Step 1: Since x2(·) ∈ X(2)(x1, u1) ∩ G0
(2)(x1) ∩ G(2)(x1), x2(·) is a solution of the equation (4.5)

corresponding to some (ν2, u2) ∈ W(x̄0, ν0)×M(ū, u1) such that

E
〈
g0
x(x̄(t)), x2(t)

〉
H

+
1

2
E
〈
g0
xx(x̄(t))x1(t), x1(t)

〉
H

+ e(t) < 0, ∀ t ∈ I0(x̄, x1)

and
E
〈
gjx(x̄(T )), x2(T )

〉
H

+
1

2
E
〈
gjxx(x̄(T ))x1(T ), x1(T )

〉
H
<0, ∀ j ∈ I(x̄, x1).

Let µε ∈ H and ηε(·) ∈ L4
F(0, T ;H1) be such that

|µε| = o(ε2), νε0
4
= x̄0 + εν1 + ε2ν2 + µε ∈ V,

|ηε|L4
F(0,T ;H1) = o(ε2), uε(·) 4= ū(·) + εu1(·) + ε2u2(·) + ηε(·) ∈ U4.
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Denote by xε(·) the solution of (1.1) corresponding to νε0 and uε(·). By (AS1)–(AS7) and Lemma
4.2, for any t ∈ [0, T ], we have

Eg0(xε(t)) = Eg0(x̄(t)) + εE
〈
g0
x(x̄(t)), x1(t)

〉
H

+ ε2E
〈
g0
x(x̄(t)), x2(t)

〉
H

+
ε2

2
E
〈
g0
xx(x̄(t))x1(t), x1(t)

〉
H

+ o(ε2).
(4.16)

Step 2: Fix an arbitrary t̂ ∈ I(x̄, x1). In this step, we prove that there exist δ(t̂) > 0 and
α(t̂) > 0 such that

Eg0(xε(s)) ≤ 0, ∀ s ∈ (t̂− δ(t̂), t̂+ δ(t̂)) ∩ [0, T ], ∀ ε ∈ [0, α(t̂)]. (4.17)

If (4.17) is false, then for any ` ∈ N, we can find ε` ∈ [0, 1/`] and s` ∈ (t̂− 1/`, t̂+ 1/`) ∩ [0, T ]
such that

Eg0(xε`(s`)) > 0. (4.18)

We consider two different cases.
Case 1.1. There exists a subsequence {s`k}∞k=1 of {s`}∞`=1 satisfying

Eg0(x̄(s`k)) < 0 and E
〈
g0
x(x̄(s`k)), x1(s`k)

〉
H
> 0, ∀ k = 1, 2, · · · . (4.19)

By (4.16),

Eg0(xε`k (s`k))

= ε2
`k

(
E
〈
g0
x(x̄(s`k)), x2(s`k)

〉
H

+
1

2
E
〈
g0
xx(x̄(s`k))x1(s`k), x1(s`k)

〉
H
−
∣∣E 〈g0

x(x̄(s`k)), x1(s`k)
〉
H

∣∣2
4E g0(x̄(s`k))

+
o(ε2

`k
)

ε2
`k

)
+ Eg0(x̄(s`k))

(
1 +

ε`kE 〈gx(x̄(s`k)), x1(s`k)〉H
2Eg0(x̄(s`k))

)2
.

Since t̂ ∈ I0(x̄, x1) and x2(·) ∈ G0
(2)(x1), there exists ρ0 > 0 such that

E
〈
g0
x(x̄(t̂)), x2(t̂)

〉
H

+
1

2
E
〈
g0
xx(x̄(t̂))x1(t̂), x1(t̂)

〉
H

+ e(t̂) < −ρ0.

Therefore, when k is large enough,

E
〈
g0
x(x̄(s`k)), x2(s`k)

〉
H

+
1

2
E
〈
g0
xx(x̄(s`k))x1(s`k), x1(s`k)

〉
H

+

∣∣E 〈g0
x(x̄(s`k)), x1(s`k)

〉
H

∣∣2
4
∣∣Eg0(x̄(s`k))

∣∣ <−ρ0

2
,

which, together with (4.19), implies that Eg0(xε`k (s`k)) ≤ 0, provided that k is large enough. This
contradicts (4.18).

Case 1.2: There is no subsequence of {s`}∞`=1 such that (4.19) holds.
Under this circumstance,

Eg0(x̄(s`)) = 0 or E
〈
g0
x(x̄(s`)), x1(s`)

〉
H
≤ 0 for all sufficiently large `.

If s` /∈ I0(x̄), we have Eg0(x̄(s`)) < 0. Thus, E
〈
g0
x(x̄(s`)), x1(s`)

〉
H
≤ 0. On the other hand, if

s` ∈ I0(x̄), then Eg0(x̄(s`)) = 0. Since x1(·) ∈ clG0
(1), E

〈
g0
x(x̄(s`)), x1(s`)

〉
H
≤ 0. In both cases,

Eg0(x̄(s`)) + ε`E
〈
g0
x(x̄(s`)), x1(s`)

〉
H
≤ 0. (4.20)

Noting that e(t) ≥ 0 for all t ∈ [0, T ] and I0(x̄, x1) is compact, there exists ρ2 > 0 such that

E
〈
g0
x(x̄(t)), x2(t)

〉
H

+
1

2
E
〈
g0
xx(x̄(t))x1(t), x1(t)

〉
H
< −ρ2, ∀ t ∈ I0(x̄, x1).

Since s` → t̂ and t̂ ∈ I(x̄, x1), when ` is large enough,

E
〈
g0
x(x̄(s`)), x2(s`)

〉
H

+
1

2
E
〈
g0
xx(x̄(s`))x1(s`), x1(s`)

〉
H
< −ρ2

2
.
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Then, by (4.16) and (4.20), for any sufficiently large `,

Eg0(xε`(s`)) ≤ ε2
`E
〈
g0
x(x̄(s`)), x2(s`)

〉
H

+
ε2
`

2
E
〈
g0
xx(x̄(s`))x1(s`), x1(s`)

〉
H

+ o(ε2
` )

≤ ε2
`

(
− ρ2

2
+
o(ε2

` )

ε2
`

)
≤ 0,

which also contradicts (4.18). This proves (4.17).

Step 3: In this step, we prove that (xε(·), uε(·)) ∈ Pad, provided that ε is sufficiently small.
By the compactness of I0(x̄, x1), we can find {t`}N` ⊂ I0(x̄, x1) (N ∈ N) such that

I0(x̄, x1) ⊂
N⋃
`=1

(
t` − δ(t`), t` + δ(t`)

)
.

Let ε1
4
= min{α(t`), ` = 1, 2, . . . , N}. Then we have that

Eg0(xε(s)) ≤ 0, ∀ s ∈
N⋃
`=1

(
t` − δ(t`), t` + δ(t`)

)
∩ [0, T ], ∀ ε ∈ [0, ε1]. (4.21)

Let Ic0
4
= I0(x̄) \

⋃N
`=1(t` − δ(t`), t` + δ(t`)). Since Ic0 is compact, we can find δ̃ > 0 and ρ3 > 0

(independent of t) such that

E
〈
g0
x(x̄(s)), x1(s)

〉
H
< −ρ3, ∀ s ∈ (t− δ̃, t+ δ̃) ∩ [0, T ], t ∈ Ic0.

This, together with (4.16), implies that there exists ε2 > 0 such that

Eg0(xε(s)) ≤ 0, ∀ s ∈ (t− δ̃, t+ δ̃) ∩ [0, T ], ∀ t ∈ Ic0, ∀ ε ∈ [0, ε2]. (4.22)

Clearly,

I0(x̄) ⊂
[ N⋃
`=1

(t` − δ(t`), t` + δ(t`))
]⋃[ ⋃

t∈Ic0

(t− δ̃, t+ δ̃)
]
.

Let δ0 > 0 be small enough such that

I0(x̄) ⊂
⋃

t∈I0(x̄)

(t− δ0, t+ δ0) ⊂
[ N⋃
`=1

(t` − δ(t`), t` + δ(t`))
]⋃[ ⋃

t∈Ic0

(t− δ̃, t+ δ̃)
]
.

Put ε0 = min{ε1, ε2}. It follows from (4.22) that

Eg0(xε(s)) ≤ 0, ∀ s ∈ (t− δ0, t+ δ0) ∩ [0, T ], ∀ t ∈ I0(x̄), ∀ ε ∈ [0, ε0]. (4.23)

Set
Icc 4= [0, T ] \

[ ⋃
t∈I0(x̄)

(t− δ0, t+ δ0)
]
.

From the compactness of Icc and the continuity if Eg0(x̄(·)) with respect to t, we know that there
exists ρ4 > 0 such that

Eg0(x̄(t)) < −ρ4, ∀ t ∈ Icc.
This, together with (4.16), implies that for all sufficiently small ε > 0,

Eg0(xε(t)) ≤ 0, ∀ t ∈ Icc. (4.24)

Combining (4.23) and (4.24), we conclude that xε(·) satisfies the constraint (1.3), provided that ε
is small enough.

By a similar argument, we can show that when ε is small enough, xε(·) satisfies the constraint
(1.4). This proves that (xε(·), uε(·)) ∈ Pad, provided that ε is sufficiently small.

Step 4: By the optimality of (x̄(·), ū(·)) and the equality E 〈hx(x̄(T )), x1(T )〉H = 0, we have
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0 ≤ lim
ε→0+

Eh(xε(T ))− Eh(x̄(T ))

ε2

= E 〈hx(x̄(T )), x2(T )〉H +
1

2
E 〈hxx(x̄(T ))x1(T ), x1(T )〉H + lim

ε→0+

o(ε2)

ε2

= E 〈hx(x̄(T )), x2(T )〉H +
1

2
E 〈hxx(x̄(T ))x1(T ), x1(T )〉H .

(4.25)

From the definition of the transposition solution of the equation (3.17), we get that

E 〈y(T ), x2(T )〉H

=〈y(0), ν2〉H+E
∫ T

0

(
〈y(t), a2[t]u2(t)〉H+

1

2
〈y(t), a11[t](x1(t), x1(t))〉H+〈y(t), a12[t](x1(t), u1(t))〉H

+
1

2
〈y(t), a22[t](u1(t), u1(t))〉H + 〈Y (t), b2[t]u2(t)〉L2

+
1

2
〈Y (t), b11[t](x1(t), x1(t))〉L2

(4.26)

+ 〈Y (t), b12[t](x1(t), u1(t))〉L2
+

1

2
〈Y (t), b22[t](u1(t), u1(t))〉L2

)
dt+ E

∫ T

0
〈x2(t), dψ(t)〉H .

This, together with the choice of y(T ), implies that

E 〈hx(x̄(T )), x2(T )〉H

= −〈y(0), ν2〉H −
∑
j∈I(x̄)

λj
〈
gjx(x̄(T )), x2(T )

〉
H
− E

∫ T

0
〈x2(t), dψ(t)〉H

−E
∫ T

0

(
〈y(t), a2[t]u2(t)〉H+

1

2
〈y(t), a11[t](x1(t), x1(t))〉H+〈y(t), a12[t](x1(t), u1(t))〉H (4.27)

+
1

2
〈y(t), a22[t](u1(t), u1(t))〉H + 〈Y (t), b2[t]u2(t)〉L2

+
1

2
〈Y (t), b11[t](x1(t), x1(t))〉L2

+ 〈Y (t), b12[t](x1(t), u1(t))〉L2
+

1

2
〈Y (t), b22[t](u1(t), u1(t))〉L2

)
dt

= −〈y(0), ν2〉H − E
∫ T

0
〈x2(t), dψ(t)〉H − E

∫ T

0
〈Hu[t], u2(t)〉H1

dt

−1

2
E
∫ T

0

(
〈Hxx[t]x1(t), x1(t)〉H+2〈Hxu[t]x1(t), u1(t)〉H1

+〈Huu[t]u1(t), u1(t)〉H1

)
dt.

By the definition of the relaxed transposition solution of (4.1), we have that

E 〈P (T )x1(T ), x1(T )〉H

= 〈P (0)ν1, ν1〉H + E
∫ T

0

(
2 〈P (t)x1(t), a2[t]u1(t)〉H + 2 〈P (t)b1[t]x1(t), b2[t]u1(t)〉L2

+ 〈P (t)b2[t]u1(t), b2[t]u1(t)〉L2
+
〈(
Q̂(0) +Q(0)

)(
0, a2[t]u1(t), b2[t]u1(t)

)
, b2[t]u1(t)

〉
L2

−〈Hxx[t]x1(t), x1(t)〉H
)
dt.

(4.28)

This, together with (4.27) and (4.25), implies (4.15).

Step 5: In this step, we handle the case when x2(·) ∈ X(2)(x1, u1) ∩ clG0
(2)(x1) ∩ clG(2)(x1).

Let x̂2(·) ∈ X(2)(x1, u1) ∩ clG0
(2)(x1) ∩ clG(2)(x1) with the corresponding ν̂2 ∈ W(ν̄0, ν1) and

û2(·) ∈M(ū, u1). For θ ∈ (0, 1), put

xθ2 = (1− θ)x2 + θx̂2.

Noting that W(ν̄0, ν1) and M(ū, u1) are convex, xθ2 is the solution of the equation (4.5) with the
initial datum
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νθ2
4
= (1− θ)ν2 + θν̂2 ∈ W(ν̄0, ν1)

and the control
uθ2(·) 4= (1− θ)u2(·) + θû2(·) ∈M(ū, u1).

Then, it is easy to show that

lim
θ→0

xθ2 = x2 in L2
F(Ω;C([0, T ];H)).

Furthermore, since x̂2(·) ∈ G0
(2)(x1) ∩ G(2)(x1), we have xθ2(·) ∈ G0

(2)(x1) ∩ G(2)(x1) for θ 6= 0. From
Step 1, we deduce that

〈y(0), νθ2〉H +
1

2
〈P (0)ν1, ν1〉H +

∑
j∈I(x̄)

E
〈
λjg

j
x(x̄(T )), xθ2(T )

〉
H

+E
∫ T

0

(〈
Hu[t], uθ2(t)

〉
H1

+
1

2

〈
Huu[t]u1(t), u1(t)

〉
H1

+
1

2

〈
b2[t]∗P (t)b2[t]u1(t), u1(t)

〉
H1

+
〈(
Hxu[t] + a2[t]∗P (t) + b2[t]∗P (t)b1[t]

)
x1(t), u1(t)

〉
H1

+
1

2

〈(
Q̂(0)+Q(0)

)(
0, a2[t]u1(t), b2[t]u1(t)

)
, b2[t]u1(t)

〉
L2

)
dt+ E

∫ T

0

〈
xθ2(t), dψ(t)

〉
H
≤ 0.

Letting θ → 0 in the above inequality, we obtain (4.15). This completes the proof of Theorem
4.1.

Remark 4.8. The second order necessary condition is only valid for Y(x̄, ū) (recall (4.7) for the
definition) being nonempty. If G(1)(T ) 6= ∅, U = H1, (3.1) is exactly controllable and there are no
state constraints, then Y(x̄, ū) 6= ∅. However, to enjoy the exact controllability property, one needs
some restrictive conditions (e.g.[24, 25, 26]).

Next, we give another second order necessary condition.

Theorem 4.2. Suppose that (AS1)–(AS9) hold and (x̄(·), ū(·), ν̄0) be an optimal triple of Prob-
lem (OP). Let Φ(t, ω) = CU (ū(t, ω)). Assume that E|g0

x(x̄(t))|H 6= 0 for all t ∈ I0(x̄). Let
(x1, u1, ν1) ∈ Υ(x̄, ū) and suppose that e(·) (defined by (4.11)) is bounded on I0(x̄, x1). LetW(ν̄0, ν1)

⊂ T
b(2)
V (x̄0, ν1) and M(ū, u1) ⊂ T

b(2)
U4 (ū, u1) be convex. Then there exist λ0 ∈ {0, 1}, λj ≥ 0 for

all j ∈ I(x̄) and ψ ∈
(
G0

(1)

)−
such that the solution (y, Y ) of (3.17) with yT = −λ0hx(x̄(T )) −∑

j∈I(x̄)

λjg
j
x(x̄(T )) and I(x̄) replaced by I(x̄, x1) satisfies the first order condition (3.32), and for any

x2(·) ∈ X(2)(x1, u1) with the corresponding ν2 ∈ W(ν̄0, ν1) and u2(·) ∈ M(ū, u1), the second order

necessary condition (4.15) holds true, where (P (·), Q(·), Q̂(·)) is the relaxed transposition solution of

(4.1) with P (T ) = −λ0hxx(x̄(T ))−
n∑
j=1

λjg
j
xx(x̄(T )).

Proof. If either W(ν̄0, ν1) or M(ū, u1) is empty, then by Theorem 3.2, we get the desired result.
Therefore, in the rest of the proof, we assume that these two sets are nonempty. Put

W̃(x̄0, ν1)
4
= CV(x̄0) +W(x̄0, ν1), M̃(ū, u1)

4
= TΦ(ū) +M(ū, u1),

where
TΦ(ū)

4
= {u ∈ L4

F(0, T ;H1) | u(t, ω) ∈ CU (ū(t, ω)) a.e. in [0, T ]× Ω}.
By Lemma 2.2, TΦ(ū) ⊂ CU4(ū). Thus, by Lemma 2.4 from [17], M̃(ū, u1) ⊂ T b(2)

U4 (ū, u1).
We divide the rest of the proof into two steps. In Step 1, we handle the case when I0(x̄, x1) = ∅.

In Step 2, we deal with the case when I0(x̄, x1) 6= ∅.
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Step 1. If I0(x̄, x1) = ∅, then G0
(2)(x1) = L2

F(Ω;C([0, T ];H)) and

X(2)(x1, u1) ∩ G0
(2)(x1) ∩ G(2)(x1) = X(2)(x1, u1) ∩ G(2)(x1).

Fix (x1(·), u1(·), ν1) ∈ Z(x̄, ū) (recall (4.8) for the definition of Z(x̄, ū)). Consider the following
two different cases:

Case 1.1: I(x̄, x1) = ∅.
In this context,

E〈hx(x̄(T )), x1(T )〉H = 0, E〈gjx(x̄(T )), x1(T )〉H < 0, ∀ j ∈ I(x̄).

Then for any ν2 ∈ W̃(ν̄0, ν1), u2 ∈ M̃(ū, u1) and ε > 0, there exist νε ∈ H and vε ∈ L4
F(0, T ;H1)

such that
|νε|H = o(ε2), νε0

4
= ν̄0 + εν1 + ε2ν2 + νε ∈ V

and
|vε|L4

F(0,T ;H1) = o(ε2), uε
4
= ū+ εu1 + ε2u2 + vε ∈ U4.

Let xε(·) be the solution of the control system (1.1) with the initial datum νε0 and the control uε(·).
Put

hε11(T )
4
=

∫ 1

0
(1− θ)hxx(x̄(T ) + θδxε(T ))dθ.

By Lemma 4.2, there is ρ < 0 such that for each j ∈ I(x̄) and all sufficiently small ε > 0,

Egj(xε(T )) = Egj(x̄(T )) + εE〈gjx(x̄(T )), x1(T )〉H + ε2E〈gjx(x̄(T )), x2(T )〉H

+
ε2

2
E〈gjxx(x̄(T ))x1(T ), x1(T )〉H + o(ε2)

= ε
(
E〈gjx(x̄(T )), x1(T )〉H + εE〈gjx(x̄(T )), x2(T )〉H

+
ε

2
E〈gjxx(x̄(T ))x1(T ), x1(T )〉H + o(ε)

)
< ερ < 0

and, for each j /∈ I(x̄), Egj(xε(T )) = Egj(x̄(T )) + O(ε) ≤ ρ+ O(ε). Consequently, (xε(·), uε(·)) ∈
Pad.

Direct computations yield

J (uε)− J (ū)

ε2

=
1

ε2
E
(
〈hx(x̄(T )), δxε(T )〉H +

1

2
〈hε11(x̄(T ))δxε(T ), δxε(T )〉H

)
= E

(1

ε
〈hx(x̄(T )), x1(T )〉H + 〈hx(x̄(T )), x2(T )〉H +

1

2
〈hxx(x̄(T ))x1(T ), x1(T )〉H

)
+ ρε2,

where
ρε2 = E

(1

2

〈
hε11(x̄(T ))

δxε(T )

ε
,
δxε(T )

ε

〉
H
− 1

2
〈hxx(x̄(T ))x1(T ), x1(T )〉H

)
.

Similar to the proof of Lemma 4.2, we can show that lim
ε→0+

ρε2 = 0. Therefore,

0 ≤ lim
ε→0+

J (uε(·))− J (ū(·))
ε2

= E
(
〈hx(x̄(T )), x2(T )〉H +

1

2
〈hxx(x̄(T ))x1(T ), x1(T )〉H

)
. (4.29)
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It follows from the definition of the transposition solution of (3.17) that

E 〈y(T ), x2(T )〉H

= E 〈y(0), ν2〉H + E
∫ T

0

(
〈y(t), a2[t]u2(t)〉H +

1

2

〈
y(t), a11[t]

(
x1(t), x1(t)

)〉
H

+
〈
y(t), a12[t]

(
x1(t), u1(t)

)〉
H1

+
1

2

〈
y(t), a22[t]

(
u1(t), u1(t)

)〉
H1

+ 〈Y (t), b2[t]u2(t)〉L2
+

1

2

〈
Y (t), b11[t]

(
x1(t), x1(t)

)〉
L2

+
〈
Y (t), b12[t]

(
x1(t), u1(t)

)〉
L2

+
1

2

〈
Y (t), b22[t]

(
u1(t), u1(t)

)〉
L2

)
dt.

(4.30)

By the definition of the relaxed transposition solution of (4.1), we have

E 〈P (T )x1(T ), x1(T )〉H

= E 〈P (0)ν1, ν1〉H + E
∫ T

0

(
2 〈P (t)x1(t), a2[t]u1(t)〉H + 2 〈P (t)b1[t]x1(t), b2[t]u1(t)〉H

+ 〈P (t)b2[t]u1(t), b2[t]u1(t)〉H − 〈Hxx(t)x1(t), x1(t)〉H
)
dt

+E
∫ T

0

〈
Q̂(0)(0, a2u1, b2u1)(t) +Q(0)(0, a2u1, b2u1)(t), b2(t)u1(t)

〉
L2
dt.

(4.31)

Let λ0 = 1, λj = 0 for all j ∈ I(x̄) and ψ = 0. It follows from (4.29)–(4.31) that

0 ≥ E 〈y(0), ν2〉H +
1

2
E 〈P (0)ν1, ν1〉H + E

∫ T

0

[
〈y(t), a2[t]u2(t)〉H + 〈Y (t), b2[t]u2(t)〉L2

+
1

2

( 〈
y(t), a22[t]

(
u1(t), u1(t)

)〉
H

+
〈
Y (t), b22[t]

(
u1(t), u1(t)

)〉
L2

+〈P (t)b2[t]u1(t), b2[t]u1(t)〉H
)

+
〈
y(t), a12[t]

(
x1(t), u1(t)

)〉
H

+
〈
Y (t), b12[t]

(
x1(t), u1(t)

)〉
L2

+〈a2[t]∗P (t)x1(t), u1(t)〉H1
+〈b2[t]∗P (t)b1[t]x1(t), u1(t)〉H1

]
dt

+
1

2
E
∫ T

0

〈
Q̂(0)(0, a2u1, b2u1)(t) +Q(0)(0, a2v, b2u1)(t), b2[t]u1(t)

〉
L2
dt

= E 〈y(0), ν2〉H +
1

2
E 〈P (0)ν1, ν1〉H

+E
∫ T

0

(〈
Hu[t], u2(t)

〉
H1

+
1

2

〈
Huu(t)u1(t), u1(t)

〉
H1

+
1

2

〈
b2[t]∗P (t)b2[t]u1(t), u1(t)

〉
H1

)
dt

+E
∫ T

0

〈(
Hxu(t) + a2[t]∗P (t) + b2[t]∗P (t)b1[t]

)
y(t), u1(t)

〉
H1
dt

+
1

2
E
∫ T

0

〈
Q̂(0)(0, a2[t]u1, b2[t]u1)(t) +Q(0)(0, a2[t]u1, b2[t]u1)(t), b2[t]u1(t)

〉
L2
dt.

Case 1.2: I(x̄, x1) 6= ∅.
First, we claim that

E2(x1) ∩H(2)(x1) ∩ G2(x1, u1) = ∅. (4.32)

Indeed, if (4.32) was false, then there would exist ν2 ∈ W̃(ν̄0, ν1) and u2(·) ∈ M̃(ū, u1) such that
for some ρ < 0, the corresponding solution x2(·) of (4.5) satisfies

E
〈
gjx(x̄(T )), x2(T )

〉
H

+
1

2
E
〈
gjxx(x̄(T ))x1(T ), x1(T )

〉
H
< 2ρ, ∀ j ∈ I(x̄, x1)
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and
E
〈
hx(x̄(T )), x2(T )

〉
H

+
1

2
E
〈
hxx(x̄(T ))x1(T ), x1(T )

〉
H
< 2ρ.

Let νε ∈ H and vε ∈ L4
F(0, T ;H1) be such that

|νε|H = o(ε2), νε0
4
= ν̄0 + εν1 + ε2ν2 + νε ∈ V

and
|vε|L4

F(0,T ;H1) = o(ε2), uε(·) 4= ū(·) + εu1(·) + ε2u2(·) + vε(·) ∈ U4.

Let xε(·) be the solution of the control system (1.1) with the initial datum νε0 and the control uε(·).
Similar to Case 1.1, one can prove that for every j /∈ I(x̄, x1) and for all ε > 0 small enough,
Egj(xε(T )) ≤ 0. Meanwhile, by Lemma 4.2, for any j ∈ I(x̄, x1), and for all sufficiently small ε > 0,

Egj(xε(T )) = Egj(x̄(T )) + εE
〈
gjx(x̄(T )), x1(T )

〉
H

+ ε2E
〈
gjx(x̄(T )), x2(T )

〉
H

+
ε2

2
E
〈
gjxx(x̄(T ))x1(T ), x1(T )

〉
H

+ o(ε2)

= ε2
(
E
〈
gjx(x̄(T )), x2(T )

〉
H

+
1

2
E
〈
gjxx(x̄(T ))x1(T ), x1(T )

〉
H

+
o(ε2)

ε2

)
< ε2ρ < 0.

This proves that (xε(·), uε(·)) ∈ Pad.
On the other hand, for all sufficiently small ε > 0,

Eh(xε(T )) = Eh(x̄(T )) + εE
〈
hx(x̄(T )), x1(T )

〉
H

+ ε2E
〈
hx(x̄(T )), x2(T )

〉
H

+
ε2

2
E
〈
hxx(x̄(T ))x1(T ), x1(T )

〉
H

+ o(ε2)

= Eh(x̄(T ))+ε2
(
E
〈
hx(x̄(T )), x2(T )

〉
H

+
1

2
E
〈
hxx(x̄(T ))x1(T ), x1(T )

〉
H

+
o(ε2)

ε2

)
< Eh(x̄(T )) + ε2ρ < Eh(x̄(T )).

This contradicts the optimality of (x̄(·), ū(·), ν̄0). Hence, (4.32) holds.

Next, we consider two subcases (recall (4.9), (4.13) and (4.14) for the definitions of X(2)(x1, u1),
G(2)(x1) and H(2)(x1)).

Case 1.2.1. H(2)(x1) ∩ G(2)(x1) 6= ∅.

Under these circumstances, Γ
(
H(2)(x1)

)
∩ Γ
(
G(2)(x1)

)
6= ∅. Since Γ

(
H(2)(x1)

)
∩ Γ
(
G(2)(x1)

)
∩

Γ
(
X(2)(x1, u1)

)
= ∅, by the Hahn-Banach separation theorem, we can find a nonzero ξ ∈ L2

FT (Ω;H)
such that

sup
α∈Γ(H(2)(x1))∩Γ(G(2)(x1))

E〈ξ, α〉H ≤ inf
β∈Γ(X(2)(x1,u1))

E〈ξ, β〉H .

By Lemma 2.9, there exists

α0 ∈ cl
(
Γ
(
H(2)(x1)

)⋂
Γ
(
G(2)(x1)

))
= clΓ

(
H(2)(x1)

)⋂( ⋂
j∈I(x̄,x1)

clΓ
(
E2,j(x1(T ))

))
such that

E〈ξ, α0〉H = sup
α∈Γ(H(2)(x1))∩Γ(G(2)(x1))

E〈ξ, α〉H .

Put
I0(x̄, x1)

4
=
{
j ∈ I(x̄, x1)

∣∣∣E〈gjx(x̄(T )), α0

〉
H

+
1

2
E
〈
gjxx(x̄(T ))x1(T ), x1(T )

〉
H

= 0
}
.

By Lemma 2.9, for every j ∈ I0(x̄, x1), there exists λj ≥ 0 such that

ξ = λ0hx(x̄(T )) +
∑

j∈I0(x̄,x1)

λjg
j
x(x̄(T )), (4.33)
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where λ0 = 0 if E〈hx(x̄(T )), α0〉H +
1

2
E〈hxx(x̄(T ))x1(T ), x1(T )〉H < 0. Then (4.33) yields

E〈ξ, α0〉H =−1

2

(
λ0E

〈
hxx(x̄(T ))x1(T ), x1(T )

〉
H

+
∑

j∈I0(x̄,x1)

λjE
〈
gjxx(x̄(T ))x1(T ), x1(T )

〉
H

)
.

Setting
y(T ) = −λ0hx(x̄(T ))−

∑
j∈I0(x̄,x1)

λjg
j
x(x̄(T ))

and
P (T ) = −λ0hxx(x̄(T ))−

∑
j∈I0(x̄,x1)

λjg
j
xx(x̄(T )),

we find that for any x2(T ) ∈ Γ
(
X(2)(x1, u1)

)
,

1

2
E〈P (T )x1(T ), x1(T )〉H

= −1

2

(
λ0E〈hxx(x̄(T ))x1(T ), x1(T )〉H +

∑
j∈I0(x̄,x1)

λjE〈gjxx(x̄(T ))x1(T ), x1(T )〉H
)

= E〈ξ, α0〉H ≤ E〈y(T ), x2(T )〉H .

This, together with (4.30) and (4.31), implies (4.15).

Case 1.2.2. Γ
(
H(2)(x1)

)
∩ Γ
(
G(2)(x1)

)
= ∅.

For simplicity of notations, we put gn+1(·) = h(·), I = {n+1}∪I(x̄, x1) and Gn+1
(2) (x1) = H(2)(x1).

If there exists j ∈ I such that Γ
(
Gj(2)(x1)

)
= ∅, then gjx(x̄(T )) = 0, P-a.s. and

E
〈
gjxx(x̄(T ))x1(T ), x1(T )

〉
H
≥ 0. (4.34)

Let λj = 1 and λk = 0 for k ∈ I \ {j}. Then λjg
j
x(x̄(T )) +

∑
k∈I\{j}

λkg
k
x(x̄(T )) = 0. Let y(T ) = 0

and P (T ) = −gjxx(x̄(T )). It is easy to see that (y(·), Y (·)) = (0, 0), H(·) = 0, Hxx[·] = 0 and by
(4.34), E〈P (T )x1(T ), x1(T )〉H ≤ 0. Then, by the definition of the relaxed transposition solution of
(4.1), (4.15) holds and it is reduced to

E〈P (0)ν1, ν1〉H+E
∫ T

0

[〈
b2[t]∗P (t)b2[t]u1(t), u1(t)

〉
H1

+2
〈(
a2[t]∗P (t)+b2[t]∗P (t)b1[t]

)
x1(t), u1(t)

〉
H1

+
〈(
Q̂(0) +Q(0)

)(
0, a2[t]u1(t), b2[t]u1(t)

)
, b2[t]u1(t)

〉
L2

]
dt ≤ 0.

If Γ
(
Gj(2)(x1)

)
6= ∅ for all j ∈ I, then one can find j0 ∈ I and a subset I0 ⊂ I with j0 /∈ I0 such

that ⋂
j∈I0

Γ
(
Gj(2)(x1)

)
6= ∅,

( ⋂
j∈I0

Γ
(
Gj(2)(x1)

))⋂
Γ
(
Gj0(2)(x1)

)
= ∅.

By the Hahn-Banach separation theorem, there exists a nonzero ξ ∈ L2
FT (Ω;H) such that

sup
α∈E(2,j0)

T (x1)

E〈ξ, α〉H ≤ inf
β∈∩j∈I0E

(2,j)
T (x1)

E〈ξ, β〉H .

By Lemma 2.9, we can find α0 ∈ clΓ
(
Gj0(2)(x1)

)
and β0 ∈

⋂
j∈I0 clΓ

(
Gj(2)(x1)

)
such that

E〈ξ, α0〉H = sup
α∈Γ(Gj0

(2)
(x1))

E〈ξ, α〉H ≤ inf
β∈∩j∈I0Γ(Gj

(2)
(x1))

E〈ξ, β〉H = E〈ξ, β0〉H . (4.35)
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It follows from Lemma 2.9 that there exists λj0 > 0 such that ξ = λj0g
j0
x (x̄(T )) and

0 = E
〈
gj0x (x̄(T )), α0

〉
H

+
1

2
E
〈
gj0xx(x̄(T ))x1(T ), x1(T )

〉
H
. (4.36)

Denote by I1 the set of all indices j ∈ I0 satisfying

0 = E
〈
gjx(x̄(T )), α0

〉
H

+
1

2
E
〈
gjxx(x̄(T ))x1(T ), x1(T )

〉
H
. (4.37)

Then, by Lemma 2.9 once more, for each j ∈ I1, there exists λj ≥ 0 such that

−ξ = −λj0gj0x (x̄(T )) =
∑
j∈I1

λjg
j
x(x̄(T )). (4.38)

Combing (4.35)–(4.38), we obtain that

0 ≤ λj0E
〈
gj0xx(x̄(T ))x1(T ), x1(T )

〉
H

+
∑
j∈I1

E
〈
gjxx(x̄(T ))x1(T ), x1(T )

〉
H
.

Let y(T ) = 0 and P (T ) = −λj0g
j0
xx(x̄(T ))−

∑
j∈I1 g

j
xx(x̄(T )). Then

(y(·), Y (·)) = (0, 0), H(·) = 0, Hxx[·] = 0, E〈P (x̄(T ))x1(T ), x1(T )〉H ≤ 0.

Applying the same argument as before, we obtain (4.15) with ψ = 0.

Step 2. In this step, we deal with the case that I0(x̄, x1) 6= ∅.
From E|gx(x̄(t))|H 6= 0 for any t ∈ I0(x̄) and e(·) (recall (4.11) for the definition of e(·)) is

bounded on I0(x̄, x1), we get that −gx(x̄(·)) ∈ G0
(1) and −δgx(x̄(·)) ∈ G0

(2)(x1) when δ (> 0) is large

enough. Thus, G0
(1) 6= ∅ and G0

(2)(x1) 6= ∅.
Let x2(·) ∈ X(2)(x1, u1) and (y(·), Y (·)) be the transposition solution to (3.17). We deduce from

(4.26) that

E 〈y(T ), x2(T )〉H

= E 〈y(0), ν2〉H + E
∫ T

0
〈x2(t), dψ(t)〉H + E

∫ T

0
〈Hu[t], u2(t)〉H1

dt

+
1

2
E
∫ T

0

(
〈Hxx[t]x1(t), x1(t)〉H + 2 〈Hxu[t]x1(t), u1(t)〉H1

+ 〈Huu[t]u1(t), u1(t)〉H1

)
dt.

If Gj1(2)(x1) = ∅ for some j1 ∈ I, then gj1x (x̄(T )) = 0, P-a.s. and E〈gj1xx(x̄(T ))x1(T ), x1(T )〉H ≥ 0.

Therefore, by setting ψ(·) = 0, λj1 = 1 and λj = 0 for all j1 6= j ∈ I, we get (y(·), Y (·)) = (0, 0),

P (T ) = −gj1xx(x̄(T )), E 〈P (T )x1(T ), x1(T )〉H ≤ 0 and

E
∫ T

0
〈Hxx[t]x1(t), x1(t)〉H dt = 0.

These facts, together with (4.28), imply (4.15).
Next, assume that Gj(2)(x1) 6= ∅ for every j ∈ I. We claim that

X(2)(x1, u1)
⋂
G0

(2)(x1)
⋂(⋂

j∈I
Gj(2)(x1)

)
= ∅. (4.39)

Indeed, if

X(2)(x1, u1)
⋂
G0

(2)(x1)
⋂( ⋂

j∈I(x̄,x1)

Gj(2)(x1)
)

= ∅,
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then (4.39) holds. Otherwise, for any

x2 ∈ X(2)(x1, u1)
⋂
G0

(2)(x1)
⋂( ⋂

j∈I(x̄,x1)

Gj(2)(x1)
)
,

from (4.14) and (4.25), we see that x2 /∈ H(2)(x1) = Gn+1
(2) (x1). This also yields (4.39).

It follows from Lemma 2.10 that there exist x∗, x∗j ∈ L2
F(Ω;C([0, T ];H))∗ for all j ∈ I, which do

not vanish simultaneously, such that for κ∗ = −
(
x∗ +

∑
j∈I

x∗j

)
,

inf
z∈X(2)(x1,u1)

κ∗(z) + inf
z∈G0

(2)
(x1)

x∗(z) +
∑
j∈I

inf
z∈Gj

(2)
(x1)

x∗j (z) ≥ 0. (4.40)

If gjx(x̄(T )) = 0 for some j ∈ I, then Gj(2)(x1) = L2
F(Ω;C([0, T ];H)). This, together with (4.40),

yields x∗j = 0.

For each j ∈ I with gjx(x̄(T )) 6= 0, put

Rj
4
=
{
zT ∈ L2

FT (Ω;H)
∣∣E 〈gjx(x̄(T )), zT

〉
H
≤ 0

}
. (4.41)

Then Rj is a closed convex cone and (Rj)
− = R+g

j
x(x̄(T )).

Let Γ be given by (3.15). It is easy to show that

Γ−1(Rj) + Gj(2)(x1) ⊂ Gj(2)(x1) for every j ∈ I

and that Γ−1(Rj) is a cone. Hence, by (4.40), −x∗j ∈
(
Γ−1(Rj)

)−
. Noting that Γ is surjective, by

the well known result of convex analysis,
(
Γ−1(Rj)

)−
= Γ∗(R−j ) (see for instance [1, Corollary 22,

p. 144] applied to the closed convex cone Rj and the set-valued map Γ−1 whose graph is a closed
subspace of L2

FT (Ω;H)× L2
F(Ω;C([0, T ];H))). Therefore,

−x∗j = Γ∗(λjg
j
x(x̄(T ))) for some λj ≥ 0.

If x∗j = 0, then we put λj = 0. By normalizing, we may assume that λ0 ∈ {0, 1}.
Since the map Γ is surjective, we have that

sup
z∈Gj

(2)
(x1)

(
−x∗j

)
(z) = sup

z∈Gj
(2)

(x1)

E
〈
λjg

j
x(x̄(T )),Γ(z)

〉
H

= sup
zT∈E

(2,j)
T (x1)

E
〈
λjg

j
x(x̄(T )), z(T )

〉
H
.

By the definition of Gj(2)(x1), for any j ∈ I with gjx(x̄(T )) 6= 0,

sup
zT∈E

(2,j)
T (x1)

E〈λjgjx(x̄(T )), zT 〉H = −λj
2
E
〈
gjxx(x̄(T ))x1(T ), x1(T )

〉
H
.

From (4.40) (by setting dψ = −x∗), we deduce that

sup
x2∈X(2)(x1,v)

(−κ∗)(x2) + sup
α∈G0

(2)
(x1)

E
∫ T

0
〈α(t), dψ(t)〉H−

1

2
E
∑
j∈I

〈
λjg

j
xx(x̄(T ))x1(T ), x1(T )

〉
H
≤ 0.

(4.42)
Recalling Remark 4.5 for the inclusions G0

(1) + G0
(2)(x1) ⊂ G0

(2)(x1) and X(1) + X(2)(x1, u1) ⊂
X(2)(x1, u1), we get from (4.42) that dψ ∈ (G0

(1))
− and −κ∗ ∈ (X(1))

−.

Put y(T ) = −
∑
j∈I

λjg
j
x(x̄(T )) and let (y(·), Y (·)) be the solution to (3.17) with I(x̄) replaced

by I(x̄, x1). Let P (T ) = −λ0hxx(x̄(T )) and (P (·), Q(·), Q̂(·)) be the relaxed solution of (4.1). By
(4.42), for every x2(·) ∈ X(2)(x̄, x1),
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−E
∫ T

0
〈x2(t), dψ(t)〉H −

∑
j∈I

E〈λjgjx(x̄(T )), x2(T )〉H

+
1

2
E〈P (T )x1(T ), x1(T )〉H + sup

α∈G0
(2)

(x1)

∫ T

0
〈α(t), dψ(t)〉H ≤ 0.

From the above inequality, using (4.26) and (4.28), we complete the proof.

A. Proof of Lemma 3.1

We first recall the following result. Its proof can be found in [7, Chapter 7].

Lemma A.1. Assume that (AS1) holds. Then, for any ν0 ∈ H, p ≥ 1 and u(·) ∈ LpF(Ω;L2(0, T ;
H1)), the equation (1.1) admits a unique solution x(·) ∈ CF([0, T ];Lp(Ω;H)), and for any t ∈ [0, T ],

sup
s∈[0,t]

E
(
|x(s)|pH

)
≤ CE

[
|ν0|pH +

(∫ t

0
|a(s, 0, u(s))|Hds

)p
+
(∫ t

0
|b(s, 0, u(s))|2L2

ds
) p

2
]
. (A.1)

Moreover, if x̃ is the solution of (1.1) corresponding to (ν̃0, ũ) ∈ H ×LpF(Ω;L2(0, T ;H1)), then, for
any t ∈ [0, T ],

sup
s∈[0,t]

E
(
|x(s)− x̃(s)|pH

)
≤ CE

[
|ν0 − ν̃0|pH +

(∫ t

0
|u(s)− ũ(s)|2H1

ds
) p

2
]
. (A.2)

Proof of Lemma 3.1. From (3.1) and Lemma A.1 we deduce that

E
(
|x1(t)|pH

)
≤CE

[∣∣ν1

∣∣p
H

+
(∫ t

0
|a2[s]u1(s)|Hds

)p
+
(∫ t

0
|b2[s]u1(s)|2L2

ds
) p

2
]

≤ CE
[
|ν1|p +

(∫ t

0
|u1(t)|2H1

dt
) p

2
]
.

This implies that

sup
t∈[0,T ]

E
(
|x1(t)|pH

)
≤ CE

[
|ν1|p +

(∫ T

0
|u1(t)|2H1

dt
) p

2
]
,

which yields (3.3).

Since lim
ε→0+

νε1 = ν1 in H, lim
ε→0+

uε1(·) = u1(·) in LpF(Ω;L2(0, T ;H1)),

it follows from (A.2) that

sup
t∈[0,T ]

E
(
|δxε(t)|pH

)
≤ CE

(
εp|νε0|

p
H +

(∫ T

0
|εuε1(t)|2H1

ds
) p

2
)

= O(εp).

This implies (3.4).

Let 

ãε1(t)
4
=

∫ 1

0
ax(t, x̄(t) + θδxε(t), ū(t) + θεuε1(t))dθ,

ãε2(t)
4
=

∫ 1

0
au(t, x̄(t) + θδxε(t), ū(t) + θεuε1(t))dθ,

b̃ε1(t)
4
=

∫ 1

0
bx(t, x̄(t) + θδxε(t), ū(t) + θεuε1(t))dθ,

b̃ε2(t)
4
=

∫ 1

0
bu(t, x̄(t) + θδxε(t), ū(t) + θεuε1(t))dθ.
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Then, δxε(·) is the solution of the following SEE:{
dδxε(t)=

(
Aδxε(t)+ãε1(t)δxε(t)+εãε2(t)uε1(t)

)
dt+

(
b̃ε1(t)δxε(t)+εb̃ε2(t)uε1(t)

)
dW (t) in (0, T ],

δxε(0) = ενε1,

and rε1(·) solves

drε1(t) =
[
Arε1(t) + ãε1(t)rε1(t) +

(
ãε1(t)− a1[t]

)
x1(t) + ãε2(t)

(
uε1(t)− u1(t)

)
+
(
ãε2(t)− a2[t]

)
u1(t)

]
dt+

[
b̃ε1(t)rε1(t) +

(
b̃ε1(t)− b1[t]

)
x1(t)

+b̃ε2(t)
(
uε1(t)− u1(t)

)
+
(
b̃ε2(t)− b2[t]

)
u1(t)

]
dW (t) in (0, T ],

rε1(0) = νε1 − ν1.

(A.3)

For any sequence {εj}∞j=1 of positive numbers satisfying lim
j→∞

εj = 0, we can find a subsequence

{jk}∞k=1 ⊂ N such that
lim
k→∞

sup
t∈[0,T ]

|δxεjk (t)|H → 0, P-a.s.,

lim
k→∞

εjk |u
εjk
1 (t)|H1 = 0, P-a.s. for a.e. t ∈ [0, T ].

Hence, ∣∣(ãεj1 (·)− a1(·))x1(·)
∣∣
H
→ 0 in measure, as j →∞.

From (AS2), we see that

lim
k→∞

∣∣(ãεjk1 (t)− a1[t])x1(t)
∣∣
H

= 0, P-a.s. for a.e. t ∈ [0, T ].

Then, it follows from Lebesgue’s dominated convergence theorem that

lim
j→∞

E
∫ T

0

∣∣(ãεj1 (t)− a1[t]
)
x1(t)

∣∣p
H
dt = 0. (A.4)

A similar argument implies that

lim
j→∞

E
[( ∫ T

0

∣∣(ãεj2 (t)− a2[t]
)
u1(t)

∣∣2
H
dt
) p

2
+
(∫ T

0

∣∣(b̃εj1 (t)− b1[t]
)
x1(t)

∣∣2
L2
dt
) p

2

+
(∫ T

0

∣∣(b̃εj2 (t)− b2[t]
)
u1(t)

∣∣2
L2
dt
) p

2
]

= 0.

(A.5)

On the other hand,

lim
j→∞

E
[( ∫ T

0
|ãεj2 (t)

(
u
εj
1 (t)− u1(t)

)
|2H1

dt
) p

2
+
(∫ T

0
|b̃εj2 (t)

(
u
εj
1 (t)− u1(t)

)
|2L2
dt
) p

2
]

≤ C lim
j→∞

E
(∫ T

0
|uεj1 (t)− u1(t)|2H1

dt
) p

2 → 0.

Therefore, by Lemma A.1 and (A.3)–(A.5), we obtain that

lim
j→∞

sup
t∈[0,T ]

E
(
|rεj1 (t)|pH

)
≤C lim

j→∞
E
[
|νεjk1 −ν1|pH+

(∫ T

0

∣∣(ãεj1 (t)−a1[t]
)
x1(t)+ã

εj
2 (t)

(
u
εj
1 (t)−u1(t)

)
+
(
ã
εj
2 (t)−a2[t]

)
u1(t)

∣∣
H
dt
)p

+
(∫ T

0

∣∣(b̃εj1 (t)− b1[t]
)
x1(t) + b̃

εj
2 (t)

(
u
εjk
1 (t)−u1(t)

)
+
(
b̃
εj
2 (t)− b2[t]

)
u1(t)

∣∣2
L2
dt
) p

2
]

= 0.

Since the sequence {εj}∞j=1 is arbitrary, the proof is complete.
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B. Proof of Lemma 4.2

Proof. By Lemma 3.1 (applied with p = 4), we obtain

sup
t∈[0,T ]

E
(
|x1(t)|4H

)
≤ CE

[
|ν1|4H +

(∫ T

0
|u1(t)|2H1

dt
)2]

. (B.1)

By (4.5), (B.1) and Hölder’s inequality, we have that

sup
t∈[0,T ]

E
(
|x2(t)|2H

)
≤CE

[
|ν2|2H+

(∫ T

0

∣∣2a2[t]u2(t)+a11[t]
(
x1(t), x1(t)

)
+2a12[t]

(
x1(t), u1(t)

)
+a22[t]

(
u1(t), u1(t)

)∣∣
H
dt
)2

+

∫ T

0
|2b2[t]u2(t) + b11[t]

(
x1(t), x1(t)

)
+ 2b12[t]

(
x1(t), u1(t)

)
+ b22[t]

(
u1(t), u1(t)

)
|2L2
dt
]

≤ CE
(
|ν2|2H+

∫ T

0
|u2(t)|2H1

dt+

∫ T

0
|u1(t)|4H1

dt
)

+ sup
t∈[0,T ]

(
E|x1(t)|4H + E|x1(t)|2HE

∫ T

0
|u1(t)|2H1

dt
)

≤ CE
(
|ν2|2H + |ν1|4H +

∫ T

0
|u2(t)|2H1

dt+

∫ T

0
|u1(t)|4H1

dt
)
.

Let 

ãε11(t)
4
=

∫ 1

0
(1− θ)axx(t, x̄(t) + θδxε(t), ū(t) + θδuε(t))dθ,

ãε12(t)
4
=

∫ 1

0
(1− θ)axu(t, x̄(t) + θδxε(t), ū(t) + θδuε(t))dθ,

ãε22(t)
4
=

∫ 1

0
(1− θ)auu(t, x̄(t) + θδxε(t), ū(t) + θδuε(t))dθ,

b̃ε11(t)
4
=

∫ 1

0
(1− θ)bxx(t, x̄(t) + θδxε(t), ū(t) + θδuε(t))dθ,

b̃ε12(t)
4
=

∫ 1

0
(1− θ)bxu(t, x̄(t) + θδxε(t), ū(t) + θδuε(t))dθ,

b̃ε22(t)
4
=

∫ 1

0
(1− θ)buu(t, x̄(t) + θδxε(t), ū(t) + θδuε(t))dθ.

Then, δxε solves

dδxε(t) =
[
Aδxε(t) + a1[t]δxε(t) + a2[t]δuε(t) + ãε11(t)

(
δxε(t), δxε(t)

)
+2δãε12(t)

(
xε(t), δuε(t)

)
+ ãε22(t)

(
δuε(t), δuε(t)

)]
dt

+
[
b1[t]δxε(t) + b2[t]δuε(t) + b̃ε11(t)

(
δxε(t), δxε(t)

)
+2b̃ε12(t)

(
δxε(t), δuε(t)

)
+ b̃ε22(t)

(
δuε(t), δuε(t)

)]
dW (t) in (0, T ],

δxε(0) = εν1 + ε2νε2.

(B.2)
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Consequently, rε2 solves

drε2(t)=
{
Arε2(t) + a1[t]rε2(t) + a2[t]

(
uε2(t)− u2(t)

)
+
[
ãε11(t)

(δxε(t)
ε

,
δxε(t)

ε

)
−1

2
a11[t]

(
x1(t), x1(t)

)]
+
[
2ãε12(t)

(δxε(t)
ε

,
δuε(t)

ε

)
− a12[t]

(
x1(t), u1(t)

)]
+
[
ãε22(t)

(δuε(t)
ε

,
δuε(t)

ε

)
− 1

2
a22[t]

(
u1(t), u1(t)

)]}
dt

+
{
b1[t]rε2(t) + b2[t]

(
hε(t)−h(t)

)
+
[
b̃ε11(t)

(δxε(t)
ε

,
δxε(t)

ε

)
− 1

2
b11[t]

(
x1(t), x1(t)

)]
+
[
2b̃ε12(t)

(δxε(t)
ε

,
δuε(t)

ε

)
− b12[t]

(
x1(t), u1(t)

)]
+
[
b̃ε22(t)

(δuε(t)
ε

,
δuε(t)

ε

)
− 1

2
b22[t]

(
u1(t), u1(t)

)]}
dW (t) in (0, T ],

rε2(0) = νε2 − ν2.

(B.3)

Since uε2(·) converges to u2(·) in L4
F(0, T ;H1), we have

lim
ε→0+

E
(∫ T

0

∣∣∣a2[t]
(
uε2(t)− u2(t)

)∣∣∣
H
dt
)2

+ lim
ε→0+

E
(∫ T

0

∣∣∣b2[t]
(
uε2(t)− u2(t)

)∣∣∣2
L2

dt
)

= 0. (B.4)

By Hölder’s inequality,

E
(∫ T

0

∣∣∣ãε11(t)
(δxε(t)

ε
,
δxε(t)

ε

)
− 1

2
a11[t]

(
x1(t), x1(t)

)∣∣∣
H
dt
)2

≤ CE
(∫ T

0

∣∣∣ãε11(t)
(δxε(t)

ε
,
δxε(t)

ε

)
− 1

2
a11[t]

(
x1(t), x1(t)

)∣∣∣2
H
dt
)

≤ CE
[ ∫ T

0

∣∣∣(ãε11(t)− 1

2
a11[t]

)(δxε(t)
ε

,
δxε(t)

ε

)∣∣∣2
H
dt
]

+CE
[

sup
t∈[0,T ]

∣∣∣δxε(t)
ε
− x1(t)

∣∣∣2
H

(
sup
t∈[0,T ]

∣∣∣δxε(t)
ε

∣∣∣2
H

+ sup
t∈[0,T ]

|x1(t)|2H
)]

≤ C
[
E
(

sup
t∈[0,T ]

∣∣∣δxε(t)
ε

∣∣∣4
H

)]1/2[
E
(∫ T

0

∣∣∣ãε11(t)− 1

2
a11[t]

∣∣∣4
L(H×H;H)

∣∣∣δxε(t)
ε

∣∣∣4
H
dt
)]1/2

+C
[
E
(

sup
t∈[0,T ]

∣∣∣δxε(t)
ε
− x1(t)

∣∣∣4
H

)] 1
2
[
E
(

sup
t∈[0,T ]

∣∣∣δxε(t)
ε

∣∣∣4
H

+ sup
t∈[0,T ]

|x1(t)|4H
)] 1

2
.

(B.5)

Since
lim
ε→0+

νε2 = ν2 in H, lim
ε→0+

uε2(·) = u2(·) in L4
F(0, T ;H1),

by Lemma A.1,

sup
t∈[0,T ]

E
(
|δxε(t)|4H

)
≤ CE

[
|εν1 + ε2νε2|4H +

(∫ T

0
|εu1(t) + ε2uε2(t)|2Hdt

)2]
= O(ε4).

As the proof of (3.5) in Lemma 3.1, we obtain that

lim
ε→0+

sup
t∈[0,T ]

E
∣∣∣δxε(t)

ε
− x1(t)

∣∣∣4
H

= 0.

For any sequence {εj}∞j=1 of positive numbers converging to 0 as j →∞, one can show that
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axx(·, x̄(·) + θδxεj (·), ū(·) + θδuεj (·))− a11[·]→ 0, in measure, as j →∞. (B.6)

Since

ã
εj
11(t)− 1

2
a11[t] =

∫ 1

0
(1− θ)

(
axx(t, x̄(t) + θδxεj (t), ū(t) + θδuεj (t))− a11[t]

)
dθ,

it follows from (B.5), (B.6) and the Lebesgue dominated convergence theorem that

lim
j→∞

E
(∫ T

0

∣∣∣ãεj11(t)
(δxεj (t)

εj
,
δxεj (t)

εj

)
− 1

2
a11[t]

(
x1(t), x1(t)

)∣∣∣
H
dt
)2

= 0. (B.7)

Since,

E
(∫ T

0

∣∣∣2ãεj12(t)
(δxεj (t)

εj
,
δuεj (t)

εj

)
− a12[t]

(
x1(t), u1(t)

)∣∣∣
H
dt
)2

≤ CE
(∫ T

0

∣∣∣2ãεj12(t)
(δxεj (t)

εj
,
δuεj (t)

εj

)
− a12[t]

(
x1(t), u1(t)

)∣∣∣2
H
dt
)

≤ C sup
t∈[0,T ]

(
E
∣∣∣δxεj (t)

εj

∣∣∣4
H

) 1
2
(
E
∫ T

0

∣∣∣ãεj12(t)− 1

2
a12[t]

∣∣∣4
L(H×H1;H1)

∣∣∣δuεj (t)
εj

∣∣∣4
H1

dt
) 1

2

+C sup
t∈[0,T ]

(
E
∣∣∣δxεj (t)

εj
− x1(t)

∣∣∣4
H

) 1
2
(
E
∫ T

0

∣∣∣δuεj (t)
εj

∣∣∣4
H1

dt
) 1

2

+C sup
t∈[0,T ]

(
E|x1(t)|4H

) 1
2
(
E
∫ T

0

∣∣∣δuεj (t)
εj

− u1(t)
∣∣∣4
H1

dt
) 1

2
.

Similar to the proof of (B.7), we have that

lim
j→∞

E
(∫ T

0

∣∣∣2ãεj12(t)
(δxεj (t)

εj
,
δuεj (t)

εj

)
− a12[t]

(δxεj (t)
εj

, u1(t)
)∣∣∣
H
dt
)2

= 0. (B.8)

Similarly,

lim
j→∞

E
(∫ T

0

∣∣∣ãεj22(t)
(δuεj (t)

εj
,
δuεj (t)

εj

)
− 1

2
a22[t]

(
u1(t), u1(t)

)∣∣∣
H
dt
)2

≤ C lim
j→∞

E
(∫ T

0

∣∣∣(ãεj22(t)− 1

2
a22[t]

)(δuεj (t)
εj

,
δuεj (t)

εj

)∣∣∣2
H
dt
)

+C lim
j→∞

E
[ ∫ T

0

∣∣∣δuεj (t)
εj

− u1(t)
∣∣∣2
H1

(∣∣∣δuεj (t)
εj

∣∣∣2
H1

+ |u1(t)|2H1

)
dt
]

(B.9)

≤ C lim
j→∞

E
∫ T

0

∣∣∣δuεj (t)
εj

∣∣∣4
H1

∣∣∣ãεj22(t)− 1

2
a22[t]

∣∣∣2
L(H1×H1;H1)

dt

+C lim
j→∞

E
∫ T

0

∣∣εjuεj2 (t)
∣∣2
H1

(∣∣u1(t) + εju
εj
2 (t)

∣∣2
H1

+ |u1(t)|2H1

)
dt = 0.

Similar to the above argument, we obtain

lim
j→∞

E
∫ T

0

∣∣∣b̃εj11(t)
(δxεj (t)

εj
,
δxεj (t)

εj

)
− 1

2
b11[t]

(
x1(t), x1(t)

)∣∣∣2
L2

dt = 0, (B.10)

lim
j→∞

E
∫ T

0

∣∣∣2b̃εj12(t)
(δxεj (t)

εj
,
δuεj (t)

εj

)
− b12[t]

(
x1(t), u1(t)

)∣∣∣2
L2

dt = 0, (B.11)
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and

lim
j→∞

E
∫ T

0

∣∣∣b̃εj22(t)
(δuεj (t)

εj
,
δuεj (t)

εj

)
− 1

2
b22[t]

(
u1(t), u1(t)

)∣∣∣2
L2

dt = 0. (B.12)

By Lemma A.1, and using (B.3), (B.4) and (B.7)–(B.12),

lim
j→∞

sup
t∈[0,T ]

E|rεj2 (t)|2H = 0.

The desired result follows from the fact that the sequence {εj}∞j=1 is arbitrary.

C. Proof of Lemma 3.2

Proof of Lemma 3.2. We borrow some idea from [39]. The proof is divided into three steps.

Step 1. For any ṽ(·) ∈ CŨν0ad (ū(·)), we know that ṽ(·) ∈ L2
F(0, T ;H1). By Lemma 2.4, there

exists a G-measurable function v(·) on [0, T ]× Ω such that ṽ(s, ω) = v(s, ω), µ̃-a.e. Therefore,∫
[0,T ]×Ω

|ṽ(s, ω)− v(s, ω)|2H1
dµ̃(s, ω) = 0 (C.1)

and

|v(·)|2L2
F(0,T ;H1) =

∫
[0,T ]×Ω

|v(s, ω)|2H1
dµ̃(s, ω) =

∫
[0,T ]×Ω

|ṽ(s, ω)|2H1
dµ̃(s, ω) <∞.

Since ṽ(·) ∈ CŨν0ad (ū(·)), we have

lim
v̂→ū,ε→0+

1

ε
inf

ũ∈Ũν0ad

(
E
∫ T

0
|v̂(t) + εṽ(t)− ũ(t)|2H1

dt
) 1

2
= 0.

This, together with (C.1), implies that

lim
v̂→ū,ε→0+

1

ε
inf

ũ∈Ũν0ad

(
E
∫ T

0
|v̂(t) + εv(t)− ũ(t)|2H1

dt
) 1

2

≤ lim
v̂→ū,ε→0+

1

ε
inf

ũ∈Ũν0ad

(
E
∫ T

0
|v̂(t) + εṽ(t)− ũ(t)|2H1

dt
) 1

2
= 0.

(C.2)

For any ũ ∈ Ũν0
ad ⊂ L

2
F(0, T ;H1), by Lemma 2.4, there exists a G-measurable function u(·) on

[0, T ]× Ω such that ũ(s, ω) = u(s, ω), µ̃-a.e. Hence,∫
[0,T ]×Ω

|ũ(s, ω)− u(s, ω)|2H1
dµ̃(s, ω) = 0. (C.3)

Consequently, u ∈ Uν0
ad . This, together with (C.2) and (C.3), implies that

lim
v̂→ū,ε→0+

1

ε
inf

u∈Uν0ad

(
E
∫ T

0
|v̂(t) + εv(t)− u(t)|2H1

dt
) 1

2

≤ lim
v̂→ū,ε→0+

1

ε
inf

ũ∈Ũν0ad

(
E
∫ T

0
|v̂(t) + εv(t)− ũ(t)|2H1

dt
) 1

2
= 0.

(C.4)

Therefore, v(·) ∈ CUν0ad (ū(·)) and
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∫
[0,T ]×Ω

〈
F (t, ω), ṽ(t, ω)

〉
H1
dµ̃(t, ω)

=

∫
[0,T ]×Ω

〈
F (t, ω), v(t, ω)

〉
H1
dµ̃(t, ω)=E

∫ T

0

〈
F (t), v(t)

〉
H1
dt ≤ 0.

(C.5)

Step 2. In this step, we prove that the set

Aū
4
=
{

(t, ω) ∈ [0, T ]× Ω
∣∣ 〈F (t), v

〉
H1
≤ 0, ∀ v ∈ CU (ū(t))

}
∈ G̃. (C.6)

We achieve this goal by showing that

Acū =
{

(t, ω) ∈ [0, T ]× Ω
∣∣ ∃ v ∈ CU (ū(t)),

〈
F (t), v

〉
H1

> 0
}
∈ G̃. (C.7)

For k ∈ N, let

Bū,k
4
=
{

(t, ω) ∈ [0, T ]× Ω
∣∣ ∃ v ∈ CU (ū(t)),

〈
F (t), v

〉
H1
≥ 1

k

}
.

Clearly,

Acū =
∞⋃
k=1

Bū,k. (C.8)

By Corollary 2.1 the set-valued map CU (ū(·)) : [0, T ]×Ω H1 is G̃-measurable. It follows from
Lemma 2.3 that {

(t, ω, v) ∈ [0, T ]× Ω×H1

∣∣ v ∈ CU (ū(t, ω))
}
∈ G̃ ⊗ B(H1).

By the assumption on F (·), we have that{
(t, ω, v) ∈ [0, T ]× Ω×H1

∣∣ 〈F (t), v〉H1
≥ 1

k
, v ∈ CU (ū(t, ω))

}
∈ G̃ ⊗ B(H1). (C.9)

Define a set-valued map Λk(·, ·) : [0, T ]× Ω H1 as

Λk(t, ω)
4
=
{
v ∈ H1

∣∣ 〈F (t), v〉H1
≥ 1

k
, v ∈ CU (ū(t, ω))

}
, (t, ω) ∈ [0, T ]× Ω.

It follows from Lemma 2.3 and (C.9) that Λk is G̃-measurable. Then Bū,k = Λ−1
k (H1) ∈ G̃. This,

together with (C.8), implies (C.7). Consequently, we have (C.6).

Step 3. In this step we prove that µ̃(Aū) = T .
For k, m = 1, 2, · · · , let

B(0,m)
4
= {v ∈ H1||v|H1 ≤ m}

and

Bū,k,m
4
=
{

(t, ω) ∈ [0, T ]× Ω
∣∣∣∃ v ∈ CU (ū(t)) ∩B(0,m), s.t. 〈F (t), v〉H1

≥ 1

k

}
.

It is clear that
Acū =

⋃
k≥1

⋃
m≥1

Bū,k,m.

Similar to the proof of Bū,k ∈ G̃, one can show that Bū,k,m ∈ G̃.
Now we only need to prove that µ̃(Bū,k,m) = 0 for every k, m ≥ 1. Let us do this by a

contradiction argument.
Suppose that there exist k and m such that µ̃(Bū,k,m) > 0. Define the set-valued map Υk,m :

Bū,k,m  H1 by

Υk,m(t, ω)
4
=
{
v ∈ CU (ū(t)) ∩B(0,m)

∣∣∣ 〈F (t), v〉H1
≥ 1

k

}
.
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Obviously, Υk,m(t, ω) is closed-valued. Similar to (C.9),{
(t, ω, v) ∈ [0, T ]× Ω×H1

∣∣∣ v ∈ CU (ū(t, ω)) ∩B(0,m), 〈F (t), v〉H1
≥ 1

k

}
∈ G̃ ⊗ B(H1). (C.10)

This, together with Lemma 2.3, implies that Υk,m is G̃-measurable. Then by Lemma 2.6 there
exists a G̃-measurable selection vk,m(·) on Bū,k,m, i.e.,

vk,m(t, ω) ∈ Υk,m(t, ω) ⊂
[
CU (ū(t)) ∩B(0,m)

]
, ∀ (t, ω) ∈ Bū,k,m.

By Lemma 2.2, {
v(·) ∈ L2

F(0, T ;H1)
∣∣ v(t) ∈ CU (u(t)), µ̃-a.e.

}
⊂ CŨν0ad (u(·)).

Let ṽk,m(·) 4= vk,m(·)χBū,k,m(·). Then

µ̃
{

(t, ω) ∈ [0, T ]
∣∣∣ 〈F (t), ṽk,m(t)

〉
H1
≥ 1

k

}
≥ µ̃(Bū,k,m) > 0. (C.11)

Therefore, ∫
[0,T ]

∫
Ω

〈
F (t, ω), ṽk,m(t, ω)

〉
H1
dµ̃(t, ω) ≥ 1

k
µ̃(Bū,k,m) > 0. (C.12)

On the other hand, by Corollary 2.1, one has vk,m(·) ∈ Tū ⊂ CŨν0ad (ū(·)). It follows from (C.5) that∫
[0,T ]

∫
Ω

〈
F (t, ω), ṽk,m(t, ω)

〉
H1
dµ̃(t, ω) ≤ 0,

which contradicts to (C.12). Therefore, µ̃(Bū,k,m) = 0. Consequently, µ̃(Acū) = 0. Since Acū ∈ G̃,
there exists a G-measurable set Eū satisfying Acū ⊂ Eū and µ̃(Acū) = µ(Eū) = 0. Thus, Ecū ⊂ Aū and
[m× P](Ecū) = T . This completes the proof.

D. Proof of Lemma 3.3

The case that H is finite dimensional was studied in [17]. The proof for the general case is similar.
We give it here for the sake of completeness.

Proof of Lemma 3.3. Obviously, L2
F(Ω;C([0, T ];H)) is a linear subspace of L2

F(Ω;D([0, T ];H)).

For a given Λ ∈ L2
F(Ω;C([0, T ];H))∗, by the Hahn-Banach theorem, there is an extension Λ̃ ∈

L2
F(Ω;D([0, T ];H))∗ such that

|Λ̃|L2
F(Ω;D([0,T ];H))∗ = |Λ|L2

F(Ω;C([0,T ];H))∗ (D.1)

and
Λ̃(x(·)) = Λ(x(·)), ∀ x(·) ∈ L2

F(Ω;C([0, T ];H)). (D.2)

Recall that {ek}∞k=1 is an orthonormal basis of H and Γk the projective operator from H to

Hk
4
= span {ek}. Let Λk = ΛΓk and Λ̃k = Λ̃Γk. Clearly,

Λk ∈ L2
F(Ω;C([0, T ];Hk))

∗ = L2
F(Ω;C([0, T ];R))∗,

Λ̃k ∈ L2
F(Ω;D([0, T ];Hk))

∗ = L2
F(Ω;D([0, T ];R))∗,

and
Λ̃(x(·)) = lim

m→∞

m∑
k=1

Λ̃k(x(·)), ∀x(·) ∈ L2
F(Ω;D([0, T ];H)). (D.3)

For each k ∈ N, from the proof of [9, Theorem 65, p. 254], we deduce that, there exist two
R-valued processes ψ+

k (·) and ψ−k (·) of bounded variations such that ψ+
k (·) is optional and purely

discontinuous, ψ−k (·) is predictable with ψ−k (0) = 0,
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|Λ̃k|2L2
F(Ω;D([0,T ];R))∗ = E

∣∣∣ ∫
(0,T ]

d|ψ−k (t)|+
∫

[0,T )
d|ψ+

k (t)|
∣∣∣2 (D.4)

and, for any x(·) ∈ L2
F(Ω;D([0, T ];H)),

Λ̃k(x(·)) = E
(∫

(0,T ]
Γkx−(t)dψ−k (t) +

∫
[0,T )

Γkx(t)dψ+
k (t)

)
, (D.5)

where x−(·) is the predictable modification of x(·), which equals x(·) when x(·) ∈L2
F(Ω;C([0, T ];H)).

Define two H-valued processes ψ+(·) and ψ−(·) as follows:

ψ+(·) =
∞∑
k=1

ψ+
k (·)ek, ψ−(·) =

∞∑
k=1

ψ−k (·)ek.

Then ∫
(0,T ]
〈x−(t), dψ−(t)〉H =

∞∑
k=1

∫
(0,T ]

Γkx−(t)dψ−k (t)

and ∫
[0,T )
〈x(t), dψ+(t)〉H =

∞∑
k=1

∫
[0,T )

Γkx(t)dψ+
k (t).

It follows from (D.3) and (D.5) that

Λ̃(x(·)) =

∫
(0,T ]
〈x−(t), dψ−(t)〉H +

∫
[0,T )
〈x(t), dψ+(t)〉H , ∀x(·) ∈ L2

F(Ω;D([0, T ];H)). (D.6)

This, together with the arbitrariness of x(·) ∈ L2
F(Ω;D([0, T ];H)), implies that ψ+(·) and ψ−(·)

are functions of bounded variation and

|Λ̃|2L2
F(Ω;D([0,T ];H))∗ = E

∣∣∣ ∫
(0,T ]

d|ψ−(t)|H +

∫
[0,T )

d|ψ+(t)|H
∣∣∣2. (D.7)

Put ψ∗
4
= ψ− + ψ+. By (D.2), we have

Λ(x(·)) = E
∫ T

0
〈x(t), dψ∗(t)〉H , ∀ x(·) ∈ L2

F(Ω;C([0, T ];H)).

Letting ψ = ψ∗ − ψ∗(0), we obtain (3.6). (3.7) follows from (3.6).

E. Proof of Lemma 3.5

Before proving Lemma 3.5, we first recall the following Riesz-type Representation Theorem (See
[26, Corollary 2.3 and Remark 2.4]).

Lemma E.1. Fix t1 and t2 satisfying 0 ≤ t2 < t1 ≤ T . Assume that Y is a reflexive Banach space.
Then, for any r, s ∈ [1,∞), it holds that

(LrF(t2, t1;Ls(Ω;Y)))∗ = Lr
′

F (t2, t1;Ls
′
(Ω;Y∗)),

where

s′ =

{
s/(s− 1), if s 6= 1,

∞ if s = 1;
r′ =

{
r/(r − 1), if r 6= 1,

∞ if r = 1.

Next, we recall the following result.
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Lemma E.2. [29, Lemma 2.5] Assume that f1 ∈ L2
F(0, T ;H) and f2 ∈ L2

F(0, T ;H). Then there
exists a decreasing sequence {εn}∞n=1 of positive numbers such that lim

n→∞
εn = 0, and

lim
n→∞

1

εn

∫ t+εn

t
E〈f1(t), f2(τ)〉Hdτ = E〈f1(t), f2(t)〉H , a.e. t ∈ [0, T ]. (E.1)

Proof of Lemma 3.5. It suffices to consider a particular case for (3.17):{
dy(t) = −A∗y(t)dt+ f(t)dt+ dψ(t) + Y (t)dW (t) in [0, T ),

y(T ) = yT ,
(E.2)

where yT ∈ LpFT (Ω;H) and f(·) ∈ L1
F(0, T ;L2(Ω;H)). The general case follows from the well-

posedness of (E.2) and the standard fixed point technique.
We divide the proof into several steps. Since the proof is very similar to that of [29, Theorem

3.1], we give below only a sketch.

Step 1. For any t ∈ [τ, T ], let us define a linear functional F (depending on t) on the Banach
space L1

F(t, T ;L2(Ω;H))× L2
F(t, T ;L2)× L2

Ft(Ω;H) as follows:

F
(
f1(·), f2(·), η

)
= E

〈
φ(T ), yT

〉
H
− E

∫ T

t

〈
φ(s), f(s)

〉
H
ds− E

∫ T

t
〈φ(s), dψ(s)〉H ,

∀
(
f1(·), f2(·), η

)
∈ L1

F(t, T ;L2(Ω;H))× L2
F(t, T ;L2)× L2

Ft(Ω;H),

(E.3)

where φ(·) ∈ L2
F(Ω;C([t, T ];H)) is the mild solution of the equation (3.18). It is an easy matter to

show that F is a bounded linear functional. By Lemma E.1, there exists a triple(
yt(·), Y t(·), ξt

)
∈ L∞F (t, T ;L2(Ω;H))× L2

F(t, T ;L2)× L2
Ft(Ω;H)

such that
E
〈
φ(T ), yT

〉
H
− E

∫ T

t

〈
φ(s), f(s)

〉
H
ds− E

∫ T

t
〈φ(s), dψ(s)〉H

= E
∫ T

t

〈
f1(s), yt(s)

〉
H
ds+ E

∫ T

t

〈
f2(s), Y t(s)

〉
L2
ds+ E

〈
η, ξt

〉
H
.

(E.4)

It is clear that ξT = yT . Furthermore,

|(yt(·), Y t(·), ξt)|L∞F (t,T ;L2(Ω;H))×L2
F(t,T ;H)×L2

Ft
(Ω;H)

≤ C
(
|f(·)|L1

F(t,T ;L2(Ω;H)) + |yT |L2
FT

(Ω;H) + |ψ|L2
F(Ω;BV (0,T ;H))

)
, ∀ t ∈ [τ, T ].

(E.5)

Step 2. Note that (yt(·), Y t(·)) obtained in Step 1 may depend on t. Now we show the time
consistency of (yt(·), Y t(·)), that is, for any t1 and t2 satisfying 0 ≤ t2 ≤ t1 ≤ T , it holds that(

yt2(s, ω), Y t2(s, ω)
)

=
(
yt1(s, ω), Y t1(s, ω)

)
, a.e. (s, ω) ∈ [t1, T ]× Ω, (E.6)

for a suitable choice of the η, f1 and f2 in (3.18). In fact, for any fixed %1(·) ∈ L1
F(t1, T ;L2(Ω;H))

and %2(·) ∈ L2
F(t1, T ;L2), we choose first t = t1, η = 0, f1(·) = %1(·) and f2(·) = %2(·) in (3.18).

From (E.4), we get that

E
〈
φt1(T ), yT

〉
H
− E

∫ T

t1

〈
φt1(s), f(s)

〉
H
ds− E

∫ T

t1

〈
φt1(s), dψ(s)

〉
H

= E
∫ T

t1

〈
%1(s), yt1(s)

〉
H
ds+ E

∫ T

t1

〈
%2(s), Y t1(s)

〉
L2
ds.

(E.7)
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Next, we choose t = t2, η = 0, f1(·) = χ[t1,T ](·)%1(·) and f2(·) = χ[t1,T ](·)%2(·) in (3.18). It follows
from (E.4) that

E
〈
φt1(T ), yT

〉
H
− E

∫ T

t1

〈
φt1(s), f(s)

〉
H
ds− E

∫ T

t1

〈
φt1(s), dψ(s)

〉
H

= E
∫ T

t1

〈
%1(s), yt2(s)

〉
H
ds+ E

∫ T

t1

〈
%2(s), Y t2(s)

〉
L2
ds.

(E.8)

Combining (E.7) and (E.8), we get

E
∫ T

t1

〈
%1(s), yt1(s)− yt2(s)

〉
H
ds+ E

∫ T

t1

〈
%2(s), Y t1(s)− Y t2(s)

〉
L2
ds = 0,

∀ %1(·) ∈ L1
F(t1, T ;L2(Ω;H)), %2(·) ∈ L2

F(t1, T ;L2).

This yields the desired equality (E.6).
Put

y(t, ω) = yτ (t, ω), Y (t, ω) = Y τ (t, ω), ∀ (t, ω) ∈ [τ, T ]× Ω. (E.9)

From (E.6), we see that(
yt(s, ω), Y t(s, ω)

)
=
(
y(s, ω), Y (s, ω)

)
, a.e. (s, ω) ∈ [t, T ]× Ω. (E.10)

Combining (E.4) and (E.10), we deduce that

E
〈
φ(T ), yT

〉
H
− E

∫ T

t

〈
φ(s), f(s)

〉
H
ds− E

∫ T

t

〈
φ(s), dψ(s)

〉
H

= E
〈
η, ξt

〉
H

+ E
∫ T

t

〈
f1(s), y(s)

〉
H
ds+ E

∫ T

t

〈
f2(s), Y (s)

〉
L2
ds,

∀
(
f1(·), f2(·), η

)
∈ L1

F(t, T ;L2(Ω;H))× L2
F(t, T ;L2)× L2

Ft(Ω;H).

(E.11)

Step 3. We show in this step that ξt has a càdlàg modification. The detail is lengthy and very
similar to Step 3 in the proof of [29, Theorem 3.1], and hence we omit it here.

First of all, we claim that, for each t ∈ [0, T ],

E
(
S∗(T − t)yT −

∫ T

t
S∗(s− t)f(s)ds−

∫ T

t
S∗(s− t)dψ(s)

∣∣∣ Ft) = ξt, P-a.s. (E.12)

To prove this, we note that for any η ∈ L2
Ft(Ω;H), f1 = 0 and f2 = 0, the corresponding solution

of (3.18) is given by φ(s) = S(s− t)η for s ∈ [t, T ]. Hence, by (E.11), we obtain that

E
〈
S(T−t)η, yT

〉
H
−E〈η, ξt〉H =E

∫ T

t

〈
S(s−t)η, f(s)

〉
H
ds+E

∫ T

t

〈
S(s− t)η, dψ(s)

〉
H
. (E.13)

Noting that

E
〈
S(T − t)η, yT

〉
H

= E
〈
η, S∗(T − t)yT

〉
H

= E
〈
η,E(S∗(T − t)yT | Ft)

〉
H
,

E
∫ T

t

〈
S(s−t)η, f(s)

〉
H
ds=E

〈
η,

∫ T

t
S∗(s−t)f(s)ds

〉
H

=E
〈
η,E

(∫ T

t
S∗(s−t)f(s)ds

∣∣∣ Ft)〉
H
,

and

E
∫ T

t

〈
S(s− t)η, dψ(s)

〉
H

= E
〈
η,

∫ T

t
S∗(s− t)dψ(s)

〉
H

= E
〈
η,E

(∫ T

t
S∗(s− t)dψ(s)

∣∣∣ Ft)〉
H
,

by (E.13), we conclude that for every η ∈ L2
Ft(Ω;H),
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E
〈
η,E

(
S∗(T − t)yT −

∫ T

t
S∗(s− t)f(s)ds−

∫ T

t
S∗(s− t)dψ(s)

∣∣∣ Ft)− ξt〉
H

= 0. (E.14)

Clearly, (E.12) follows from (E.14) immediately.
In the rest of this step, we show that the process{

E
(
S∗(T − t)yT −

∫ T

t
S∗(s− t)f(s)ds

∣∣∣ Ft)}
t∈[0,T ]

has a càdlàg modification.
Recall that for any λ ∈ ρ(A), the bounded operator Aλ (resp. A∗λ) generates a C0-group

{Sλ(t)}t∈R (resp. {S∗λ(t)}t∈R) on H.
For each t ∈ [0, T ], put

ξtλ
4
= E

(
S∗λ(T − t)yT −

∫ T

t
S∗λ(s− t)f(s)ds−

∫ T

t
S∗λ(s− t)dψ(s)

∣∣∣ Ft) (E.15)

and
Φλ(t)

4
= S∗λ(t)ξtλ −

∫ t

0
S∗λ(s)f(s)ds−

∫ T

t
S∗λ(s− t)dψ(s). (E.16)

We claim that {Φλ(t)} is an H-valued F-martingale. In fact, for any τ1, τ2 ∈ [0, T ] with τ1 ≤ τ2, it
follows from (E.15) and (E.16) that

E(Φλ(τ2) | Fτ1)

= E
(
S∗λ(τ2)ξτ2λ −

∫ τ2

0
S∗λ(s)f(s)ds−

∫ τ2

0
S∗λ(s)dψ(s)

∣∣∣ Fτ1)
= E

[
E
(
S∗λ(T )yT−

∫ T

τ2

S∗λ(s)f(s)ds−
∫ T

τ2

S∗λ(s)dψ(s)
∣∣∣Fτ2)−∫ τ2

0
S∗λ(s)f(s)ds−

∫ τ2

0
S∗λ(s)dψ(s)

∣∣∣Fτ1]
= E

(
S∗λ(T )yT −

∫ T

0
S∗λ(s)f(s)ds−

∫ T

0
S∗λ(s)dψ(s)

∣∣∣ Fτ1)
= S∗λ(τ1)E

(
S∗λ(T − τ1)yT −

∫ T

τ1

S∗λ(s− τ1)f(s)ds−
∫ T

τ1

S∗λ(s− τ1)dψ(s)
∣∣∣ Fτ1)

−
∫ τ1

0
S∗λ(s)f(s)ds−

∫ τ1

0
S∗λ(s)dψ(s)

= S∗λ(τ1)ξτ1λ −
∫ τ1

0
S∗λ(s)f(s)ds−

∫ τ1

0
S∗λ(s)dψ(s)

= Xλ(τ1), P-a.s.,

as desired.
Now, since {Xλ(t)}0≤t≤T is an H-valued F-martingale, it enjoys a càdlàg modification, and

hence so does the following process

{ξtλ}0≤t≤T =
{
S∗λ(−t)

[
Xλ(t) +

∫ t

0
S∗λ(s)f(s)ds+

∫ t

0
S∗λ(s)dψ(s)ds

]}
0≤t≤T

.

Here we have used the fact that {S∗λ(t)}t∈R is a C0-group on H. We still use {ξtλ}0≤t≤T to stand
for its càdlàg modification.

From (E.12) and (E.15), it follows that

lim
λ→∞

|ξ· − ξ·λ|L∞F (0,T ;L2(Ω;H))

= lim
λ→∞

∣∣∣E(S∗(T − ·))yT − ∫ T

·
S∗(s− ·))f(s)ds−

∫ T

·
S∗(s− ·))dψ(s)

∣∣∣ F·)
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−E
(
S∗λ(T − ·))yT −

∫ T

·
S∗λ(s− ·)f(s)ds−

∫ T

·
S∗λ(s− ·)dψ(s)

∣∣∣ F·)∣∣∣
L∞F (0,T ;L2(Ω;H))

(E.17)

≤ lim
λ→∞

∣∣∣S∗(T − ·)yT − S∗λ(T − ·)yT
∣∣∣
L∞F (0,T ;L2(Ω;H))

+ lim
λ→∞

∣∣∣ ∫ T

·
S∗(s− ·)f(s)ds−

∫ T

·
S∗λ(s− ·)f(s)ds

∣∣∣
L∞F (0,T ;L2(Ω;H))

+ lim
λ→∞

∣∣∣ ∫ T

·
S∗(s− ·)dψ(s)−

∫ T

·
S∗λ(s− ·)dψ(s)

∣∣∣
L∞F (0,T ;L2(Ω;H))

.

Let us prove the right hand side of (E.17) equals zero. First, we prove

lim
λ→∞

∣∣∣S∗(T − ·)yT − S∗λ(T − ·)yT
∣∣∣
L∞F (0,T ;L2(Ω;H))

= 0. (E.18)

By the property of Yosida approximations, we deduce that for any α ∈ H, it holds that

lim
λ→∞

|S∗(T − ·)α− S∗λ(T − ·)α|L∞(0,T ;H) = 0

and that ∣∣S∗(T − ·)yT − S∗λ(T − ·)yT
∣∣
H
≤ C|yT |H .

Thus, by Lebesgue’s dominated convergence, we obtain (E.18).
Similarly, we can prove that

lim
λ→∞

∣∣∣ ∫ T

·
S∗(s− ·)f(s)ds−

∫ T

·
S∗λ(s− ·)f(s)ds

∣∣∣
L∞F (0,T ;L2(Ω;H))

= 0 (E.19)

and

lim
λ→∞

∣∣∣ ∫ T

·
S∗(s− ·)dψ(s)−

∫ T

·
S∗λ(s− ·)dψ(s)

∣∣∣
L∞F (0,T ;L2(Ω;H))

= 0. (E.20)

By (E.17), (E.18), (E.19) and (E.20), we obtain that lim
m→∞

lim
λ→∞

|ξ· − ξ·λ,m|L∞F (0,T ;L2(Ω;H)) = 0.

Recalling that ξ·λ ∈ DF([0, T ];L2(Ω;H)), we deduce that ξ· enjoys a cádlág modification.

Step 4. In this step, we show that, for a.e. t ∈ [0, T ],

ξt = y(t), P-a.s. (E.21)

Choosing t = t2, f1(·) = 0, f2(·) = 0 and η = (t1 − t2)γ in (3.18), utilizing (E.11), we obtain that

E
〈
S(T − t2)(t1 − t2)γ, yT

〉
H
− E

〈
(t1 − t2)γ, ξt2

〉
H

= E
∫ T

t2

〈
S(τ − t2)(t1 − t2)γ, f(τ)

〉
H
dτ + E

∫ T

t2

〈
S(τ − t2)(t1 − t2)γ, dψ(τ)

〉
H
.

(E.22)

Choosing t = t2, f1(τ, ω) = χ[t2,t1](τ)γ(ω), f2(·) = 0 and η = 0 in (3.18), utilizing (E.11) again, we
find that

E
〈∫ T

t2

S(T − s)χ[t2,t1](s)γds, yT

〉
H

= E
∫ t1

t2

〈∫ τ

t2

S(τ − s)γds, f(τ)
〉
H
dτ + E

∫ T

t1

〈
S(τ − t1)

∫ t1

t2

S(t1 − s)γds, f(τ)
〉
H
dτ

+E
∫ t1

t2

〈∫ τ

t2

S(τ − s)γds, dψ(τ)
〉
H

+ E
∫ T

t1

〈
S(τ − t1)

∫ t1

t2

S(t1 − s)γds, dψ(τ)
〉
H

+E
∫ t1

t2

〈γ, y(τ)〉Hdτ.

(E.23)
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It follows from (E.22) and (E.23) that

E〈γ, ξt2〉H

=
1

t1−t2

∫ t1

t2

E
〈
γ, y(τ)〉Hdτ+E

〈
S(T−t2)γ, yT

〉
H
− 1

t1−t2
E
〈∫ T

t2

S(T−τ)χ[t2,t1](τ)γdτ, yT

〉
H

−E
∫ T

t2

〈S(τ − t2)γ, f(τ)〉Hdτ +
1

t1 − t2
E
∫ t1

t2

〈∫ τ

t2

S(τ − s)γ, f(τ)
〉
H
dτ (E.24)

+
1

t1 − t2
E
∫ T

t1

〈
S(τ − t1)

∫ t1

t2

S(t1 − s)γds, f(τ)
〉
H
dτ − E

∫ T

t2

〈S(τ − t2)γ, dψ(τ)〉H

+
1

t1−t2
E
∫ t1

t2

〈∫ τ

t2

S(τ−s)γ, dψ(τ)
〉
H

+
1

t1−t2
E
∫ T

t1

〈
S(τ−t1)

∫ t1

t2

S(t1−s)γds, dψ(τ)
〉
H
.

Now we analyze the terms in the right hand side of (E.24). First, it is easy to show that

lim
t1→t2+0

1

t1 − t2
E
∫ t1

t2

〈∫ τ

t2

S(s− t2)γ, f(τ)
〉
H
dτ

+ lim
t1→t2+0

1

t1 − t2
E
∫ t1

t2

〈∫ τ

t2

S(τ − s)γ, dψ(τ)
〉
H

= 0, ∀ γ ∈ L2
Ft2

(Ω;H).

(E.25)

Further,

lim
t1→t2+0

1

t1 − t2
E
〈∫ T

t2

S(T − τ)χ[t2,t1](τ)γdτ, yT

〉
H

= lim
t1→t2+0

1

t1 − t2
E
〈∫ t1

t2

S(T − τ)γdτ, yT

〉
H

= E
〈
S(T − t2)γ, yT

〉
H
.

(E.26)

Utilizing the semigroup property of {S(t)}t≥0, we have

lim
t1→t2+0

1

t1 − t2
E
[ ∫ T

t1

〈
S(τ − t1)

∫ t1

t2

S(t1 − s)γds, f(τ)
〉
H
dτ

+

∫ T

t1

〈
S(τ − t1)

∫ t1

t2

S(t1 − s)γds, dψ(τ)
〉
H

]
= E

∫ T

t2

〈
S(τ − t2)γ, f(τ)

〉
H
dτ + E

∫ T

t2

〈
S(τ − t2)γ, dψ(τ)

〉
H
.

(E.27)

From (E.24), (E.25), (E.26) and (E.27), we arrive at

lim
t1→t2+0

1

t1 − t2

∫ t1

t2

E〈γ, y(τ)〉Hdτ = E
〈
γ, ξt2

〉
H
, ∀ γ ∈ L2

Ft2
(Ω;H), t2 ∈ [0, T ). (E.28)

Now, by (E.28), we conclude that, for a.e. t2 ∈ (0, T )

lim
t1→t2+0

1

t1 − t2

∫ t1

t2

E
〈
ξt2 − y(t2), y(τ)

〉
H
dτ = E

〈
ξt2 − y(t2), ξt2

〉
H
. (E.29)

By Lemma E.2, we can find a monotonic sequence {εn}∞n=1 of positive numbers with lim
n→∞

εn = 0,

such that

lim
n→∞

1

εn

∫ t2+εn

t2

E〈ξt2 − y(t2), y(τ)〉Hdτ = E〈ξt2−y(t2), y(t2)〉H , a.e. t2 ∈ [0, T ). (E.30)

By (E.29)–(E.30), we arrive at

E〈ξt2 − y(t2), ξt2〉H = E〈ξt2 − y(t2), y(t2)〉H , a.e. t2 ∈ [0, T ]. (E.31)

By (E.31), we find that E
∣∣ξt2 − y(t2)

∣∣2
H

= 0 for t2 ∈ [0, T ] a.e., which implies (E.21).
This completes the proof of Lemma 3.5.
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