
HAL Id: hal-02343350
https://hal.science/hal-02343350v1

Submitted on 2 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real Time Object Detection, Tracking, and Distance
and Motion Estimation based on Deep Learning:

Application to Smart Mobility
Zhihao Chen, Redouane Khemmar, Benoit Decoux, Amphani Atahouet,

Jean-Yves Ertaud

To cite this version:
Zhihao Chen, Redouane Khemmar, Benoit Decoux, Amphani Atahouet, Jean-Yves Ertaud. Real Time
Object Detection, Tracking, and Distance and Motion Estimation based on Deep Learning: Appli-
cation to Smart Mobility. 2019 Eighth International Conference on Emerging Security Technologies
(EST), Jul 2019, Colchester, United Kingdom. �10.1109/EST.2019.8806222�. �hal-02343350�

https://hal.science/hal-02343350v1
https://hal.archives-ouvertes.fr


Real Time Object Detection, Tracking, and Distance
and Motion Estimation based on Deep Learning:

Application to Smart Mobility
1st Zhihao Chen

UNIRouen, Normandy University.
ESIGELEC/IRSEEM

Saint Etienne du Rouvray, France
zhihao.chen@groupe-esigelec.org

2nd Redouane Khemmar
UNIRouen, Normandy University

ESIGELEC/IRSEEM
Saint Etienne du Rouvray, France

nicolas.ragot@esigelec.fr

3rd Benoit Decoux
UNIRouen, Normandy University

ESIGELEC/IRSEEM
Saint Etienne du Rouvray, France

benoit.decoux@esigelec.fr

4th Amphani Atahouet
UNIRouen, Normandy University

ESIGELEC/IRSEEM
Saint Etienne du Rouvray, France

surduf.atahouet@groupe-esigelec.org

5th Jean-Yves Ertaud
UNIRouen, Normandy University

ESIGELEC/IRSEEM
Saint Etienne du Rouvray, France

jean-yves.ertaud@esigelec.fr

Abstract—In this paper, we will introduce our object detection,
localization and tracking system for smart mobility applications
like traffic road and railway environment. Firstly, an object
detection and tracking approach was firstly carried out within
two deep learning approaches: You Only Look Once (YOLO)
V3 and Single Shot Detector (SSD). A comparison between
the two methods allows us to identify their applicability in
the traffic environment. Both the performances in road and in
railway environments were evaluated. Secondly, object distance
estimation based on Monodepth algorithm was developed. This
model is trained on stereo images dataset but its inference uses
monocular images. As the output data, we have a disparity
map that we combine with the output of object detection. To
validate our approach, we have tested two models with different
backbones including VGG and ResNet used with two datasets :
Cityscape and KITTI. As the last step of our approach, we have
developed a new method-based SSD to analyse the behavior of
pedestrian and vehicle by tracking their movements even in case
of no detection on some images of a sequence. We have developed
an algorithm based on the coordinates of the output bounding
boxes of the SSD algorithm. The objective is to determine if the
trajectory of a pedestrian or vehicle can lead to a dangerous
situations. The whole of development is tested in real vehicle
traffic conditions in Rouen city center, and with videos taken by
embedded cameras along the Rouen tramway.

Index Terms—Pedestrian Detection, Pattern Recognition, Ob-
ject Detection, Tracking, YOLO V3, SSD, Deep Learning.

I. INTRODUCTION

The work presented in this paper is a part of ADAPT1

project (Assistive Devices for empowering disAbled Peo-

1This work is carried out as part of the INTERREG VA FMA ADAPT
project ”Assistive Devices for empowering disAbled People through robotic
Technologies” http://adapt-project.com/index.php. The Interreg FCE Pro-
gramme is a European Territorial Cooperation programme that aims to fund
high quality cooperation projects in the Channel border region between
France and England. The Programme is funded by the European Regional
Development Fund (ERDF)

ple through robotic Technologies) which focuses on smart
and connected wheelchair to compensate for user disabilities
through driving assistance technologies. The work presented in
this paper is based on pedestrian detection is part of ADAPT
project. In general, ADAS is used to improve safety and
comfort in vehicles. ADAS is based on the combination of
sensors (RADAR, LIDAR, cameras, etc.) and algorithms that
ensure vehicle, driver, passenger and pedestrian safety based
on different parameters such as traffic, weather etc. Here
in this project, ADAS aims to detect object like pedestrian,
vehicles, etc. Our contribution aims on the development of
perception system based object detection-based deep learning
with different approaches such as YOLO V3, and SSD.

The principal objective is to apply robust approaches to
detect object and avoid traffic accidents on real time system.
The detection of object and estimation of its distance are the
most important tasks to determinate the object’s position. To
carry out these tasks, we had, in old research work, evaluated
traditional image processing approaches like HOG and DPM
approaches. To get a more robust result, we have applied
deep learning based object detection and distance estimation
approaches, and then combined them together to get the final
result. Results show that the object are detected with high
accuracy and is considered as satisfied result. Furthermore,
the object distance estimation is carried out with some errors
which need to be improved. Our training platform is a co-
muting cluster with Nvidia P100 and K80 GPUs (Graphical
Processing Units), and inference platform is portable computer
with Nvidia GTX960m, which has about 1.5 TFLOPS of
calculation capacity.

This paper is organized as follows: Section 1 introduces the
motivation of the paper. Section 2 presents the state of the art
about object/pedestrian detection based deep learning. Section



3 presents the object detection and tracking based on YOLO
V3 and SSD deep learning algorithms. Section 4 illustrates the
object distance estimation approach based on deep learning.
The pedestrian behavior analysis will be presented in Section
5. Results are presented through the different section 3, 4, and
5. Finally, in Section 6, we will conclude this paper.

II. RELATED WORK

Object detection is a key problem in computer vision. It
has two big challenges: detection of objects in images and
estimation of their position, and estimation of their class. Over
the past few years, several methods based on Convolutional
Neural Network (CNN) have been proposed to tackle this
problem, with great success. Those methods can be divided
into two main categories : one-stage methods, which provide
estimation of position and estimation of classes in one step,
and two-stage methods, which first detect regions of the
images where object could be present, and then apply these
regions to a classifier.

Two of the most popular methods in the one-stage category
are Single-Shot Detector (SSD) [1] and You Only Look Once
(YOLO) [2]. They both provide as outputs the probability of
each possible classes, not for the whole image but for a set of
regularly spaced positions and for different scales and aspect
ratio of rectangles called boxes. One of the two-stage methods
giving the best results is RCNN (Region-proposal Convolu-
tional Neural Network) [3] and its improved versions [4] [5],
base on two independent neural networks: a region-proposal
network and a classification network. Those three methods
have similar performance from the point of view of the mean
Average Precision (mAP), a criterion which quantifies quality
of detections (proportion of correct detections) as a function of
the recall, which is the proportion of objects that are detected.

However, two independent networks make the prediction
slow on the most embedded computation platforms. In one-
stage detection architectures, the classification is made on fixed
size and fixed number of bounding boxes at predefined layers,
then tune the localization of detected objects by regression.
Those architectures are generally faster than two-stage ones,
with similar performance [1].

Considering that our application is based on sequential
media (video for example), loss of too small objects and
imprecision on position are less critical than the real-time per-
formance. Some trade-off like increasing number of bounding
box and resolution of inference also could be adopted to reduce
it. Based on the above analysis, we choose two widely applied
one-stage object detection approaches: SSD [1] and YOLO V3
[2] to evaluate.

For estimation of distance from objects to the vehicle, many
sensors are available : laser, ultrasonic, infrared ray, etc. Those
kinds of sensors are widely used in civil field. But the use of
multiple types of sensors make the system more complex, and
more expensive. Since we plan to use a low cost monocular
camera for object detection, it seems valuable to estimate the
distance with the same sensor as for object detection, that is a
monocular camera. If the datasets used for object detection

had the distance from object as ground-truth information,
information of distance could be directly learned by adding
a regression output to the CNN, but it is not the case. One
solution is to use an unsupervised approach to estimate depth
for monocular images, like the one called Monodepth [7]. This
model is trained on stereo images but infers disparity maps
from monocular images, so it is intersting for our needs.

III. OBJECT DETECTION AND TRACKING BASED ON DEEP
LEARNING

A. Choice of the Approach to be Developed

In order to analyze the performance of object-detection
models, speed and accuracy are important parameters to con-
sider. Comparison of the performance of different approaches
must be done carefully because the experiments are not always
done under the same conditions. Indeed, there are several pa-
rameters that can vary from one experience to another. This is
for example the learning database which is used, the resolution
of the input image or the threshold of the Intersection-over-
Union criterion (IoU, which is used to evaluate the quality of
the detections) etc. We have analyzed the properties of three
well known approaches for object detection : SSD [1] YOLO
V3 [2], and Faster-RCNN [6]. Faster RCNN seems to be more
accurate than SSD and YOLO V3. On the other hand, it is
slower. Which means that if the task requires high quality
precision, RCNN Faster is the right solution. On the other
hand, if it is the speed that is essential, the RCNN Faster is
not the best candidate. YOLO V3 is faster than SSD and Faster
RCNN. So, if speed is the main criterion of choice, YOLO V3
would to be the best candidate. If we want at the same time
a good accuracy and a good speed, SSD could be a better
solution, as fastest approach after YOLO V3, and its accuracy
is almost as good as Faster-RCNN. So it represents a good
compromise between accuracy and speed.

B. SSD vs YOLO V3

During the course, YOLO V3, the newer version of YOLO
is released. According to the literature, it would have better
performance than the SSD in terms of speed and accuracy. So
we decided to make the inference of SSD and YOLO V3 on
the same environment to compare them. Table III shows the
evaluation environment used.

TABLE I
INFERENCE ENVIRONMENT.

GPU RAM RAM Operating Computational
GPU System Performance

GTX 960m 2G 8G Ubuntu 16.04 64bit 1.5 TFLOPS

The model of the SSD that we evaluated was trained with
the PascalVOC learning base. While the YOLO V3 model
we evaluated was trained with the Coco learning base. We
conducted the evaluation of all the classes of each learning
base. This is the reason why instead of presenting the in-
formation of the AP(Average Precision) which is relative to
the average accuracy of a class, we presented the information



of the mAP(mean Average Precision) which represents the
average of the APs of all classes in the training base. Table
?? presents the results of the evaluation and the inference of
YOLO V3 and SSD.

TABLE II
SSD AND YOLO V3 INFERENCE.

mAP fps
SSD 79.5 8.6

YOLO V3 85.0 11.2

Figure 8 present the results of the inference performed on
the SSD and YOLO3.

Fig. 1. SSD inference (left) vs YOLO V3 inference (right).

According to the results of our tests, the YOLO V3 gets
better performance. The YOLO V3 at the resolution 416*416
has the similar inference FPS as the SSD at the input resolution
300*300 but the precision is markedly higher. On the other
word, with the parameter of the same precision, the YOLO
V3 is quicker than SSD.

C. SSD Algorithm

We made inferences using the Keras and Tensorflow li-
braries. Below are the characteristics of the inferences made
with the SSD approach.

• VGG (SSD, 300x300, 120000 iterations): model trained
with an SSD architecture having a VGG base. Model
taking in pictures of size 300x300. This is the model on
which the inference was made.

• SSD: name of the approach used to perform the inference
• PascalVOC: database dedicated to pedestrian traffic con-

taining 20 classes
• nVIDIA GTX 660: graphics card used
• 2G: size of the ram used for the graphical calculation

Fig. 2. SSD Inference Result.

We obtain a processing time of 6.2fps and a confidence rate
approaching 100 % in the majority of case.

The purpose of this method is to determine the performance
of the model trained. This is the VGG (VOC0712, SSD
300x300, 120000 iterations), model presented above. There
are two main parameters that come into play in this context.
This is the accuracy and the rate of callback. The figure below
[9] presents the operations to be applied in order to obtain
these two parameters.

This evaluation allows us to know how much the model we
use is accurate with respect to each class in the learning base
on which it was trained. The model we used was trained on
the PascalVOC learning base. But we did not evaluate the 20
classes of this learning base. We evaluated just six classes that
we considered likely to end up in the tramway environment.
These include the following classes: person, car, motorcycle,
bike, bus and dog.

Fig. 3. SSD Inference Evaluation.

The graphs in the figure above show the accuracy according
to the recall rate. This precision is calculated relative to a
parameter named confidence rate which is set at 0.5 % in
our case. If we were at the top right corner of the graph,
that would mean that we have an average accuracy of 100%.
Unfortunately, this is not the case but we are very close to it.
In fact, of the six classes evaluated, the lowest rate is that of
the person class and it corresponds to an AP of 84%. Apart
from that, all other results are around 90% AP. The 84% AP
rate for the person class is a good result, although it is slightly
lower than the rest of the classes. This can be explained by
the fact that the person class is more complicated to detect
than a class like the car class for example. Indeed, because
of its movement during the detection of a person, one can
not detect in some cases the totality of the person. That is to
say, sometimes there may be missing in the box delimiting
the perimeter of the detected object an arm or a leg. This
will result in the person being detected but their confidence
will be weakened. A car during its detection does not lose a
tire or a door because it is moving. When it is detected, it is
detected completely. The table summarizes the AP of each of
the evaluated classes. In view of this table and the previous
analysis, we can conclude that the model VGG (SSD 300x300,
iter: 120000) allows to have very good results in terms of



specify. As for speed, with a GTX 660 we are at 6.2 fps. We
could improve this performance by using much better GPUs.

TABLE III
AP OF THE EVALUATED CLASSES.

Classes AP
Bike 97
Bus 91
Car 89
Dog 99

Motorbike 99
Person 84

D. YOLO V3 Algorithm

YOLO V3 is an improvement version of the former YOLO
and YOLO 9000, and adopts some state-of-the-art archi-
tectures like Residual Network. The implementation which
we use is its original, on C language. This implementation
doesn’t depend on other high level deep learning libraries like
Tensorflow or Caffe and it could slightly improve its efficiency.
Firstly we evaluate its pretrained model which is trained by
the author. This model is trained on Pascal VOC + COCO. To
get quantifiable evaluation results, we evaluate this model on
the dataset Pascal VOC 07 Evaluation, for the class Person.
Then, we train our model to figure out if we can improve
its performance by training on different dataset. We trained
by ourselves 2 models, one is trained on Pascal VOC 07
with one class Person and another is trained on COCO. The
training is executed on the cluster of computation MYRIA in
the Normandy calculate center CRIANN. The model trained
on Pascal VOC 07 takes about 9000 batches and the model
trained on COCO takes more than 16000 batches with the
batch size of 32. 2 Nvidia P100 can train about 1500 batches
per hour and 2 Nvidia K80 can train around 800 batches per
hour. To quantify our models performance, we use the same
evaluation dataset as the pretrained model, Pascal VOC 07
Evaluation. Beside this quantifiable result, we also make the
inference on a video of driver’s perspective which is taken by
us in the centre and urban of the city Rouen.

Those results show two important consequences. 1. a rich
dataset is critical for the performance of precision (mAP).
The model trained on COCO dataset with 64115 images of
persons shows 5.6mAP improvement over the Pascal VOC
dataset with 2000 images of persons. 2. The number of classes
doesnt significantly influence the speed of inference. The one
class model is only about 0.4FPS faster than the 80 classes
model. The inference time mainly depends on the quantity
of parameters in the neural network, but the suppression of
classes has only impact on the number of parameters of the
fully connected layer’s, which is a small part of the whole
model.

IV. OBJECT DISTANCE ESTIMATION

Monodepth [8] is an unsupervised CNN based approach for
distance estimation. The model is trained on stereo images
and makes inference on monocular images. The output of

this approach is a disparity map. The authors provide the
source code with many models, trained on different datasets
(including Cityscape [8] and Kitty [9]) and with different
backbones (including VGG and ResNet). We have tested two
models on some images, with different backbones (VGG and
ResNet) and with different datasets (Cityscape and Kitty).
The disparity values represent relative distances because the
training images and inference images are taken by cameras of
different focal distance. To get the true distancewe should use
calibration images to calculate the coefficient of the baseline
and focal distance. Figure 4 shows the resulting disparity maps
for one example of image.

Fig. 4. Test of different datasets : disparity maps resulting from application
of Monodepth on a scene of sidewalk, with backbone VGG and training on
two different datasets : Cityscape (middle) and Kitty (right).

Fig. 5. Test of different backbones : disparity maps resulting from application
of Monodepth on a scene of sidewalk, with training on Cityscape dataset and
two backbones: VGG (middle) and Resnet (right).

These output disparity maps show the influence of the
dataset and the backbone. A suitable training dataset can
improve the precision of the disparity maps: the model trained
by Cityscape gets better result for an input image of city
scene. 5 shows that the backbone network has also influence
on the result: for this example image, VGG has a better
performance than ResNet, even though ResNet generally gets
better precision for classification in many works [6].

The disparity maps are not sufficient for our objective, as
they are not related to the objects which are present in the
images. So we need to combine an object detection approach,
which provides estimations of the bounding boxes of objects,
and Monodepth which can give distance information inside
these bounding boxes. Firstly we apply the input image to
the object detection algorithm to get objects bounding boxes,
and then compute histogram in the corresponding regions of
the disparity map to get the distributions of disparity values
of the detected objects. The major distribution interval gives
the estimation of distance of the object. Figure 6 shows an
example of application of this method on the bounding box of
a detected object and the region of the corresponding disparity
map.

We have applied this method on several images including
real and synthetic ones. The results are difficult to quantify, as



Fig. 6. Combination of the results of object detection and depth estimation :
for each detected object, the histogram of estimated disparities is computed.
The figure shows an example of bounding box : the corresponding histogram
represents the number of disparity values (ordinate), as a function of disparities
(abscissa). Those numbers are accumulated on small intervals, and the interval
with maximum sum is chosen as the one corresponding to the object in the
bounding box.

there is no dataset available with ground truth for the distance
to the objects. Distance estimation gives good results when
object are not too numerous on the images. When there are
many objects with overlapping bounding boxes, the estimation
is distorted, as all pixels in the bounding box are taken into
account. Figure 7 shows an example of results with bad
distance estimation.

Fig. 7. Example of results with bad distance estimation.

This problem could be reduced by applying a semantic
segmentation to the images in parallel to the object detection
process, to use only the pixels belonging to the objects inside
the bounding boxes. Figure 8 shows some examples of correct
distance estimation.

Fig. 8. Example of correct results of distance estimation. Estimated disparity
is superimposed on each detected object.

V. PEDESTRIAN BEHAVIOR ANALYSIS

For our application, it is very important to be able to give
an estimation of the direction of movement and speed of
the object in motion. So we need to make a tracking of the
detected objects in the images. However, in a video sequence,
the confidence score of a detected object can vary to a large
extent from image to image, and then can fall below the
detection threshold on some images. So it is important to be
able to estimate their positions in this case. Below are the steps
that allowed us to track down detected objects:

• At time t, make the list of all boxes of the detected
objects.

• At time t + 1, compare the abscissa of the boxes of
each newly detected object with those of the boxes of
the detected objects at time t ; associate this box with
the nearest one, provided that the difference of abscissa
is below a giver threshold.

• The boxes of time t + 1 which have a corresponding box
at t are marked as tracked.

When tracking an object in a video sequence, we can have
a loss of detection on some images. In this case, we need to
estimate the new position of the object anyway. The objects
which are not detected by the object-detection algorithm This
means that on the current image, they could not be detected
by the SSD but we could estimate their positions using the
information of their positions in the previous images. For this,
we apply a processing with the following sequence of steps:

• For each tracked object, calculate its speed (in pixels/s)
at time t, which is the difference of abscissae of the
bounding box centers between positions of this object
in images at times t and t-1 (the sign of this difference
gives the direction of motion)

• In order to attenuate the effect of uncertainty of the
estimation of position given by the object-detection al-
gorithm, the final speed is taken as the moving average
of the values calculated over a few preceding images

• In case of no detection, consider that the object has the
same speed as previous calculation, and consider that the
dimensions and ordinate of its bounding box are the same
as the previously calculated one

• Go back to the first step ; in case of no detection after
a few iterations of this sequence of steps, exit from this
sequence and mark this object as no-tracked

Figure 9 shows examples of application of this principle on
two images of a sequence.

Fig. 9. Examples of tracked pedestrians and vehicle on two parts of images,
with estimated direction of motion and speed (in pixels/s). When tracked,
objects are marked with estimated speed (at the bottom left corner of the
bounding box) and direction of motion (arrow at the bottom right corner) on
the abscissa axis of the image. Objects which are tracked are bounded by
two rectangles: one with the color of the estimated class and a black one to
denote tracking in action



VI. CONCLUSION

In this paper, we have presented a contribution based three
deep learning approaches for object detection, tracking, and
distance estimation for smart mobility applications (traffic road
and railway). The object detection approach has been well
developed by taking into account not only high accuracy for
object detection, but real-time applications constraints too. We
have developed object detection by both SSD and YOLO V3
algorithm in order to find which algorithm is more adapted
for our application. The comparison carried out illustrate that
the YOLO V3 is more than SSD algorithm.

The object distance estimation based on monodepth algo-
rithm was developed. The model was trained under stereo
images dataset and makes inference on monocular images
dataset. As output data, the monodepth algorithm gives a
disparity map. We can merge the object detection approach
and estimation distance to share the feature extraction layers,
which could improve its efficiency. We have validate our
approach under different datasets like Cityscape and Kitty,
but also in real time within ESIGELEC vehicle in traffic road
of Rouen city center. We have also validate the development
under railway dataset of the Tramway of Rouen.

As a last contribution in this paper, we have presented a
new method based SSD in order to analyze the behavior of
object like pedestrian or vehicle. After detecting object with
the SSD modified algorithm, we estimate its future position
in order to have its direction of movement: pedestrian who
want to cross the road, who do not cross the road, who goes
through, etc.

We have presented a comparative study between SSD and
YOLO V3 algorithm for object detection and tracking. To
optimize their performance on low-consumption platform, a
rich and suitable dataset could be very important. Change the
number of detection class cant get significant improvement.

Finally, the whole development presented in this paper were
validated on both real traffic circulation conditions in the city
center of Rouen, and through the railway videos acquired from
an embedded camera in the tramway of Rouen.

ACKNOWLEDGMENT

This research is supported by ADAPT Project (co-financed
by the European Regional Development Fund within the
framework of the INTERREG VA France (Channel) England
program). Many thanks to Segula company for its contribution
in the project and to the engineers of Autonomous Navigation
Laboratory of IRSEEM for their support in testing phase.

REFERENCES

[1] W. Liu et al., SSD: Single Shot MultiBox Detector, ECCV 2016, pp
21-37.

[2] J. Redmon et al., YOLOv3: An Incremental Improvement,
arXiv:1804.02767v1

[3] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature Hierarchies
for Accurate Object Detection and Semantic Segmentation, CVPR 2014,
pp 580-587.

[4] R. Girshick et al., Fast R-CNN, ICCV 2015, pp 1440-1448.
[5] S. Ren et al., Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks, NIPS’15, Volume 1 pp 91-99.

[6] K. He et al., Deep Residual Learning for Image Recognition, CVPR
2016.

[7] C. Godard et al., Unsupervised Monocular Depth Estimation with Left-
Right Consistency, CVPR, 2017.

[8] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, The Cityscapes Dataset for
Semantic Urban Scene Understanding, in Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) 2016, pp 3213-
3223.

[9] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, Vision meets robotics:The
KITTI dataset,Int. J. Robot. Res., vol. 32, no. 11, pp. 12311237,2013.

[10] Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks
for large-scale image recognition. International Conference on Learning
Representations 2015.

[11] Szegedy, C., Reed, S., Erhan, D., Anguelov, D., Ioffe, S. (2014).
Scalable, highquality object detection. arXiv preprint arXiv:1412.1441.

[12] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y.,
Berg, A. C. (2016, October). SSD: Single shot multibox detector. In
European conference on computer vision (pp. 21-37). Springer, Cham.

[13] Ren, S., He, K., Girshick, R., Sun, J. (2015). Faster RCNN: Towards
realtime object detection with region proposal networks. In Advances in
neural information processing systems(pp. 91-99).

[14] Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only
look once: Unified, real-time object detection. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 779-
788).

[15] He, K., Gkioxari, G., Dollr, P., Girshick, R. (2017, October). Mask
rcnn. In Computer Vision (ICCV), 2017 IEEE International Conference
on (pp. 2980-2988). IEEE.


