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BRICK POLYTOPES, LATTICE QUOTIENTS, AND HOPF ALGEBRAS

VINCENT PILAUD

Abstract. This paper is motivated by the interplay between the Tamari lattice, J.-L. Loday’s

realization of the associahedron, and J.-L. Loday and M. Ronco’s Hopf algebra on binary trees.

We show that these constructions extend in the world of acyclic k-triangulations, which were
already considered as the vertices of V. Pilaud and F. Santos’ brick polytopes. We describe

combinatorially a natural surjection from the permutations to the acyclic k-triangulations. We

show that the fibers of this surjection are the classes of the congruence ≡k on Sn defined
as the transitive closure of the rewriting rule UacV1b1 · · ·VkbkW ≡k UcaV1b1 · · ·VkbkW for

letters a < b1, . . . , bk < c and words U, V1, . . . , Vk,W on [n]. We then show that the increasing

flip order on k-triangulations is the lattice quotient of the weak order by this congruence. Finally,
we use this surjection to define a Hopf subalgebra of C. Malvenuto and C. Reutenauer’s Hopf

algebra on permutations, indexed by acyclic k-triangulations, and to describe the product and

coproduct in this algebra in term of combinatorial operations on acyclic k-triangulations.

Keywords. Brick polytopes – Multitriangulations – Pipe dreams – Combinatorial Hopf algebras

– Lattice quotients

Introduction

The motivation of this paper comes from relevant combinatorial, geometric, and algebraic struc-
tures on permutations, binary trees and binary sequences. Classical surjections from permutations
to binary trees (BST insertion) and from binary trees to binary sequences (canopy) yield:

• lattice morphisms from the weak order, via the Tamari lattice, to the boolean lattice;
• normal fan coarsenings from the permutahedron, via J.-L. Loday’s associahedron [Lod04],

to the parallelepiped generated by the simple roots ei+1 − ei;
• Hopf algebra refinements from C. Malvenuto and C. Reutenauer’s algebra [MR95], via

J.-L. Loday and M. Ronco’s algebra [LR98], to L. Solomon’s descent algebra [Sol76].

These fascinating connections were widely extended by N. Reading in his work on “Lattice con-
gruences, fans and Hopf algebras” [Rea05]. In particular, he proves that any lattice congruence ≡
of the weak order on the permutations of Sn (see Section 1.6 for proper definitions) defines a
complete simplicial fan F≡ refined by the Coxeter fan, and he characterizes in terms of simple
rewriting rules the families (≡n)n∈N of lattice congruences of the weak orders on (Sn)n∈N which
yield Hopf subalgebras of C. Malvenuto and C. Reutenauer’s algebra on permutations. His work
opens two natural questions. On the geometric side, it is not clear which of the fans F≡ are
actually normal fans of polytopes, as in the previous example of the associahedron. On the al-
gebraic side, this construction produces a combinatorial Hopf algebra whose basis is indexed by
the congruence classes of (≡n)n∈N. However, the product and coproduct in this Hopf algebra are
performed extrinsically: the algebra is embedded in C. Malvenuto and C. Reutenauer’s algebra
on permutations and the computations are performed at that level. The remaining challenge is
to realize the resulting Hopf algebra intrinsically by attaching a combinatorial object to each con-
gruence class of (≡n)n∈N and working out the rules for product and coproduct directly on these
combinatorial objects. The present paper answers these two questions for a relevant family of
lattice congruences of the weak order, generalizing the classical sylvester congruence [HNT05].

Our starting point is the world of acyclic multitriangulations. A k-triangulation of a convex
(n+2k)-gon is a maximal set of diagonals such that no k+1 of them are pairwise crossing. Multitri-
angulations were introduced by V. Capoyleas and J. Pach [CP92] in the context of extremal theory
for geometric graphs and studied for their rich combinatorial properties [Nak00, DKM02, Jon05,
PS09]. Using classical point-line duality, V. Pilaud and M. Pocchiola interpreted k-triangulations
of the (n+ 2k)-gon as pseudoline arrangements on n-level sorting networks [PP12], which can also
be seen more combinatorially as beam arrangements in a trapezoidal shape [Pil10, Section 4.1.4].
In this paper, we call these specific arrangements (k, n)-twists. As observed in [Stu11, SS12],
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2 VINCENT PILAUD

this connects multitriangulations to (specific) pipe dreams studied in [BB93, KM05]. Motivated
by possible polytopal realizations of the simplicial complex of (k + 1)-crossing-free sets of diago-
nals of a convex (n + 2k)-gon, V. Pilaud and F. Santos defined in [PS12] the brick polytope of
a sorting network, whose vertices correspond to certain acyclic pseudoline arrangements on the
network. When k = 1, the pseudoline arrangements on the trapezoidal network correspond to
the triangulations of the (n + 2)-gon. They are all acyclic and the brick polytope coincides with
J.-L. Loday’s associahedron [Lod04]. The goal of this paper is to explore further properties of the
acyclic (k, n)-twists for arbitrary k and n.

Section 1 is devoted to the combinatorics of acyclic (k, n)-twists. We present a purely combina-

torial description of the natural map insk from the permutations of Sn to the acyclic (k, n)-twists
in terms of successive insertions in a k-twist. Extending the sylvester congruence of [HNT05], we
show that the fibers of this map are the classes of a congruence ≡k defined as the transitive closure
of the rewriting rule UacV1b1V2b2 · · ·VkbkW ≡k UcaV1b1V2b2 · · ·VkbkW where a, b1, . . . , bk, c ∈ [n]
are such that a < bi < c for all i ∈ [k] and U, V1, . . . , Vk,W are words on [n]. This congruence is a
lattice congruence of the weak order, so that the increasing flip order on the acyclic (k, n)-twists
defines a lattice, generalizing the Tamari lattice. We also define a canopy map cank from the
acyclic (k, n)-twists to the acyclic orientations of the graph Gk(n) = ([n], {{i, j} | |i− j| ≤ k}).
For τ ∈ Sn, the composition reck(τ) = cank

(
insk(τ)

)
records the relative positions in τ of any

entries i and j such that |i− j| ≤ k, thus generalizing the recoils of the permutation τ . Note that
this generalization of recoils was already considered by J.-C. Novelli, C. Reutenauer and J.-Y. Thi-
bon in [NRT11] with a slightly different presentation. To sum up, at the combinatorial level, we
obtain a commutative triangle of lattice homomorphisms from the weak order, via the increasing
flip order on the acyclic (k, n)-twists, to the boolean lattice on acyclic orientations of Gk(n).

In Section 2, we survey and partially revisit the geometric aspects of these combinatorial maps.
We recall the definitions of the classical permutahedron Permk(n), of the brick polytope Brickk(n)

of the n-level trapezoidal network [PS12], and of the zonotope Zonok(n) of the graph Gk(n).
Their vertices correspond to the permutations of Sn, to the acyclic (k, n)-twists, and to the
acyclic orientations of Gk(n), respectively. When oriented in the direction (n−1, n−3, . . . , 1−n),
their 1-skeleta are the Hasse diagrams of the weak order on permutations of Sn, of the increasing
flip lattice on acyclic (k, n)-twists, and of the boolean lattice on acyclic orientations of Gk(n).

The maps insk, reck and cank can be read as inclusions of normal cones of vertices of Permk(n),

Brickk(n) and Zonok(n). The reader can already glance at Figure 8 on page 13 for an illustration
of the geometric situation. Although most results in this section are not new, they provide the
geometric side of the picture.

Section 3 finally presents the new algebraic construction which motivated this paper. We con-
sider C. Malvenuto and C. Reutenauer’s Hopf algebra on permutations [MR95], that we denote

by FQSym. We consider the subspace Twistk generated by the sums of the elements of FQSym
over the fibers of insk. Since these fibers are classes of a congruence ≡k which satisfy standard
compatibility conditions with the shuffle and the standardization [Rea05, Hiv04, HN07, Pri13],
this subspace automatically defines a Hopf subalgebra of FQSym. Our approach with k-twists
provides a combinatorial interpretation for this subalgebra, and it is interesting to describe the
product and the coproduct directly on acyclic k-twists. Note that our Hopf algebra Twistk on
acyclic k-twists is sandwiched in between C. Malvenuto and C. Reutenauer’s Hopf algebra FQSym
on permutations [MR95] and J.-C. Novelli, C. Reutenauer and J.-Y. Thibon’s k-recoil Hopf al-

gebra Reck on acyclic orientations of Gk(n) [NRT11]. We finally briefly study further algebraic

properties of Twistk: we define multiplicative bases and study their indecomposable elements, we
connect it to integer point transforms of the normal cones of the brick polytope, and we define a
natural extension of dendriform structures in the context of k-twists.

The results of this paper can be extended in three independent directions: on Cambrian acyclic
twists (parametrized by a sequence of signs [Rea06, HL07, PS12], similar to [CP17, Part 1]), on
tuples of Cambrian twists (similar to [LR12, Gir12] and [CP17, Part 2]), and on Schröder twists
(corresponding to the faces of the brick polytope, similar to [Cha00] and [CP17, Part 3]). These
extensions are skipped here to keep this paper short, but details can be found in [Pil15].
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1. Combinatorics of twists

1.1. Pipe dreams and twists. A pipe dream is a filling of a triangular shape with crosses and
elbows so that all pipes entering on the left side exit on the top side. These objects were studied
in the literature, under different names including “pipe dreams” [KM05], “RC-graphs” [BB93],
“beam arrangements” [Pil10, PS12]. This paper is mainly concerned with the following specific
family of pipe dreams which already appeared under different names in [Pil10, PP12, Stu11].

Definition 1 ([Pil10, PP12, Stu11]). For k, n ∈ N, a (k, n)-twist (we also use just k-twist, or
even just twist) is a pipe dream with n+ 2k pipes such that

• no two pipes cross twice (the pipe dream is reduced),
• the pipe which enters in row i exits in column i if k ≤ i ≤ n+k, and in column n+ 2k + 1− i

otherwise. Here and throughout the paper, rows are indexed from bottom to top and columns
are indexed from left to right.

Besides the first k and last k trivial pipes, a (k, n)-twist has n relevant pipes, labeled by [n] from
bottom to top, or equivalently from left to right. In other words, the pth pipe enters in row p + k
and exits at column p + k of the (n + 2k) × (n + 2k)-triangular shape. We denote by T k(n) the
set of (k, n)-twists.

Definition 2 ([PS12]). The contact graph of a (k, n)-twist T is the directed multigraph T# with
vertex set [n] and with an arc from the se-pipe to the wn-pipe of each elbow in T involving two
relevant pipes. We say that a twist T is acyclic if its contact graph T# is (no oriented cycle), and we

then let CT be the transitive closure of T#. We denote by AT k(n) the set of acyclic (k, n)-twists.

Figure 1 illustrates examples of (k, 5)-twists and their contact graphs for k = 0, 1, 2, 3. The first
two are acyclic, the last two are not. Except in Figure 2, we only represent the n relevant pipes
of the (k, n)-twists and hide the other 2k trivial pipes (the first k and last k pipes).

4 5321 4 5321 4 5321 4 5321

4 5321 4 5321 4 53214 5321

Figure 1. (k, 5)-twists (top) and their contact graphs (bottom) for k = 0, 1, 2, 3.

Example 3 (1-twists, binary trees and triangulations). As already observed by different au-
thors [Woo04, Pil10, PP12, Stu11], (1, n)-twists are in bijective correspondence with triangula-
tions of a convex (n+ 2)-gon. This bijection is illustrated in Figure 2. It has been extended to a
correspondence between (k, n)-twists and k-triangulations of a convex (n+2k)-gon [PP12, Stu11].

4 5321
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Figure 2. A (1, n)-twist T (left), its contact graph T# (middle), and its dual
triangulation T? of the (n+ 2)-gon (right).
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1.2. Elementary properties of pipes and twists. We now give some elementary properties
of pipes and twists needed in the next sections. For a given pipe in a twist, we call:

• we-crosses its horizontal crosses , and sn-crosses its vertical crosses ,

• se-elbows its elbows (aka. “peaks”) and wn-elbows its elbows (aka. “valleys”),

• internal steps the segments between two consecutive elbows and external steps the first and
last steps of the pipe.

The following statements gather some elementary properties of pipes in k-twists already ob-
served in earlier works, see e.g. [Pil10, Section 4.1.4]. Detailed proofs can be found in [Pil15].

Lemma 4. The following properties hold for any k, n ∈ N:

(i) A (k, n)-twist has
(
n
2

)
crosses and kn elbows .

(ii) The pth pipe of a (k, n)-twist has
• n− 1 crosses: p− 1 we-crosses and n− p sn-crosses ,

• 2k + 1 elbows: k se-elbows and k + 1 wn-elbows ,

• 2k + 2 steps: k + 1 vertical steps and k + 1 horizontal steps.
(iii) The interior of the rectangle defined by two consecutive steps of a pipe contains no elbow.

Lemma 5. For two pipes p,p′, write p < p′ when p starts below and ends to the left of p′.

(i) If p < p′ are two pipes of a twist T such that the crossing between p and p′ is on an internal
step of p′, then there is a path from p to p′ in the contact graph T# of T.

(ii) If p < p′ are two pipes of a twist T and are incomparable in the contact graph T# of T, then
the last vertical step of p crosses the first horizontal step of p′.

(iii) If a twist T is acyclic, then no two pipes of T cross at internal steps of both.

When T is acyclic, we denote by CT the transitive closure of its contact graph T#. Note the
difference between our notations p < p′ (meaning that p starts below and ends to the left of p′)
and p CT p′ (meaning that p is smaller than p in the contact graph T#).

1.3. Pipe insertion and deletion. We now define the pipe insertion and deletion, two reverse
operations on k-twists: an insertion transforms a (k, n)-twist into a (k, n + 1)-twist by inserting
a single pipe while a deletion transforms a (k, n+ 1)-twist into a (k, n)-twist by deleting a single
pipe. Insertions are always possible (see Definition 6), while only certain pipes are allowed to be
deleted (see Definition 9). We start with pipe insertions.

Definition 6. Consider a (k, n)-twist T with an increasing relabeling λ : [n] → N of its relevant
pipes and an integer q ∈ N. Let p ∈ {0, . . . , n} be such that λ(p) ≤ q < λ(p+ 1), where we set the
convention λ(0) = −∞ and λ(n+ 1) = +∞. The pipe insertion of q in the relabeled (k, n)-twist T
produces the relabeled (k, n+ 1)-twist T � q obtained by:

• inserting a row and a column in the triangular shape between p+ k − 1 and p+ k,
• filling in with elbows the new boxes (p+ k, p), (p+ k + 1, p+ 1), . . . , (p+ 2k, p+ k),
• filling in with crosses all other new boxes (p+k, j) for j < p and (i, p+k) for i > p+2k,
• relabeling the rth relevant pipe of the resulting twist by λ(r) if r < p, by q if r = p, and

by λ(r − 1) if r > p.

Figure 3 illustrates the insertion of 4 in the (k, 5)-twists of Figure 1 relabeled by [2, 3, 6, 8, 9].
The following statement is an immediate consequence of the definition of pipe insertion.

Lemma 7. The contact graph (T � q)# is obtained from T# by connecting to some existing nodes
the new node corresponding to the inserted pipe q. In particular, the node corresponding to the
inserted pipe is a source of the contact graph (T � q)#.

Example 8 (Insertion in 1-twists, triangulations and binary search trees). The following opera-
tions are equivalent under the bijections between 1-twists, triangulations, and binary search trees
(see Example 3 and Figure 2):

• the pipe insertion of q in the (relabeled) 1-twist T,
• the triangle insertion of q in the (relabeled) triangulation T?,
• the node insertion q in the (relabeled) binary search tree T#.
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6 8432 9 6 8432 9 6 8432 9 6 8432 9

Figure 3. Inserting 4 in the (k, 5)-twists of Figure 1. The inserted pipe is in bold red.

We now define the deletion, which just erases a pipe from a (k, n+ 1)-twist.

Definition 9. Consider a (k, n + 1)-twist T with an increasing relabeling λ : [n + 1] → N of its
relevant pipes. Assume that the pth pipe of T, labeled by λ(p) = q, is a source of the contact
graph T#. Then the pipe deletion of q in the relabeled (k, n + 1)-twist T produces the relabeled
(k, n)-twist T � q obtained by:

• deleting the (p+ k)th row and column of T,
• relabeling the rth relevant pipe of the resulting twist by λ(r) if r < p and by λ(r+1) if r ≥ p.

The following statements are immediate consequences of the definitions.

Lemma 10. The contact graph (T � q)# is obtained from T# by deleting the node corresponding
to the delete pipe q.

Lemma 11. For any (k, n)-twist T relabeled by λ : [n]→ N and any integer q ∈ N, we have

• (T � q) � q = T, and
• (T � q) � q = T as soon as q ∈ λ([n]) labels a source of T.

1.4. k-twist correspondence. We now present a natural surjection from permutations to acyclic
k-twists. It relies on an insertion operation on pipe dreams similar to the insertion in binary
search trees (see Example 13 for details). It is motivated by the geometry of the normal fan of
the corresponding brick polytope (see Section 2 and [PS12]).

We now describe this algorithm. From a permutation τ := [τ1, . . . , τn] (written in one-line nota-

tion), we construct a (k, n)-twist insk(τ) obtain from the (k, 0)-twist by successive pipe insertions
of the entries τn, . . . , τ1 of τ read from right to left. Equivalently, starting from the empty trian-
gular shape, we insert the pipes τn, . . . , τ1 of the twist such that each new pipe is as northwest as
possible in the space left by the pipes already inserted. This procedure is illustrated in Figure 4
for the permutation 31542 and different values of k.

Proposition 12. For any (k, n)-twist T, the permutations τ ∈ Sn such that insk(τ) = T are

precisely the linear extensions of the contact graph of T. In particular, insk is a surjection from
the permutations of Sn to the acyclic (k, n)-twists.

Proof. We prove the result by induction on n. Consider a permutation τ = [τ1, . . . , τn] ∈ Sn,

and let τ ′ = [τ2, . . . , τn]. By definition, we have insk(τ) = insk(τ ′) � τ1. By induction hypothesis,

τ ′ is a linear extension of the contact graph insk(τ ′)# and Lemma 7 ensures that τ1 is a source

of insk(τ)# = (insk(τ ′) � τ1)#. It follows that τ is a linear extension of the contact graph insk(τ)#.
Conversely, assume that τ is a linear extension of the contact graph of a (k, n)-twist T. Since τ1 is a
source of T#, the twist T � τ1 is well-defined, and τ ′ is a linear extension of (T � τ1)#. By induction,

we have insk(τ ′) = T � τ1 and thus insk(τ) = insk(τ ′) � τ1 = (T � τ1) � τ1 = T by Lemma 11. �

Example 13 (1-twist correspondence). The contact graph of the 1-twist ins1(τ) is the binary
search tree obtained by the successive insertions of the entries of τ read from right to left.
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4321

4231 43123421

34123241 2431 4213

1234

13242134 1243

31242314 13422143 1423

3142 24133214 2341 4123 1432

4321

3421 4231 4312

3241

1234

2134 1324 1243

2314 21433124 1342 1423

3214 2341 3142 2413 4123 1432

413234122431 4213 4132

Figure 5. The k-twist congruence classes on S4 for k = 1 (left) and k = 2 (right).

1.5. k-twist congruence. We now characterize the fibers of insk as classes of a congruence ≡k
defined by a simple rewriting rule, similar to the sylvester congruence [HNT05].

Definition 14. Write the permutations of Sn as words in one-line notation. The k-twist congru-
ence is the equivalence relation ≡k on Sn defined as the transitive closure of the rewriting rule

UacV1b1V2b2 · · ·VkbkW ≡k UcaV1b1V2b2 · · ·VkbkW if a < bi < c for all i ∈ [k],

where a, b1, . . . , bk, c are elements of [n] while U, V1, . . . , Vk,W are (possibly empty) words on [n].
We say that b1, . . . , bk are k-twist congruence witnesses for the exchange of a and c. See Figure 5.

Proposition 15. For any τ, τ ′ ∈ Sn, we have τ ≡k τ ′ ⇐⇒ insk(τ) = insk(τ ′). In other words,

the fibers of insk are precisely the k-twist congruence classes.

Proof. From Proposition 12, each fiber of insk gathers the linear extensions of a k-twist. Since
the set of linear extensions of a poset is connected by simple transpositions, we just need to show
that τ ≡k τ ′ ⇐⇒ insk(τ) = insk(τ ′) for any two permutations τ = UacV and τ ′ = UcaV of Sn

which differ by the inversion of two consecutive values.
Let T = insk(V ) denote the k-twist obtained after the insertion of V . The positions where a

and c will be inserted in T are separated by the letters b in V such that a < b < c. Therefore, if
there exists at least k such letters, the pipes a and c are not comparable in (T � c) � a = (T � a) � c

and we have insk(τ) = insk(τ ′). Conversely, if there are strictly less than k such letters, then a is

below c in (T � c) � a while a is above c in (T � a) � c, and thus we get insk(τ) 6= insk(τ ′). �

Example 16 (1-twist congruence and sylvester congruence). The 1-twist congruence coincides
with the sylvester congruence defined in [HNT05] as the transitive closure of the rewriting rule
UacV bW ≡ UcaV bW for a < b < c elements of [n] while U, V,W are (possibly empty) words on [n].

1.6. Lattice congruences of the weak order. In this section, we remind results of N. Read-
ing [Rea04, Rea06, Rea05] concerning lattice congruences of the weak order.

Remember first that the (right) weak order on Sn is defined as the inclusion order of (right)
inversions, where a (right) inversion of τ ∈ Sn is a pair of values i, j ∈ N such that i < j
while τ−1(i) > τ−1(j). See e.g. Figure 5 for the Hasse diagram of the weak order on S4.

A lattice congruence is an equivalence relation ≡ on a lattice L compatible with meets and joins:
for any x ≡ x′ and y ≡ y′, we have x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′. This implies in particular
that each equivalence class under ≡ is an interval of L. Consider now the poset quotient L/≡
on the equivalence classes of ≡ defined by X ≤ Y in L/≡ iff there exists representatives x ∈ X
and y ∈ Y such that x ≤ y in L. It inherits a lattice structure where the meet X ∧ Y (resp. the
join X ∨Y ) of two congruence classes X and Y is the congruence class of x∧ y (resp. of x∨ y) for
arbitrary representatives x ∈ X and y ∈ Y .
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It turns out that the k-twist congruence already appeared in the work of N. Reading [Rea05].

Proposition 17 ([Rea05]). The k-twist congruence ≡k is a lattice congruence of the weak order.

Corollary 18. The following combinatorial objects are in explicit bijection:

• acyclic (k, n)-twists,
• k-twist congruence classes of Sn,
• permutations of Sn avoiding 1(k+2) – (σ1 +1) – . . . – (σk+1) for all σ ∈ Sk (maximums),
• permutations of Sn avoiding (k+2)1 – (σ1 +1) – . . . – (σk+1) for all σ ∈ Sk (minimums).

Remark 19 (13 – 2 versus 1 – 3 – 2 avoiding permutations). It is easy to see that a permutation
avoids 13 – 2 if and only if it avoids 1 – 3 – 2. This property fails for larger values of k. For example,
the permutation 13524 avoids 14 – 2 – 3 but not 1 – 4 – 2 – 3. Here, we deal with permutations
avoiding the pattern 1(k + 2) – (σ1 + 1) – . . . – (σk + 1), where 1 and (k + 2) are consecutive.

1.7. Increasing flip lattice. We now recall the notion of flips in pipe dreams and study the
graph of increasing flips in acyclic k-twists.

Definition 20. An elbow flip (or just flip) in a k-twist is the exchange of an elbow between
two relevant pipes p,p′ with the unique crossing between p and p′. The flip is increasing if the
initial elbow is located (largely) south-west of the final elbow.

We are interested in the graph of increasing flips, restricted to the acyclic (k, n)-twists. See
Figure 6 for an illustration when k = 2 and n = 4. Note that although the graph of flips
is regular, its restriction to acyclic twists is not anymore regular in general: the first example
appears for k = 2 and n = 5. It is known (see e.g. via subword complexes in [PS13] or via
multitriangulations in [PS09]) that this graph is acyclic and it has a unique source (resp. sink)
given by the (k, n)-twist where all relevant elbows are in the first k columns (resp. last k rows)
while all crosses are on the last n columns (resp. first n rows).

We call increasing flip order the transitive closure of the increasing flip graph on acyclic k-twists.
Be aware that it is strictly contained in the restriction to acyclic k-twists of the transitive closure
of the increasing flip graph on all k-twists: namely, there are pairs of acyclic k-twists so that any
path of increasing flips between them passes through a cyclic k-twist.

Example 21 (Tamari lattice). When k = 1, the increasing flip lattice is the classical Tamari
lattice [MHPS12].

Proposition 22. The following posets are all isomorphic:

• the increasing flip order on acyclic k-twists,
• the quotient lattice of the weak order by the k-twist congruence ≡k,
• the subposet of the weak order induced by the permutations of Sn avoiding the pattern

1(k + 2) – (σ1 + 1) – · · · – (σk + 1) for all σ ∈ Sk,
• the subposet of the weak order induced by the permutations of Sn avoiding the pattern

(k + 2)1 – (σ1 + 1) – · · · – (σk + 1) for all σ ∈ Sk.

Proof. Consider two distinct k-twists T,T′ and their k-twist congruence classes C,C ′. If there
exist representatives τ = UijV ∈ C and τ ′ = UjiV ∈ C ′ adjacent in weak order, then T = insk(τ)

and T′ = insk(τ ′) differ by the flip of the first/last elbow between the ith and jth pipes, by

definition of the map insk. Conversely, if T and T′ differ by the flip of the first/last elbow between
the ith and jth pipes, then i and j are connected in the contact graph T#, so that there exists a
linear extension τ = UijV of T# where i and j are consecutive. Let τ ′ = UjiV be the permutation
obtained by the switch of i and j in τ . By definition of the map insk, the twist insk(τ ′) is obtained

by flipping the first elbow between the ith and jth pipes in insk(τ). The representatives τ ∈ C
and τ ′ ∈ C ′ are thus adjacent in weak order. This proves that insk induces an isomorphism from
the quotient lattice of the weak order by the k-twist congruence to the increasing flip order on
acyclic k-twists. In turn, since the k-twist congruence is a lattice congruence, this quotient lattice
is isomorphic to the subposet of the weak order induced by the minimal (resp. maximal) elements
of the classes. See [Rea04, Rea06] for further details on quotient lattices. �
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4321

4231 43123421

34123241 2431 4213

1234

13242134 1243
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3421 4231 4312

3241

1234

2134 1324 1243

2314 21433124 1342 1423

3214 2341 3142 2413 4123 1432

413234122431 4213 4132

Figure 7. The k-recoil congruence classes on S4 for k = 1 (left) and k = 2 (right).

1.8. k-recoil schemes. To prepare the definition of the k-canopy of an acyclic k-twist, we now
briefly recall the notion of k-recoil schemes of permutations, which was already defined by J.-
C. Novelli, C. Reutenauer and J.-Y. Thibon in [NRT11]. We use a description in terms of acyclic
orientations of a certain graph as it is closer to the description of the vertices of the zonotope that
we will use later in Section 2. We skip the proofs as they appear in [NRT11, Pil15]

A recoil in a permutation τ ∈ Sn is a position i ∈ [n − 1] such that τ−1(i) > τ−1(i + 1)
(in other words, it is a descent of the inverse of τ). The recoil scheme of τ ∈ Sn is the sign
vector rec(τ) ∈ {−,+}n−1 defined by rec(τ)i = − if i is a recoil of τ and rec(τ)i = + otherwise.

To extend this definition to general k, we consider the graph Gk(n) with vertex set [n] and edge
set

{
{i, j} ∈ [n]2

∣∣ i < j ≤ i+ k
}

. For example, when k = 1, the graph G1(n) is just the n-path.

We denote by AOk(n) the set of acyclic orientations of Gk(n) (i.e. with no oriented cycle).

Proposition 23 ([NRT11, Prop. 2.1]). The number of acyclic orientations of Gk(n) is

|AOk(n)| =

{
n! if n ≤ k,
k! (k + 1)n−k if n ≥ k.

We use these acyclic orientations to define the k-recoil scheme of a permutation and the corre-
sponding k-recoil congruence.

Definition 24. The k-recoil scheme of a permutation τ ∈ Sn is the orientation reck(τ) ∈ AOk(n)
with an edge i → j for all i, j ∈ [n] such that |i − j| ≤ k and τ−1(i) < τ−1(j). We call k-recoil

map the map reck : Sn → AOk(n).

Proposition 25. For O ∈ AOk(n), the fiber of O by the k-recoil map is the set of linear extensions
of the transitive closure of O.

Definition 26. The k-recoil congruence ≈k on Sn is the transitive closure of the rewriting rule

UijV ≈k UjiV if i+ k < j,

where i, j are elements of [n] while U, V are (possibly empty) words on [n]. See Figure 7.

Proposition 27 ([NRT11, Prop. 2.2]). For any τ, τ ′ ∈ Sn, we have τ ≈k τ ′ ⇐⇒ reck(τ) = reck(τ ′).
In other words, the fibers of reck are precisely the k-recoil congruence classes.

Definition 28. A direction flip (or just flip) in an acyclic orientation is the switch of the direction
of an edge of Gk(n). The flip is increasing if the initial direction was increasing. Define the

increasing flip order on AOk(n) to be the transitive closure of the increasing flip graph on AOk(n).
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Proposition 29. The k-recoil congruence ≈k is a lattice congruence of the weak order. The k-
recoil map reck defines an isomorphism from the quotient lattice of the weak order by the k-recoil
congruence ≈k to the increasing flip lattice on the acyclic orientations of Gk(n).

1.9. k-canopy schemes. We recall that the canopy of a binary tree T with n nodes is the sign
vector can(T) ∈ {−,+}n−1 defined by can(T)i = − if the node i of T is above the node i+ 1 of T
and can(T)i = + otherwise. This map was already used e.g. in [LR98, Lod04, Vie07]. The binary
search tree insertion map and the canopy map factorize the recoil map: can ◦ ins = rec. This com-
binatorial fact can also be understood on the geometry of the normal fans of the permutahedron,
the associahedron and the cube, see Section 2.2.

We now define an equivalent of the canopy map for general k. To ensure that Definition 31 is
valid, we need the following simple observation on comparisons of closed pipes in a k-twist.

Lemma 30. If |i− j| ≤ k, the ith and jth pipes in an acyclic k-twist T are comparable for CT .

Proof. By Lemma 5 (ii), if i < j and the ith and jth pipes are incomparable, then the last vertical
step of i crosses the first horizontal step of j. Since each pipe has k horizontal steps by Lemma 4 (ii),
it ensures that j > i+ k. �

Definition 31. The k-canopy scheme of a (k, n)-twist T is the orientation cank(T) ∈ AOk(n)
with an edge i → j for all i, j ∈ [n] such that |i− j| ≤ k and i CT j. It indeed defines an acyclic

orientation of Gk(n) by Lemma 30. We call k-canopy the map cank : AT k(n)→ AOk(n).

Proposition 32. The maps insk, cank, and reck define the following commutative diagram of
lattice homomorphisms:

Sn AOk(n)

AT k(n)

reck

insk cank

Proof. Consider a permutation τ and let i, j ∈ [n] with |i− j| < k such that τ−1(i) < τ−1(j). By
definition, there is an arc i → j in reck(τ). Moreover, the ith pipe is inserted after the jth pipe

in insk(τ), so that i Cinsk(τ) j and there is also an arc i→ j in cank ◦ insk(τ). �

See also Section 2.2 for a geometric interpretation of Proposition 32.

Remark 33 (Combinatorial inclusions). When k > `, the k-twist congruence≡k refines the `-twist
congruence ≡` (meaning that τ ≡k τ ′ implies τ ≡` τ ′) and the k-recoil congruence ≈k refines the

`-recoil congruence ≈`. We can thus define surjective restriction maps resk→` : AT k(n)→ AT `(n)

and resk→` : AOk(n)→ AO`(n) by:

• for an acyclic k-twist T, the `-twist resk→`(T) is obtained by insertion of any linear ex-
tension of T# (it is independent of the choice of this linear extension),

• for an acyclic orientation θ ∈ AOk(n), the sign vector resk→`(θ) ∈ AO`(n) is obtained by
restriction of θ to the edges of G`(n).

We therefore obtain the following commutative diagram of lattice homomorphisms:

AT k(n) AT `(n)

Sn

AOk(n) AO`(n)

insk ins`

reck rec`
cank can`

resk→`

resk→`
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2. Geometry of acyclic twists

This section is devoted to the polyhedral geometry of permutations of Sn, acyclic twists
of AT k(n), and acyclic orientations of AOk(n). It is mainly based on properties of brick polytopes
of sorting networks, defined and studied by V. Pilaud and F. Santos in [PS12]. To keep this section
short, we skip all proofs of its statements as they follow directly from [PS12]. This section should
be seen as a brief geometric motivation for the combinatorial and algebraic construction of this
paper. The reader familiar with the geometry of the brick polytope is invited to proceed directly
with Section 3.

2.1. Permutahedra, brick polytopes, and zonotopes. We first recall the definition of three
families of polytopes, which are illustrated in Figure 8. We refer to [Zie98, Lectures 0 to 2] for
background on polytopes. We denote by (ei)i∈[n] the canonical basis of Rn and let 11 :=

∑
i∈[n] ei.

Permutahedra The permutahedron is a classical polytope [Zie98, Lecture 0] whose geometric
and combinatorial properties reflect that of the symmetric group Sn.

Definition 34. The permutahedron Perm(n) is the (n− 1)-dimensional polytope

Perm(n) := conv {x(τ) | τ ∈ Sn} = H=([n]) ∩
⋂

∅ 6=I([n]

H≥(I) = 11 +
∑

1≤i<j≤n

[ei, ej ],

defined equivalently as

• the convex hull of the points x(τ) := [τ−1(i)]i∈[n] ∈ Rn for all permutations τ ∈ Sn,

• the intersection of the hyperplane H=([n]) :=
{
x ∈ Rn |

∑
i∈[n] xi =

(
n+1

2

)}
with the half-

spaces H≥(I) :=
{
x ∈ Rn |

∑
i∈I xi ≥

(|I|+1
2

)}
for all proper non-empty subset ∅ 6= I ( [n],

• the Minkowski sum of the point 11 with the segments [ei, ej ] for 1 ≤ i < j ≤ n.

We consider a dilated and translated copy of the permutahedron Perm(n), which will fit better
the other two families of polytopes defined later (see Remark 41 for a precise statement). Namely,
we set

Permk(n) := k Perm(n)− k(n+ 1)

2
11.

Observe that Permk(n) now lies in the hyperplane H :=
{
x ∈ Rn |

∑
i∈[n] xi = 0

}
.

Brick polytopes To define the brick polytope, we essentially follow [Pil10, PS12] except that
we apply again a translation in direction 11 to obtain a polytope in the hyperplane H.

Definition 35. We call bricks the squares [i, i+ 1]× [j, j + 1] of the triangular shape. The brick
area of a pipe p is the number of bricks located below p but inside the axis-parallel rectangle defined
by the two endpoints of p. The brick vector of a k-twist T is the vector x(T) ∈ Rn whose ith

coordinate is the brick area of the ith pipe of T, minus k(n+k)
2 . The brick polytope Brickk(n) is the

polytope defined as the convex hull of the brick vectors of all (k, n)-twists.

As for the permutahedron described above, we know three descriptions of the brick polytopes:
its vertex description, its hyperplane description, and a Minkowski sum description. These prop-
erties are proved in [PS12] (modulo our translation in the direction 11).

Proposition 36 ([PS12]). The brick polytope Brickk(n) has the following properties for any n, k ∈ N.

(i) It lies in the hyperplane H :=
{
x ∈ Rn |

∑
i∈[n] xi = 0

}
and has dimension n− 1.

(ii) The vertices of Brickk(n) are precisely the brick vectors of the acyclic (k, n)-twists.

(iii) The normal vectors of the facets of Brickk(n) are given by the proper k-connected {0, 1}-
sequences of size n, i.e. the sequences of {0, 1}n distinct from 0n and 1n and which do not



BRICK POLYTOPES, LATTICE QUOTIENTS, AND HOPF ALGEBRAS 13

34124312
4321 3421

3142

3241

3214

13421432

1423

1243 1234
2134

1324

4123

4132

2314
3124

2143

2413

4213

2431

4231

2341

− −−

−+−

+−−

−−+

−++

++−

+++

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321
4321

4321

+−+

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321
4321

4321

4321

4321

4321

4321

4321

4321

4321

− −−−−

−−−+−

−+−+−

+++++
++++−

+−++−++−+−

++−++

+−−+−
−+−++

−+−−+

−−−−+

−−+−−

+−+−−
−++−+

−−+−+

+++−+

+−+−+

34124312
4321 3421

3142

3241

3214

13421432

1423

1243 1234
2134

1324

4123

4132

2314
3124

2143

2413

4213

2431

4231

2341

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321
4321

4321

4321

4321 4321

4321

4321

4321

4321

4321

4321

4321

4321

−−−−−−

−−−−+−

−−+−+−

−++−+−

+++−+−

−+−−+−

−+−++−

++−++−

−+−+−−

−−−−−+

−−−+−−

−−+−++

−−+−−+

+−+−−+

+−+−++

+++−++

++++++ +++++−

−−−+−+

+−−+−+

++−+−+

++++−+

34124312
4321 3421

3142

3241

3214

13421432

1423

1243 1234
2134

1324

4123

4132

2314
3124

2143

2413

4213

2431

4231

2341

Figure 8. The permutahedron Permk(4) (left), the brick polytope Brickk(4)

(middle) and the zonotope Zonok(4) (right) for k = 1 (top), k = 2 (middle)
and k = 3 (bottom). For readability, we represent orientations of Gk(n) by pyra-
mids of signs.
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contain a subsequence 10`1 for ` ≥ k. The number of facets of Brickk(n) is therefore the
coefficient of tn in

t2(2− tk)

(1− 2t+ tk+1)(1− t)
.

(iv) For a brick b, let xb(T) denote the characteristic vector of the pipes of a (k, n)-twist T

whose brick area contain b, and define Brickkb (n) to be the convex hull of the vectors xb(T)

for all (k, n)-twists T. Then, up to the translation of vector k(n+k)
2 11, the brick polytope

Brickk(n) is also the Minkowski sum of the polytopes Brickkb (n) over all bricks b.

Example 37 (J.-L. Loday’s associahedron). When k = 1, the brick polytope Brick1(n) coincides
(up to translation) with J.-L. Loday’s associahedron [Lod04]. See Figure 8 (top center).

Zonotopes Zonotopes are particularly important polytopes which are constructed equivalently
as projections of cubes, or as Minkowski sums of segments. The combinatorics of a zonotope is
completely determined by the matroid of the vector configuration defined by these summands.
We refer to [Zie98, Lecture 7] for a presentation of these polytopes and their relations to oriented
matroids. Notable examples are graphical zonotopes, defined as follows.

Definition 38. The graphical zonotope Zono(G) of a graph G is the Minkowski sum of the seg-
ments [ei, ej ] for all edges {i, j} of G.

The following classical statement gives the vertex and facet descriptions of graphical zonotopes.

Proposition 39. The graphical zonotope Zono(G) has the following properties for any graph G.

(i) The dimension of Zono(G) is the number of edges of a maximal cycle-free subgraph of G.
(ii) The vertices of Zono(G) correspond to the acyclic orientations of G. The ith coordinate of

the vertex x(O) of Zono(G) corresponding to an acyclic orientation O of G is the indegree
of vertex i in O.

(iii) The facets of Zono(G) correspond to minimal cuts of G.

For example, the permutahedron Perm(n) is the graphical zonotope of the complete graph,
its vertices correspond to permutations of [n] (acyclic tournaments), and its facets correspond to
proper subsets of [n] (minimal cuts). Here, we focus on the zonotope of Gk(n) whose vertices

correspond to the acyclic orientations in AOk(n) and whose facets correspond to minimal cuts
of Gk(n). As for the previous polytopes, we perturb this zonotope to fit the other two polytopes
better (see Remark 41 for a precise statement), and thus define

Zonok(n) :=
∑

1≤i<j≤n

λ(i, j, k, n) · [ei, ej ] −
(n− 1)(n+ 3k − 2)

6
11,

where

λ(i, j, k, n) :=


n+ k − 2|i− j| if |i− j| < k,

min(i, n+ 1− j)
(
n+ k − 1−min(i, n+ 1− j)

)
if |i− j| = k,

0 if |i− j| > k.

Note that this perturbation is only cosmetic and preserves the combinatorics. Indeed, observe
that for all 1 ≤ i < j ≤ n, we have λi,j,k,n 6= 0 if and only if |i − j| ≤ k. Therefore, the zono-

topes Zonok(n) and Zono(Gk(n)) have the same normal fan (see Section 2.2) and thus the same face

lattice. The translation ensures that Zonok(n) lies in the hyperplane H :=
{
x ∈ Rn |

∑
i∈[n] xi = 0

}
.

Example 40 (Cube). When k = 1, the zonotope Zono1(n) coincides (up to translation and scal-
ing) with the parallelotope generated by the simple roots ei+1−ei. It has the same combinatorics
as the n-dimensional cube. See Figure 8 (top right).
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Figure 9. The inclusions Permk(n) ⊆ Brickk(n) ⊆ Zonok(n) for k = 1 (left),

k = 2 (middle) and k = 3 (right). The permutahedron Permk(n) is in blue, the

brick polytope Brickk(n) in red and the zonotope Zonok(n) in green.

Remark 41 (Geometric inclusions). We have chosen our normalizations (dilations and trans-

lations) so that the polytopes Permk(n), Brickk(n) and Zonok(n) all leave in the hyperplane
H :=

{
x ∈ Rn |

∑
i∈[n] xi = 0

}
and fulfill the following inclusions:

1
kBrickk(n) 1

`Brick`(n)

Perm(n)

1
kZonok(n) 1

`Zono`(n)

⊆ ⊆
⊆ ⊆

⊆ ⊆

⊆

⊆

These inclusions are illustrated in Figures 8, 9 and 10. Compare to Remark 33.
Observe moreover that

Zonok(n) = Zonon−1(n) + (k + 1− n) Perm1(n)

for all k ≥ n−1. We therefore obtain that the rescaled polytopes 1
kBrickk(n) and 1

kZonok(n) both

converge to 1
kPermk(n) = Perm1(n) when k tend to ∞ (see Figure 10).

2.2. The geometry of the surjections insk, cank, and reck. Besides Remark 41, the main
geometric connection between the three polytopes Permk(n), Brickk(n) and Zonok(n) is given by
their normal fans. Remember that a polyhedral fan is a collection of polyhedral cones of Rn closed
under faces and which intersect pairwise along faces, see e.g. [Zie98, Lecture 7]. The (outer) normal
cone of a face F of a polytope P is the cone generated by the outer normal vectors of the facets
of P containing F . Finally, the (outer) normal fan of P is the collection of the (outer) normal
cones of all its faces.

The incidence cone C(C) and the braid cone C♦(C) of an poset C are the polyhedral cones
defined by

C(C) := cone {ei − ej | for all i C j} and C♦(C) := {x ∈ H | xi ≤ xj for all i C j} .
These two cones lie in the space H and are polar to each other. For a permutation τ ∈ Sn (resp. a

twist T ∈ AT k(n), resp. an orientation O ∈ AOk(n)), we slightly abuse notation to write C(τ)
(resp. C(T), resp. C(O)) for the incidence cone of the chain τ1 C · · · C τn (resp. of the transitive
closure C of the contact graph T#, resp. of the transitive closure of O). We define similarly the
braid cone C♦(τ) (resp. C♦(T), resp. C♦(O)). These cones (together with all their faces) form the
normal fans of the polytopes of Section 2.1.
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Figure 10. The inclusions of the brick polytopes 1
kBrickk(4) (left) and of the

zonotopes 1
kZonok(4) (right) for k = 1 (red), k = 2 (orange) and k = 3 (green).

Both tend to the classical permutahedron Perm1(4) (blue) when k tends to ∞.

Proposition 42. The collections of cones{
C♦(τ) | τ ∈ Sn

}
,

{
C♦(T) | T ∈ AT k(n)

}
and

{
C♦(O) | O ∈ AOk(n)

}
,

together with all their faces, are the normal fans of the permutahedron Permk(n), the brick poly-

tope Brickk(n) and the zonotope Zonok(n) respectively.

Observe moreover that the normal fan of Permk(n) is also the collection of chambers of the
Coxeter arrangement given by all hyperplanes {x ∈ H | xi = xj} for all i, j ∈ [n]. Similarly, the

normal fan of Zonok(n) is also the collection of chambers of the graphical arrangement given by
the hyperplanes {x ∈ H | xi = xj} for all edges {i, j} in Gk(n).

Using these normal fans, one can interpret geometrically the maps insk, cank, and reck as
follows.

Proposition 43. The insertion map insk : Sn → AT k(n), the k-canopy cank : AT k(n)→ AOk(n)

and the k-recoil map reck : Sn → AOk(n) are characterized by

T = insk(τ) ⇐⇒ C(T) ⊆ C(τ) ⇐⇒ C♦(T) ⊇ C♦(τ),

O = cank(T) ⇐⇒ C(O) ⊆ C(T) ⇐⇒ C♦(O) ⊇ C♦(T),

O = reck(τ) ⇐⇒ C(O) ⊆ C(τ) ⇐⇒ C♦(O) ⊇ C♦(τ).

Finally, the lattices studied in Section 1 also appear naturally in the geometry of the poly-
topes Permk(n), Brickk(n) and Zonok(n). Denote by U the vector

U := (n, n− 1, . . . , 2, 1)− (1, 2, . . . , n− 1, n) =
∑
i∈[n]

(n+ 1− 2i) ei.

Proposition 44. When oriented in the direction U , the 1-skeleton of the permutahedron Permk(n)

(resp. of the brick polytope Brickk(n), resp. of the zonotope Zonok(n)) is the Hasse diagram of the
weak order on permutations (resp. of the increasing flip lattice on acyclic (k, n)-twists, resp. of the
increasing flip lattice on acyclic orientations of Gk(n)).
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3. Algebra of acyclic twists

Motivated by the Hopf algebra on binary trees constructed by J.-L. Loday and M. Ronco [LR98]
as a subalgebra of the Hopf algebra on permutations of C. Malvenuto and C. Reutenauer (see
also [HNT05, AS06]), we define a Hopf algebra with bases indexed by acyclic k-twists. We then
give combinatorial interpretations of the product and coproduct of this algebra and its dual in
terms of k-twists. We finally conclude with further algebraic properties of this algebra.

3.1. Hopf algebras FQSym and FQSym∗. We briefly recall here the definition and some elemen-
tary properties of C. Malvenuto and C. Reutenauer’s Hopf algebra on permutations [MR95]. We
denote this algebra by FQSym to stress out its connection to free quasi-symmetric functions. We
will however not use this connection in this paper. We denote by S :=

⊔
n∈N Sn the set of all

permutations, of arbitrary size.
For n, n′ ∈ N, let

S(n,n′) := {τ ∈ Sn+n′ | τ1 < · · · < τn and τn+1 < · · · < τn+n′}
denote the set of permutations of Sn+n′ with at most one descent, at position n. The shifted
concatenation τ τ̄ ′, the shifted shuffle τ �̄ τ ′, and the convolution τ ? τ ′ of two permutations τ ∈ Sn

and τ ′ ∈ Sn′ are classically defined by

τ τ̄ ′ := [τ1, . . . , τn, τ
′
1 + n, . . . , τ ′n′ + n] ∈ Sn+n′ ,

τ �̄ τ ′ :=
{

(τ τ̄ ′) ◦ π−1 | π ∈ S(n,n′)
}

and τ ? τ ′ :=
{
π ◦ (τ τ̄ ′) | π ∈ S(n,n′)

}
.

For example,

12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}.

Definition 45. We denote by FQSym the Hopf algebra with basis (Fτ )τ∈S and whose product and
coproduct are defined by

Fτ · Fτ ′ =
∑

σ∈τ �̄ τ ′

Fσ and 4Fσ =
∑

σ∈τ?τ ′
Fτ ⊗ Fτ ′ .

This algebra is graded by the size of the permutations.

Proposition 46. A product of weak order intervals in FQSym is a weak order interval: for any
two weak order intervals [µ, ω] and [µ′, ω′], we have( ∑

µ≤τ≤ω

Fτ
)
·
( ∑
µ′≤τ ′≤ω′

Fτ ′
)

=
∑

µµ̄′≤σ≤ω̄′ω

Fσ.

Corollary 47. For τ ∈ Sn, define

Eτ =
∑
τ≤τ ′

Fτ ′ and Hτ =
∑
τ ′≤τ

Fτ ′

where ≤ is the weak order on Sn. Then (Eτ )τ∈S and (Hτ )τ∈S are multiplicative bases of FQSym:

Eτ · Eτ
′

= Eτ\τ
′

and Hτ ·Hτ
′

= Hτ/τ
′
,

where τ\τ ′ = τ τ̄ ′ and τ/τ ′ = τ̄ ′τ . A permutation τ ∈ Sn is E-decomposable (resp. H-decomposable)
if and only if there exists k ∈ [n− 1] such that τ([k]) = [k] (resp. such that τ([k]) = [n] r [k]).
Moreover, FQSym is freely generated by the elements Eτ (resp. Hτ ) for the E-indecomposable
(resp. H-indecomposable) permutations.

We will also consider the dual Hopf algebra of FQSym, defined as follows.

Definition 48. We denote by FQSym∗ the Hopf algebra with basis (Gτ )τ∈S and whose product
and coproduct are defined by

Gτ ·Gτ ′ =
∑

σ∈τ?τ ′
Gσ and 4Gσ =

∑
σ∈τ �̄ τ ′

Gτ ⊗Gτ ′ .

This algebra is graded by the size of the permutations.
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3.2. Subalgebra of FQSym. We denote by Twistk the vector subspace of FQSym generated by
the elements

PT :=
∑
τ∈S

insk(τ)=T

Fτ =
∑

τ∈L(T#)

Fτ ,

for all acyclic k-twists T. For example, for the (k, 5)-twists of Figure 4, we have

P 4 5321 =
∑
τ∈S5

Fτ P 4 5321 = F13542 + F15342

+ F31542 + F51342

+ F35142 + F53142

+ F35412 + F53412

P 4 5321 = F31542

+ F35142

P 4 5321 = F31542.

Theorem 49. Twistk is a Hopf subalgebra of FQSym.

Proof. This statement is a particular case of the results of [Rea05]. Alternatively, we could also
invoke the formalism of [Hiv04, HN07, Pri13] and just observe that the k-twist congruence ≡k is
compatible with the standardization and the restriction to intervals. A detailed proof can also be
found in [Pil15]. �

Example 50 (J.-L. Loday and M. Ronco’s algebra). The bijection given in Example 3 (see also
Figure 2) defines an isomorphism from the 1-twist algebra Twist1 to M. Ronco and J.-L. Loday’s
Hopf algebra PBT on planar binary trees [LR98, HNT05].

We now aim at understanding the product and the coproduct in Twistk directly on k-twists.
Although they are not always as satisfactory, our descriptions naturally extend classical results on
the binary tree Hopf algebra PBT described in [LR98, AS06, HNT05].

Product To describe the product in Twistk, we need the following notation, which is illustrated
in Figure 11. For a (k, n)-twist T and a (k, n′)-twist T′, we denote by T\T′ the (k, n + n′)-twist
obtained by inserting T in the first rows and columns of T′ and by T/T′ the (k, n + n′)-twist
obtained by inserting T′ in the last rows and columns of T.

4321 65 4321 654321 21

Figure 11. Two twists T,T′ (left) and the two twists T\T′ and T/T′ (right).

Proposition 51. For any acyclic k-twists T ∈ AT k(n) and T′ ∈ AT k(n′), the product PT · PT′

is given by

PT · PT′ =
∑

S

PS,

where S runs over the interval between T\T′ and T/T′ in the (k, n+n′)-twist lattice. See Figure 12.

Proof. Consider two acyclic k-twists T,T′. By Proposition 17, their fibers under insk are intervals
of the weak order, which we denote by [µ, ω] and [µ′, ω′] respectively. By Proposition 46, the
product PT · PT′ is therefore the weak order interval [µµ̄′, ω̄′ω]. Theorem 49 ensures that this

interval is partitioned into various fibers of insk. In particular, the fiber of T\T′ contains µµ̄′

while the fiber of T/T′ contains ω̄′ω. Proposition 17 finally ensures that [µµ̄′, ω̄′ω] is precisely the
union of the fibers of the increasing flip interval [T\T′,T/T′]. �
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P 4321 · P 21 = (F1423 + F4123) · F21

=

[
F142365

+F412365

]
+


F142635

+F146235

+F412635

+F416235

+F461235

+

 F164235

+F614235

+F641235

+


F142653

+F146253

+F412653

+F416253

+F461253

+

 F164253

+F614253

+F641253

+


F146523

+F416523

+F461523

+F465123

+


F164523

+F614523

+F641523

+F645123

+


F165423

+F615423

+F651423

+F654123


= P 4321 65 + P 4321 65 + P 4321 65 + P 4321 65 + P 4321 65 + P 4321 65 + P 4321 65 + P 4321 65

Figure 12. An example of product in the 2-twist algebra Twist2.

Coproduct Our description of the coproduct in Twistk is unfortunately not as simple as the
coproduct in PBT. It is very closed to the description of the direct computation using the coproduct
of FQSym. We need the following definition. A cut in a k-twist S is a set γ of edges of the contact
graph S# such that any path in S# from a leaf to the root contains precisely one edge of γ. We
then denote by A#(S, γ) (resp. B#(S, γ)) the restriction of the contact graph S# to the nodes
above (resp. below) γ. Moreover, A#(S, γ) is the contact graph of the k-twist A(S, γ) obtained
from S by deleting all pipes below γ in S#. Nevertheless, note that B#(S, γ) is not a priori the
contact graph of a k-twist.

Proposition 52. For any acyclic k-twist S ∈ AT k(m), the coproduct 4PS is given by

4PS =
∑
γ

(∑
τ

Pinsk(τ)

)
⊗ PA(S,γ),

where γ runs over all cuts of S and τ runs over a set of representatives of the k-twist congruence
classes of the linear extensions of B#(S, γ). See Figure 13.

Proof. By Theorem 49, any element of 4S is of the form insk(τ) ⊗ insk(τ ′) for some permuta-
tions τ ∈ Sn and τ ′ ∈ Sn′ such that τ ? τ ′ contains a linear extension σ of S#. Let γ denote the
cut of S that separates σ({1, . . . , n}) from σ({n+ 1, . . . n+ n′}). Then τ and τ ′ are linear exten-

sions of B#(S, γ) and A#(S, γ) respectively, so that insk(τ) ⊗ insk(τ ′) indeed appear in the sum
on the right hand side. Conversely, for any cut γ of S and linear extensions τ of B#(S, γ) and τ ′

of A#(S, γ), there is a linear extension σ of S# in τ ?τ ′, so that insk(τ)⊗A(S, γ) = insk(τ)⊗ insk(τ ′)
appears in 4S. Finally, we have to prove that the coproduct is boolean, meaning that only 0/1
coefficients may appear: this follows from the fact that we can reconstruct the cut γ from A(S, γ)

and the k-twist congruence class of τ from insk(τ). �

4P 4 5321 = 4(F31542 + F35142)

= 1⊗ (F31542 + F35142) + F1 ⊗ (F1432 + F4132) + F21 ⊗ F321 + F12 ⊗ F132

+ F213 ⊗ F21 + F231 ⊗ F21 + F2143 ⊗ F1 + F2413 ⊗ F1 + (F31542 + F35142)⊗ 1

= 1⊗ P 4 5321 + P 1 ⊗ P 4321 + P 21 ⊗ P 321 + P 21 ⊗ P 321

+ P 321 ⊗ P 21 + P 321 ⊗ P 21 + P 4321 ⊗ P 1 + P 4321 ⊗ P 1 + P 4 5321 ⊗ 1

Figure 13. An example of coproduct in the 2-twist algebra Twist2.
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Matriochka algebras We now connect the twist algebra to the k-recoil algebra Reck defined
as the Hopf subalgebra of FQSym generated by the elements

XO :=
∑
τ∈S

reck(τ)=O

Fτ ,

for all acyclic orientations O of the graph Gk(n) for all n ∈ N. This algebra was first defined by

J.-C. Novelli, C. Reutenauer and J.-Y. Thibon in [NRT11] (the dual of Reck is denoted DSymk in
their paper). The commutative diagram of Proposition 32 ensures that

XO =
∑

T∈AT k

cank(T)=O

PT,

and thus that Reck is a Hopf subalgebra of Twistk.

Remark 53 (Algebraic inclusions). Following Remarks 33 and 41, note that we have in fact the
following inclusions of subalgebras for k > `:

Twistk Twist`

FQSym

Reck Rec`

⊇ ⊇

⊇ ⊇
⊇ ⊇

⊇

⊇

We informally call this picture the diagram of Matriochka algebras.

3.3. Quotient algebra of FQSym∗. The following statement is automatic from Theorem 49.

Theorem 54. The graded dual Twistk∗ of the k-twist algebra is the quotient of FQSym∗ under
the k-twist congruence ≡k. The dual basis QT of PT is expressed as QT = π(Gτ ), where π is the

quotient map and τ is any permutation such that insk(τ) = T.

Similarly as in the previous section, we try to describe combinatorially the product and coprod-
uct of Q-basis elements of Twistk∗ in terms of operations on Cambrian trees.

Product Once more, our description of the product in the dual twist algebra is not as simple
as the coproduct in PBT, and is very closed to the description of the direct computation using

the coproduct of FQSym. We use the following notation. For X = {x1 < · · · < xn} ∈
(

[n+n′]
n

)
,

τ ∈ Sn, and T′ ∈ AT k(n′), we denote by T′ � (τ ·X) the result of iteratively inserting xτn , . . . , xτ1
in the k-twist T′ relabeled increasingly by [n+ n′] rX.

Proposition 55. For any acyclic k-twists T ∈ AT k(n) and T′ ∈ AT k(n′), the product QT ·QT′

is given by

QT ·QT′ =
∑
X

Q
T′ � (τ ·X)

where X runs over
(

[n+n′]
n

)
and τ is an arbitrary permutation such that insk(τ) = T. See Figure 14.

Proof. Consider τ ∈ Sn and τ ′ ∈ Sn′ such that insk(τ) = T and insk(τ ′) = T′, and a permuta-
tion σ in the convolution τ ? τ ′. Let X denote the first n values in σ. Since the relative order
of the last n′ entries in σ is that of the entries of τ ′, the insertion of the last n′ values creates a
copy of T′. The remaining entries are then inserted in this copy of T′ at the positions given by X
according to the order given by of τ . The result immediately follows. �
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Q 21 ·Q 21 = G12 ·G21

= G1243 + G1342 + G1432 + G2341 + G2431 + G3421

= Q 4321 + Q 4321 + Q 4321 + Q 4321 + Q 4321 + Q 4321

Figure 14. An example of product in the dual 2-twist algebra Twist2∗.

Coproduct Our description of the coproduct is more satisfactory. It is a special case of a coprod-
uct on arbitrary pipe dreams studied by N. Bergeron and C. Ceballos [BC14]. We need the follow-
ing notations, illustrated in Figure 15. For an acyclic (k,m)-twist S and a position p ∈ {0, . . . ,m},
we define two k-twists L(S, p) ∈ AT k(p) and R(S, p) ∈ AT k(m− p) as follows. The twist L(S, p)
is obtained by erasing the last m − p pipes in S and glide the elbows of the remaining pipes as
northwest as possible. More precisely, each elbow e of one of the first p pipes is translated one step
north (resp. west) for each of the last m− p pipes passing north (resp. west) of e. The definition
is similar for R(S, p), except that we erase the first p pipes instead of the last m− p pipes.

4 5321

S

21

L(S, 2)

321

R(S, 2)

Figure 15. A twist S (left) and the two twists L(S, p) (middle) and R(S, p) (right).

Proposition 56. For any acyclic k-twist S ∈ AT k(m), the coproduct 4QS is given by

4QS =
∑

p∈{0,...,m}

QL(S,p) ⊗QR(S,p).

See Figure 16.

Proof. Consider σ ∈ Sm such that insk(σ) = S, let p ∈ {0, . . . ,m}, and let τ ∈ Sp, τ
′ ∈ Sm−p

be the two permutations such that σ ∈ τ �̄ τ ′. By definition, τ (resp. τ ′) is given by the relative
order of the first p (resp. last m− p) values of σ. It is immediate to see that the insertion process

then gives insk(τ) = L(S, p) and insk(τ ′) = R(S, p). The result follows. �

4Q 4 5321 = 4G31542

= 1⊗G31542 + G1 ⊗G2431 + G12 ⊗G132 + G312 ⊗G21 + G3142 ⊗G1 + G31542 ⊗ 1

= 1⊗Q 4 5321 + Q 1 ⊗Q 4321 + Q 21 ⊗Q 321 + Q 321 ⊗Q 21 + Q 4321 ⊗Q 1 + Q 4 5321 ⊗ 1

Figure 16. An example of coproduct in the dual 2-twist algebra Twist2∗.

Self-duality Note that the contact graph of any k-twist has a unique sink. It follows that the

last entry of the permutations in a≡k-congruence class is constant. S. Giraudo [Gir11, Prop. 5.2.11]
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proved that this property implies that the k-twist algebra admits a bidendriform structure (see also
Section 3.6) and is therefore self-dual, free and cofree (see also Section 3.4). This intriguing self-
duality property deserves further study. In particular, the map defined by Φ(PT) =

∑
τ∈L(T#) Qσ−1

would be a natural candidate for an explicit self-duality [HNT05].

3.4. Multiplicative bases and irreducible elements. In this section, we define multiplicative
bases of Twistk and study the indecomposable elements of Twistk for these bases. For an acyclic
(k, n)-twist T, we define

ET :=
∑

T≤T′

PT′ and HT :=
∑

T′≤T

PT′ ,

where ≤ denotes the increasing flip lattice on acyclic (k, n)-twists. As the elements ET and HT

have symmetric properties, we focus our analysis on ET. The reader is invited to translate the
statements and proofs below to HT. We first observe that these elements can also be seen as
elements of the multiplicative bases (Eτ )τ∈S and (Hτ )τ∈S of FQSym.

Lemma 57. For any acyclic k-twist T, we have ET = Eµ and HT = Hω, where µ and ω respec-
tively denote the weak order minimal and maximal permutations in the fiber of T under insk.

Proof. We directly obtain from the definition that

ET =
∑

T≤T′

PT′ =
∑

T≤T′

∑
τ ′∈Sn

insk(τ ′)=T′

Fτ ′ =
∑
τ ′∈Sn

T≤insk(τ ′)

Fτ ′ =
∑
τ ′∈Sn

µ≤τ ′

Fτ ′ = Eµ. �

To describe the product of two elements of the E- or H-basis, remember that the twist T\T′
(resp. T/T′) is obtained by inserting T in the first rows and columns of T′ (resp. T′ in the last
rows and columns of T). Examples are given in Figure 11.

Proposition 58. (ET)T∈AT k and (HT)T∈AT k are multiplicative bases of Twistk:

ET · ET′ = ET\T′ and HT ·HT′ = HT/T′ .

Proof. Let µ and µ′ respectively denote the minimal elements of the fibers of T and T′ under insk.
Using Lemma 57 and the fact that insk

(
µ\µ′

)
= T\T′ and µ\µ′ is minimal in its k-twist congruence

class, we write

ET · ET′ = Eµ · Eµ
′

= Eµ\µ
′

= ET\T′ . �

We now consider multiplicative decomposability. We call cut of an acyclic oriented graph any
partition (X ‖ Y ) of its vertices such that all edges between X and Y are oriented from X to Y .

Proposition 59. The following properties are equivalent for an acyclic k-twist S:

(i) ES can be decomposed into a product ES = ET · ET′ for non-empty acyclic k-twists T,T′;
(ii) ([k] ‖ [n] r [k]) is a cut of S# for some k ∈ [n− 1];

(iii) at least one linear extension τ of S# is E-decomposable, i.e. τ([k]) = [k] for some k ∈ [n];
(iv) the weak order minimal linear extension of S# is E-decomposable.

The k-twist S is then called E-decomposable. Otherwise, it is called E-indecomposable, and we
denote by IAT k(n) the set of E-indecomposable acyclic (k, n)-twists.

Proof. The equivalence (i) ⇐⇒ (ii) is an immediate consequence of the description of the prod-

uct ET · ET′ = ET\T′ in Proposition 58. The implication (ii) =⇒ (iii) follows from the fact
that for any cut (X ‖ Y ) of a directed acyclic graph G, there exists a linear extension of G which
starts with X and finishes with Y . The implication (iii) =⇒ (iv) follows from the fact that the
E-indecomposable permutations form an up ideal of the weak order. Finally, if τ is a decomposable
linear extension of S, then the insertion algorithm on τ first creates a twist labeled by [n]r [k] and

then inserts the pipes labeled by [k]. Any arc between [k] and [n]r [k] in S = insk(τ) will thus be
directed from [k] to [n] r [k]. �
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4321

4321

4321 4321

4321

4321 4321

4321 4321 4321

4321

4321

4321

4321 4321

4321

Figure 17. The E-indecomposable acyclic (k, 4)-twists for k = 1, 2.

Example 60 (Right-tilting k-twists). Say that a k-twist is right-tilting when it has no elbow in its
first column. When k = 1, the E-indecomposable 1-twists are precisely the right-tilting 1-twists.
Therefore, the number of E-indecomposable (1, n)-twists is the Catalan number Cn−1, and the
E-indecomposable (1, n)-twists form a principal ideal of the increasing flip lattice. When k ≥ 2,
right-tilting k-twists are E-indecomposable, but are not the only ones. The E-indecomposable
(k, n)-twists form an upper ideal of the increasing flip lattice, but this ideal is not principal.
Figure 17 illustrates the E-indecomposable acyclic (k, 4)-twists for k = 1, 2.

Proposition 61. The k-twist algebra is freely generated by the elements ET such that T is
E-indecomposable.

Proof. Let T be an acyclic k-twist and let µ be the weak order minimal permutation such
that insk(µ) = T. Decompose µ = µ1\. . .\µp into E-indecomposable permutations µ1, . . . , µp.

For i ∈ [p], define Ti := insk(µi). Since µi avoids the patterns (k+ 2)1 – (σ1 + 1) – · · · – (σk + 1) for
all σ ∈ Sk (because µ avoids these patterns), it is the weak order minimal permutation in the fiber
of Ti. Since µi is E-indecomposable, we get by Proposition 59 (iv) that Ti is E-indecomposable.
Using Lemma 57, we thus obtained a decomposition ET = Eµ = Eµ1 · · ·Eµp = ET1 · · ·ETp of T
into E-indecomposable k-twists T1, . . . ,Tp.

Now, there is no relation between the elements Eτ of FQSym corresponding to the E-indecompo-
sable permutations. Hence, by Lemma 57 and Proposition 58, there is no relation between the
elements ET of Twistk corresponding to the E-indecomposable k-twists. �

Corollary 62. The generating functions of the numbers of E-indecomposable acyclic (k, n)-twists
and of the numbers of all acyclic (k, n)-twists are related by

1

1−
∑
n∈N |IAT

k(n)| tn
=
∑
n∈N
|AT k(n)| tn.

Again, the E-indecomposable 1-twists are precisely the right-tilting 1-twists, and are therefore
counted by the Catalan number Cn−1. Analogous results for k ≥ 2 remain to be found.
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3.5. Integer point transform. In this section, we observe that the product in the k-twist Hopf
algebra Twistk can be interpreted in terms of the integer point transforms of the normal cones of
the brick polytope Brickk(n). To make this statement precise, we introduce some notations.

Definition 63. The integer point transform ZS of a subset S of Rn is the multivariate generating
function of the integer points inside S:

ZS(t1, . . . , tn) =
∑

(i1,...,in)∈Zn∩S

ti11 · · · tinn .

For a poset C, we denote by ZC the integer point transform of the cone

C�(C) :=

{
x ∈ Rn+

∣∣∣∣ xi ≤ xj for all i C j with i < j
xi < xj for all i C j with i > j

}
.

Note that this cone differs in two ways from the cone C♦(C) defined in Section 2.2: first it leaves
in Rn+ and not in H, second it excludes the facets of C♦(C) corresponding to the decreasing
relations of C (i.e. the relations i C j with i > j).

Following the notations of Section 2.2, we denote by Zτ the integer point transform of the
chain τ1 C · · · C τn for a permutation τ ∈ Sn. The following statements are classical.

Proposition 64. (i) For any permutation τ ∈ Sn, the integer point transform Zτ is given by

Zτ (t1, . . . , tn) =
∏

i∈[n−1]
τi>τi+1

tτi · · · tτn
/ ∏

i∈[n]

(
1− tτi · · · tτn

)
.

(ii) The integer point transform of an arbitrary poset C is given by

ZC =
∑

τ∈L(C)

Zτ ,

where the sum runs over the set L(C) of linear extensions of C.
(iii) The product of the integer point transforms Zτ and Zτ ′ of two permutations τ ∈ Sn and τ ′ ∈ Sn′

is given by the shifted shuffle

Zτ (t1, . . . , tn) · Zτ ′(tn+1, . . . , tn+n′) =
∑

σ∈τ �̄ τ ′

Zσ(t1, . . . , tn+n′).

In other words, the linear map from FQSym to the rational functions defined by Ψ : Fτ 7→ Zτ
is an algebra morphism.

Proof. For Point (i), we just observe that the cone
{
x ∈ Rn+

∣∣ xτi ≤ xτi+1 for all i ∈ [n− 1]
}

is
generated by the vectors eτi + · · · + eτn , for i ∈ [n], which form a (unimodular) basis of the lat-
tice Zn. A straightforward inductive argument shows that the integer point transform of the cone{
x ∈ Rn+

∣∣ xτi ≤ xτi+1
for all i ∈ [n− 1]

}
is thus given by

∏
i∈[n]

(
1−tτi · · · tτn

)−1
. The numerator

of Zτ is then given by the facets which are excluded from the cone C�(τ).
Point (ii) follows from the fact that the cone C�(C) is partitioned by the cones C�(τ) for the

linear extensions τ of C.
Finally, the product Zτ (t1, . . . , tn) · Zτ ′(tn+1, . . . , tn+n′) is the integer point transform of the

poset formed by the two disjoint chains τ and τ̄ ′, whose linear extensions are precisely the permu-
tations which appear in the shifted shuffle of τ and τ ′. This shows Point (iii). �

For an acyclic k-twist T, we denote by ZT the integer point transform of the transitive closure
of the contact graph T#. It follows from Proposition 64 that the product of the integer point
transforms of two acyclic k-twists behaves as the product in the k-twist algebra Twistk.

Corollary 65. For any two acyclic k-twists T,T′, we have

ZT(t1, . . . , tn) · ZT′(tn+1, . . . , tn+n′) =
∑

T\T′≤ S≤T/T′

ZS(t1, . . . , tn+n′).
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Proof. Hiding the variables (t1, . . . , tn+n′) for concision, we have

ZT · ZT′ = Ψ(PT) ·Ψ(PT′) = Ψ(PT · PT′) = Ψ

(∑
S

PS

)
=
∑

S

Ψ(PS) =
∑

S

ZS,

where the sums run over the k-twists S of the increasing flip lattice interval [T\T′,T/T′]. �

3.6. k-twistiform algebras. In this section, we extend the notion of dendriform algebras to k-
twistiform algebras. Dendriform algebras were introduced by J.-L. Loday in [Lod01, Chap. 5]. In
a dendriform algebra, the product · is decomposed into two partial products ≺ and � satisfying:

x ≺
(
y · z

)
=
(
x ≺ y

)
≺ z, x �

(
y ≺ z

)
=
(
x � y

)
≺ z, x �

(
y � z

)
=
(
x · y

)
� z.

In our context, we will still decompose the product of FQSym (and of Twistk) into partial products,
but we will use 2k partial products satisfying 3k relations. In this paper, we just give the definition
and observe that the algebras FQSym and Twistk are naturally endowed with a k-twistiform
structure, as they motivated the definition. A detailed study of combinatorial and algebraic
properties of k-twistiform algebras and operads is in progress in a joint work with F. Hivert [HP15].

We need to fix some natural notations on words. We denote by |W | the length of a word W .
For a subset P of positions in W and a subset L of letters of W , we denote by WP the subword
of W consisting only of the letters at positions in P and by WL the subword of W consisting only
of the letters which belong to L.

Definition 66. A k-twistiform algebra is a vector space Alg endowed with a collection B := {≺,≺�,�}k
of 3k bilinear operations which satisfy the following k3k−1 + 3k relations:

Split relations: For any b, b′ ∈ {≺,≺�,�}∗ with |b|+ |b′| = k − 1, the operation b≺�b′ ∈ B
decomposes into the operations b≺b ∈ B and b�b ∈ B:

x b≺�b′ y = x b≺b′ y + x b�b′ y for all x, y ∈ Alg.

Associativity relations: For any W ∈ {x, y, z}k, the operations bW , b
′
W , b

′′
W , b

′′′
W ∈ B

defined by

(bW )p :=

{
≺ if Wp = x

� if Wp ∈ {y, z}
(b′W )p :=


≺ if |W {y,z}| ≥ p and (W {y,z})p = y

� if |W {y,z}| ≥ p and (W {y,z})p = z

≺� otherwise

(b′′W )p :=


≺ if |W {x,y}| ≥ p and (W {x,y})p = x

� if |W {x,y}| ≥ p and (W {y,z})p = y

≺� otherwise

(b′′′W )p :=

{
≺ if Wp ∈ {x, y}
� if Wp = z

satisfy the associativity relation

x bW
(
y b′W z

)
=
(
x b′′W y

)
b′′′W z for all x, y, z ∈ Alg.

Example 67 (1- and 2-twistiform algebras). 1-twistiform algebras are precisely dendriform alge-
bras, i.e. vector spaces endowed with three operations ≺, ≺�, � which fulfill the 4 relations:

x ≺� y = x ≺ y + x � y,

x ≺
(
y ≺� z

)
=
(
x ≺ y

)
≺ z, x �

(
y ≺ z

)
=
(
x � y

)
≺ z, x �

(
y � z

)
=
(
x ≺� y

)
� z.

2-twistiform algebras are vector spaces endowed with 9 operations ≺≺, ≺≺�, ≺�, ≺�≺, ≺�≺�, ≺��,
�≺, �≺�, �� which satisfy the following 15 relations:

x ≺�≺ y = x ≺≺ y + x �≺ y, x ≺�≺� y = x ≺≺� y + x �≺� y, x ≺�� y = x ≺� y + x �� y,

x ≺≺� y = x ≺≺ y + x ≺� y, x ≺�≺� y = x ≺�≺ y + x ≺�� y, x �≺� y = x �≺ y + x �� y,

x ≺≺
(
y ≺�≺� z

)
=
(
x ≺≺ y

)
≺≺ z, x ≺�

(
y ≺≺� z

)
=
(
x ≺� y

)
≺≺ z, x ≺�

(
y �≺� z

)
=
(
x ≺≺� y

)
≺� z,

x �≺
(
y ≺≺� z

)
=
(
x �≺ y

)
≺≺ z, x ��

(
y ≺≺ z

)
=
(
x �� y

)
≺≺ z, x ��

(
y ≺� z

)
=
(
x �≺� y

)
≺� z,

x �≺
(
y �≺� z

)
=
(
x ≺≺� y

)
�≺ z, x ��

(
y �≺ z

)
=
(
x �≺� y

)
�≺ z, x ��

(
y �� z

)
=
(
x ≺�≺� y

)
�� z.



26 VINCENT PILAUD

Remark 68. Adding up all associativity relations, one obtains that

x ≺�k
(
y ≺�k z

)
=
(
x ≺�k y

)
≺�k z for all x, y, z ∈ Alg,

so that the k-twistiform algebra (Alg, {≺,≺�,�}k) defines in particular a structure of associative
algebra (Alg,≺�k). Reciprocally, we say that an associative algebra (Alg, ·) admits a k-twistiform
structure if it is possible to split the product · into 3k operations B := {≺,≺�,�}k defining a k-
twistiform algebra on Alg.

We now show that C. Malvenuto and C. Reutenauer’s Hopf algebra on permutations FQSym
can be endowed with a structure of k-twistiform algebra. For an operation b ∈ B and two
words X :=xX and Y := yY , we define

X b Y =


X � Y if b = ∅,
x(X b Y ) if b = ≺b,
x(X b Y ) ∪ y(X b Y ) if b = ≺�b,
y(X b Y ) if b = �b

with the initial conditions X �b ∅ = ∅ ≺b Y = 0.
In other words, we consider the shuffle of X and Y , except that the ith letter of X bY is forced

to belong to X (resp. to Y ) if the ith letter of b is ≺ (resp. is �). For example, when k = 1, the
three operators are given by

X ≺ Y = x(X � Y ), X ≺� Y = X � Y, X � Y = y(X � Y ),

with the initial conditions X � ∅ = ∅ ≺ Y = 0.
Now for an operation b ∈ B and two permutations τ ∈ Sn and τ ′ ∈ Sn′ , we define τ b τ ′ = τ b τ̄ ′,

where τ̄ ′ is the permutation τ ′ shifted by the length n of τ . Equivalently, τ b τ ′ is the set of per-
mutations σ ∈ τ �̄ τ ′ such that for all i ∈ [k], we have σi ≤ n if bi = ≺ while σi > n if bi = �.
Finally, we define the operations B on the Hopf algebra FQSym itself by

Fτ b Fτ ′ =
∑

σ∈τ b τ ′

Fσ.

Proposition 69. The Hopf algebra FQSym, endowed with the operations B described above, de-
fines a k-twistiform algebra. The product of FQSym is then given by · = ≺�k.

Proof. We have to show that the operations defined above on FQSym indeed satisfy the k3k−1 +3k

relations of Definition 66.

Split relations: Let b, b′ ∈ {≺,≺�,�}∗ with |b| + |b′| = k − 1. It is immediate from the
definitions that X b≺�b′ Y = (X b≺b′ Y ) ∪ (X b�b′ Y ) for any two words X,Y .

Associativity relations: Let W ∈ B. It follows from the definition of the operations bW ,
b′W , b′′W and b′′′W that for any words X,Y, Z

X bW (Y b′W Z) = (X b′′W Y ) b′′′W Z

is the set of all words in X � Y � Z whose pth letter is in the word X if Wp = x, in the
word Y if Wp = y and in the word Z if Wp = z.

These equalities of sets then translate to the desired linear relations on the corresponding opera-
tions in FQSym. �

We say that the operations B define the forward k-twistiform structure on FQSym. There is
also a backward k-twistiform structure on FQSym which considers the last k letters rather than the
first k ones. Namely, for each operation b ∈ B, define an operation b• by V b• W = (V • bW •)

•

where W • = wn · · ·w1 denotes the mirror of a word W = w1 · · ·wn. Clearly, the operations b•

for b ∈ B still fulfill the relations of Definition 66. We have chosen to define the forward k-
twistiform structure as it leads to a simpler presentation, but we need this backward k-twistiform
structure in the next statement to be coherent with the insertion in k-twists (whose direction was
chosen consistently with J.-L. Loday and M. Ronco’s conventions).
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Proposition 70. The subalgebra Twistk of FQSym is stable by the operations b• for b ∈ B and
therefore inherits a k-twistiform structure.

Proof. Let T be an acyclic k-twist. We claim that the last k entries are the same in all linear
extensions of T#. Indeed, pick a linear extension τ of T# and let T′ :=∅ � τn � · · · � τn−k+1 denote
the k-twist obtain after the insertion of the last k values of τ . All pipes of T′ are then comparable
by Lemma 30 and will be comparable to all other pipes in T = T′ � τn−k � · · · � τ1. Thus the last
k values of τ form a chain at the end of the contact graph T#.

It then follows that the operation b• stabilizes Twistk for any b ∈ B. Indeed, for any two acyclic
twists T ∈ AT k(n) and T′ ∈ AT k(n′), we have

PT b• PT′ =
∑

S

PS

where the sum runs over all acyclic twists S ∈ AT k(n + n′) such that T\T′ ≤ S ≤ T/T′

and σn+n′+1−i ≤ n if bi = ≺ and σn+n′+1−i > n if bi = � for any linear extension σ of S#. �

Remark 71. One can also define similarly k-cotwistiform coalgebras, and such a structure on
both FQSym and Twistk. Details will be given in [HP15].

Acknoledgements

I am grateful to N. Bergeron and C. Ceballos for sharing their preliminary results on Hopf alge-
bras on pipe dreams, to N. Reading for pointing out relevant references and sharing his expertise
on lattice congruences, and to F. Hivert for very interesting discussions on monoids, Hopf algebras,
and dendriform structures. I also thank three anonymous referees for relevant suggestions on this
paper.

References

[AS06] Marcelo Aguiar and Frank Sottile. Structure of the Loday-Ronco Hopf algebra of trees. J. Algebra,

295(2):473–511, 2006.

[BB93] Nantel Bergeron and Sara Billey. RC-graphs and Schubert polynomials. Experiment. Math., 2(4):257–
269, 1993.

[BC14] Nantel Bergeron and Cesar Ceballos, 2014. Personal communication, Fields Institute, Toronto.
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