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CAMBRIAN HOPF ALGEBRAS

GRÉGORY CHATEL AND VINCENT PILAUD

Abstract. Cambrian trees are oriented and labeled trees which fulfill local conditions around

each node generalizing the conditions for classical binary search trees. Based on a natural

surjection from signed permutations to Cambrian trees, we define the Cambrian Hopf algebra
extending J.-L. Loday and M. Ronco’s algebra on binary trees. We describe combinatorially

the products and coproducts of both the Cambrian algebra and its dual in terms of operations

on Cambrian trees. We then construct the Baxter-Cambrian algebra which extends S. Law and
N. Reading’s Baxter Hopf algebra on rectangulations and S. Giraudo’s equivalent Hopf algebra

on twin binary trees.

The background of this paper is the fascinating interplay between the combinatorial, geometric
and algebraic structures of permutations, binary trees and binary sequences (see Table 1):

? Combinatorially, the descent map from permutations to binary sequences factors via binary
trees through the BST insertion and the canopy map. These maps define lattice homomorphisms
from the weak order via the Tamari lattice to the boolean lattice.

? Geometrically, the permutahedron is contained in Loday’s associahedron [Lod04] which is in
turn contained in the parallelepiped generated by the simple roots. These polytopes are just
obtained by deleting inequalities from the facet description of the permutahedron. See Figure 1.

? Algebraically, these maps translate to Hopf algebra inclusions from M. Malvenuto and C. Reute-
nauer’s algebra on permutations [MR95] via J.-L. Loday and M. Ronco’s algebra on binary
trees [LR98] to I. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh and J.-Y. Thibon’s
Hopf algebra on binary sequences [GKL+95].

Combinatorics Permutations Binary trees Binary sequences

Geometry
Permutahedron Loday’s Parallelepiped

conv(Sn) associahedron [Lod04] generated by ei+1 − ei

Algebra
Malvenuto-Reutenauer Loday-Ronco descent
Hopf algebra [MR95] Hopf algebra [LR98] Hopf algebra [GKL+95]

Table 1. Related combinatorial, geometric and algebraic structures.
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Figure 1. The 3-dimensional permutahedron (blue, left), Loday’s associahedron (red, middle),
and parallelepiped (green, right). Shaded facets are preserved to get the next polytope.

VP was partially supported by the Spanish MICINN grant MTM2011-22792 and by the French ANR grants
EGOS (12 JS02 002 01) and SC3A (15 CE40 0004 01).

1



2 GRÉGORY CHATEL AND VINCENT PILAUD

These structures and their connections have been partially extended in several directions in
particular to the Cambrian lattices of N. Reading [Rea06, RS09] and their polytopal realizations
by C. Hohlweg, C. Lange, and H. Thomas [HL07, HLT11], to the graph associahedra of M. Carr and
S. Devadoss [CD06, Dev09], the nested complexes and their realizations as generalized associahedra
by A. Postnikov [Pos09] (see also [PRW08, FS05, Zel06]), or to them-Tamari lattices of F. Bergeron
and L.-F. Préville-Ratelle [BPR12] (see also [BMFPR11, BMCPR13]) and the Hopf algebras on
these m-structures recently constructed by J.-C. Novelli and J.-Y. Thibon [NT14, Nov14].

This paper explores combinatorial and algebraic aspects of Hopf algebras related to the type A
Cambrian lattices. N. Reading provides in [Rea06] a procedure to map a signed permutation
of Sn into a triangulation of a certain convex (n+ 3)-gon. The dual trees of these triangulations
naturally extend rooted binary trees and were introduced and studied as “spines” [LP13] or “mixed
cobinary trees” [IO13]. We prefer here the term “Cambrian trees” in reference to N. Reading’s
work. The map ct from signed permutations to Cambrian trees is known to encode combinatorial
and geometric properties of the Cambrian structures: the Cambrian lattice is the quotient of the
weak order under the fibers of ct, each maximal cone of the Cambrian fan is the incidence cone of
a Cambrian tree T and is refined by the braid cones of the permutations in the fiber ct−1(T), etc.

In this paper, we use this map ct for algebraic purposes. In the first part, we introduce
the Cambrian Hopf algebra Camb as a subalgebra of the Hopf algebra FQSym± on signed per-
mutations, and the dual Cambrian algebra Camb∗ as a quotient algebra of the dual Hopf alge-
bra FQSym∗±. Their bases are indexed by all Cambrian trees. Our approach extends that of
F. Hivert, J.-C. Novelli and J.-Y. Thibon [HNT05] to construct J.-L. Loday and M. Ronco’s Hopf
algebra on binary trees [LR98] as a subalgebra of C. Malvenuto and C. Reutenauer’s Hopf algebra
on permutations [MR95]. We also use this map ct to describe both the product and coproduct in
the algebras Camb and Camb∗ in terms of simple combinatorial operations on Cambrian trees.

In the second part of this paper, we study Baxter-Cambrian structures, extending in the Cam-
brian setting the constructions of S. Law and N. Reading on rectangulations [LR12] and that of
S. Giraudo on twin binary trees [Gir12]. We define Baxter-Cambrian lattices as quotients of the
weak order under the intersections of two opposite Cambrian congruences. Their elements can be
labeled by pairs of twin Cambrian trees, i.e. Cambrian trees with opposite signatures whose union
forms an acyclic graph. We study in detail the number of such pairs of Cambrian trees for arbitrary
signatures. Following [LR12], we also observe that the Minkowski sums of opposite associahedra of
C. Hohlweg and C. Lange [HL07] provide polytopal realizations of the Baxter-Cambrian lattices.
Finally, we introduce the Baxter-Cambrian Hopf algebra BaxCamb as a subalgebra of the Hopf
algebra FQSym± on signed permutations and its dual BaxCamb∗ as a quotient algebra of the dual
Hopf algebra FQSym∗±. Their bases are indexed by pairs of twin Cambrian trees, and it is also
possible to describe both the product and coproduct in the algebras BaxCamb and BaxCamb∗ in
terms of simple combinatorial operations on Cambrian trees.

Finally, the ideas of this paper can be extended further to construct Hopf algebras on tuples of
Cambrian trees (generalizing the pairs of twin Cambrian trees), and on Schröder-Cambrian trees
(corresponding to all faces of all C. Hohlweg and C. Lange’s associahedra [HL07]). We skip these
constructions to keep this version short, but the interested reader can find details in [CP14].

Part 1. The Cambrian Hopf Algebra
1.1. Cambrian trees

In this section, we recall the definition and properties of “Cambrian trees”, generalizing standard
binary search trees. They were introduced independently by K. Igusa and J. Ostroff in [IO13]
as “mixed cobinary trees” in the context of cluster algebras and quiver representation theory
and by C. Lange and V. Pilaud in [LP13] as “spines” (i.e. oriented and labeled dual trees) of
triangulations of polygons to revisit the multiple realizations of the associahedron of C. Hohlweg
and C. Lange [HL07]. Here, we use the term “Cambrian trees” to underline their connection with
the type A Cambrian lattices of N. Reading [Rea06].

1.1.1. Cambrian trees. Consider a directed tree T and a vertex v of T. We call children
(resp. parents) of v the sources of the incoming arcs (resp. the targets of the outgoing arcs)
at v and descendant (resp. ancestor) subtrees of v the subtrees attached to them. We focus on the
following trees, which generalize standard binary search trees, see Figure 2 (left).
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Definition 1. A Cambrian tree is a directed tree T on [n] such that for each v ∈ [n],

(i) v has either one parent and two children (its descendant subtrees are called left and right sub-
trees) or one child and two parents (its ancestor subtrees are called left and right subtrees);

(ii) all vertices are smaller (resp. larger) than v in the left (resp. right) subtree of v.

The signature of T is the n-tuple ε(T) ∈ ±n defined by ε(T)v = − if v has two children
and ε(T)v = + if v has two parents. Denote by Camb(ε) the set of Cambrian trees with signature ε,
by Camb(n) =

⊔
ε∈±n Camb(ε) the set of all Cambrian trees on [n], and by Camb :=

⊔
n∈N Camb(n)

the set of all Cambrian trees.

Throughout the paper, we represent Cambrian trees as follows (see Figure 2 (left)):

(i) each vertex v ∈ [n] appears at abscissa v;
(ii) the edges are oriented form bottom to top;
(iii) negative vertices (with one parent and two children) are represented by 	, while positive

vertices (with one child and two parents) are represented by ⊕;
(iv) we sometimes draw a vertical red wall below the negative vertices and above the positive

vertices to mark the separation between the left and right subtrees of each vertex.

Remark 2 (Spines of triangulations). Cambrian trees can be seen as spines (i.e. oriented and
labeled dual trees) of triangulations of labeled polygons. More precisely, consider an (n+2)-gon Pε

with vertices labeled by 0, . . . , n + 1 from left to right, and where vertex i is located above the
diagonal [0, n + 1] if εi = + and below it if εi = −. We associate with a triangulation σ of Pε

its dual tree having a node labeled by j for each triangle ijk of σ where i < j < k, and an edge
between any two adjacent triangles oriented from the triangle below to the triangle above their
common diagonal. See Figure 2 and refer to [LP13] for details. Throughout the paper, we denote
by T∗ the triangulation of Pε dual to the ε-Cambrian tree T, and we use this interpretation to
provide the reader with some geometric intuition of definitions and results of this paper. The first
consequence of this geometric interpretation concerns the enumeration of Cambrian trees.

Proposition 3 ([LP13, IO13]). For any signature ε ∈ ±n, the number of ε-Cambrian trees is the
Catalan number Cn = 1

n+1

(
2n
n

)
. Therefore, |Camb(n)| = 2nCn. See [OEI10, A151374].
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Figure 2. Cambrian trees (left) and triangulations (right) are dual to each other (middle).

1.1.2. Cambrian correspondence. We represent graphically a permutation τ ∈ Sn by the
(n × n)-table, with rows labeled by positions from bottom to top and columns labeled by values
from left to right, and with a dot in row i and column τ(i) for all i ∈ [n]. (This unusual choice of
orientation is necessary to fit later with the existing constructions of [LR98, HNT05].)

A signed permutation is a permutation table where each dot receives a + or − sign, see Fig-
ure 3 (top left). We could also think of a permutation where the positions or the values receive a
sign, but it will be useful later to switch the signature from positions to values. The p-signature
(resp. v-signature) of a signed permutation τ is the sequence εp(τ) (resp. εv(τ)) of signs of τ ordered
by positions from bottom to top (resp. by values from left to right). For a signature ε ∈ ±n, we
denote by Sε (resp. by Sε) the set of signed permutations τ with p-signature εp(τ) = ε (resp. with
v-signature εv(τ) = ε). Finally, we denote the set of all signed permutations by

S± :=
⊔
n∈N
ε∈±n

Sε =
⊔
n∈N
ε∈±n

Sε.

https://oeis.org/A151374
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Figure 3. The insertion algorithm on the signed permutation 2751346.

In concrete examples, we underline negative positions/values while we overline positive posi-
tions/values: for example, we write 2751346 for the signed permutation represented on the top
left corner of Figure 3, where τ = [2, 7, 5, 1, 3, 4, 6], εp = −+−−+−+ and εv = −−+−−++.

Following [LP13], we now present an algorithm to construct an ε-Cambrian tree ct(τ) from a
signed permutation τ ∈ Sε. Figure 3 illustrates this algorithm on the permutation 2751346. As
a preprocessing, we represent the table of τ (with signed dots in positions (τ(i), i) for i ∈ [n])
and draw a vertical wall below the negative vertices and above the positive vertices. We then
sweep the table from bottom to top (thus reading the permutation τ from left to right) as follows.
The procedure starts with an incoming strand between any two consecutive negative values. A
negative dot 	 connects the two strands immediately to its left and immediately to its right to
form a unique outgoing strand. A positive dot ⊕ separates the only visible strand (not hidden by
a wall) into two outgoing strands. The procedure finishes with an outgoing strand between any
two consecutive positive values. See Figure 3. We denote by ct(τ) the resulting oriented graph.

Proposition 4 ([LP13]). The map ct is a surjection from the signed permutations Sε to the
Cambrian trees Camb(ε). The fiber ct−1(T) := {τ ∈ Sε | ct(τ) = T} of a Cambrian tree T ∈
Camb(ε) is its set L(T) of linear extensions.

Remark 5 (Cambrian correspondence on triangulations). The map ct was previously described
on the triangulations of the polygon Pε in [Rea06] (see also the references therein). Namely, the
triangulation ct(τ)∗ is the union of the paths π0, . . . , πn where πi is the path between vertices 0
and n+ 1 of Pε passing through the vertices in the symmetric difference ε−1(−)4 τ([i]).

1.1.3. Cambrian congruence. Following the sylvester congruence in [HNT05], we now charac-
terize by a congruence relation the signed permutations τ ∈ Sε which have the same image ct(τ).
This Cambrian congruence goes back to the original definition of N. Reading [Rea06].

Definition 6 ([Rea06]). For a signature ε ∈ ±n, the ε-Cambrian congruence is the equivalence
relation on Sε defined as the transitive closure of the rewriting rules

UacV bW ≡ε UcaV bW if a < b < c and εb = −,
UbV acW ≡ε UbV caW if a < b < c and εb = +,

where a, b, c are elements of [n] while U, V,W are words on [n]. The Cambrian congruence is the
equivalence relation on all signed permutations S± given by all ε-Cambrian congruences:

for τ ∈ Sε, τ ∈ Sε′ τ ≡ τ ′ ⇐⇒ ε = ε′ and τ ≡ε τ ′.
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We now focus on the equivalence classes of the Cambrian congruence.

Proposition 7. The ε-Cambrian congruence classes are precisely the fibers of the map ct:

for τ, τ ′ ∈ Sε τ ≡ε τ ′ ⇐⇒ ct(τ) = ct(τ ′).

Proof. It boils down to observe that two consecutive vertices a, c in a linear extension τ of a
ε-Cambrian tree T can be switched while preserving a linear extension τ ′ of T precisely when they
belong to distinct subtrees of a vertex b of T. It follows that the vertices a, c lie on either sides
of b so that we have a < b < c. If εb = −, then a, c appear before b and τ = UacV bW can be
switched to τ ′ = UcaV bW , while if εb = +, then a, c appear after b and τ = UbV acW can be
switched to τ ′ = UbV caW . �

Remember that the (right) weak order on Sε is defined as the inclusion order of (right) inver-
sions, where a (right) inversion of τ ∈ Sε is a pair of values i < j such that τ−1(i) > τ−1(j). In
this definition, the signs on τ do not matter (they are seen as decorations, not as actual signs that
would change the order on the values). In this paper, we always work with the right weak order,
that we simply call weak order for brevity. The following statement is due to N. Reading [Rea06].

Proposition 8 ([Rea06]). All ε-Cambrian classes are intervals of the weak order on Sε, whose
minimal (resp. maximal) elements avoid the patterns b-ca and ca-b (resp. b-ac and ac-b).

1.1.4. Rotations and Cambrian lattices. We now present rotations in Cambrian trees, a local
operation which transforms a ε-Cambrian tree into another ε-Cambrian tree where a single oriented
cut differs (see Proposition 10).

Definition 9. Let i→ j be an edge in a Cambrian tree T, with i < j. Let L denote the left subtree
of i and B denote the remaining incoming subtree of i, and similarly, let R denote the right subtree
of j and A denote the remaining outgoing subtree of j. Let T′ be the oriented tree obtained from T
just reversing the orientation of i→ j and attaching the subtrees L and A to i and the subtrees B
and R to j. The transformation from T to T′ is called rotation of the edge i→ j. See Figure 4.

rotation
of i→ j

T

−−−−−→
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Figure 4. Rotations in Cambrian trees: the tree T (top) is transformed into the tree T′ (bottom)
by rotation of the edge i→ j. The four cases correspond to the possible signs of i and j.

The following proposition states that rotations are compatible with Cambrian trees and their
edge cuts. An edge cut in a Cambrian tree T is the ordered partition (X ‖ Y ) of the vertices of T
into the set X of vertices in the source set and the set Y of vertices in the target set of an oriented
edge of T.

Proposition 10 ([LP13]). The result T′ of the rotation of an edge i→ j in a ε-Cambrian tree T
is a ε-Cambrian tree. Moreover, T′ is the unique ε-Cambrian tree with the same edge cuts as T,
except the cut defined by the edge i→ j.

Remark 11 (Rotations and flips). Rotating an edge e in a ε-Cambrian tree T corresponds to
flipping the dual diagonal e∗ of the dual triangulation T∗ of the polygon Pε. See [LP13, Lemma 13].



6 GRÉGORY CHATEL AND VINCENT PILAUD

Define the increasing rotation graph on Camb(ε) to be the graph whose vertices are the ε-
Cambrian trees and whose arcs are increasing rotations T → T′, i.e. where the edge i → j in T
is reversed to the edge i ← j in T′ for i < j. See Figure 5 for an illustration. The following
statement, adapted from N. Reading’s work [Rea06], asserts that this graph is acyclic, that its
transitive closure defines a lattice, and that this lattice is closely related to the weak order.

Proposition 12 ([Rea06]). The transitive closure of the increasing rotation graph on Camb(ε) is
a lattice, called ε-Cambrian lattice. The map ct : Sε → Camb(ε) defines a lattice homomorphism
from the weak order on Sε to the ε-Cambrian lattice on Camb(ε).

Example 13. When ε = (−)n, the Cambrian lattice is the classical Tamari lattice [MHPS12]. It
can be defined equivalently by left-to-right rotations in planar binary trees, by slope increasing
flips in triangulations of P(−)n , or as the quotient of the weak order by the sylvester congruence.

1.1.5. Canopy. The canopy of a binary tree was already used by J.-L. Loday in [LR98, Lod04] but
the name was coined by X. Viennot [Vie07]. It was then extended to Cambrian trees (or spines)
in [LP13] to define a surjection from the associahedron Asso(ε) to the parallelepiped Para(n)
generated by the simple roots. The main observation is that the vertices i and i + 1 are always
comparable in a Cambrian tree (otherwise, they would be in distinct subtrees of a vertex j which
should then lie between i and i+ 1).

Definition 14. The canopy of a Cambrian tree T is the sequence can(T) ∈ ±n−1 defined by
can(T)i = − if i is above i+ 1 in T and can(T)i = + if i is below i+ 1 in T.

For example, the canopy of the Cambrian tree of Figure 2 (left) is −++−+−. The canopy
of T behaves nicely with the linear extensions of T and with the Cambrian lattice. To state
this, we define for a permutation τ ∈ Sε the sequence rec(τ) ∈ ±n−1, where rec(T)i = −
if τ−1(i) > τ−1(i + 1) and rec(T)i = + otherwise. In other words, rec(τ) records the recoils of
the permutation τ , i.e. the descents of the inverse permutation of τ .

Proposition 15. The maps ct, can, and rec define the following commutative diagram of lattice
homomorphisms:

Sε ±n−1

Camb(ε)

rec

ct can

1.1.6. Geometric realizations. We close this section with geometric interpretations of the Cam-
brian trees, Cambrian classes, Cambrian correspondence, and Cambrian lattices. We denote
by e1, . . . , en the canonical basis of Rn and by H the hyperplane of Rn orthogonal to

∑
ei. Define

the incidence cone C(T) and the braid cone C�(T) of a directed tree T as

C(T) := cone {ei − ej | for all i→ j in T} and C�(T) := {x ∈ H | xi ≤ xj for all i→ j in T} .

These two cones lie in the space H and are polar to each other. For a permutation τ ∈ Sn, we
denote by C(τ) and C�(τ) the incidence and braid cone of the chain τ(1)→ · · · → τ(n). Finally,
for a sign vector χ ∈ ±n−1, we denote by C(χ) and C�(χ) the incidence and braid cone of the
oriented path 1− · · · − n, where i→ i+ 1 if χi = + and i← i+ 1 if χi = −.

These cones (together with all their faces) form complete simplicial fans in H:

(i) the cones C�(τ), for all permutations τ ∈ Sn, form the braid fan, which is the normal fan of
the permutahedron Perm(n) := conv

{∑
i∈[n] τ(i)ei | τ ∈ Sn

}
;

(ii) the cones C�(T), for all ε-Cambrian trees T, form the ε-Cambrian fan, which is the normal
fan of the ε-associahedron Asso(ε) of C. Hohlweg and C. Lange [HL07] (see also [LP13]);

(iii) the cones C�(χ), for all sign vectors χ ∈ ±n−1, form the boolean fan, which is the normal fan
of the parallelepiped Para(n) :=

{
x ∈ H | i(2n+ 1− i) ≤ 2

∑
j≤i xj ≤ i(i+ 1) for all i ∈ [n]

}
.

In fact, Asso(ε) is obtained by deleting certain inequalities in the facet description of Perm(n), and
similarly, Para(n) is obtained by deleting facets of Asso(ε). In particular, we have the geometric
inclusions Perm(n) ⊂ Asso(ε) ⊂ Para(n). See Figure 6 for 3-dimensional examples.



CAMBRIAN HOPF ALGEBRAS 7

F
ig

u
r
e

5
.

T
h

e
ε-

C
am

b
ri

a
n

la
tt

ic
es

fo
r
ε

=
−

+
−
−

(l
ef

t)
a
n

d
ε

=
+
−
−
−

(r
ig

h
t)

.
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−−−− −+−− −−+− −++−

Figure 6. The polytope inclusion Perm(4) ⊂ Asso(ε) ⊂ Para(4) for different signatures ε ∈ ±4.
The permutahedron Perm(4) is represented in red, the associahedron Asso(ε) in blue, and the
parallelepiped Para(4) in green.

The incidence and braid cones also characterize the maps ct, can, and rec as follows

T = ct(τ) ⇐⇒ C(T) ⊆ C(τ) ⇐⇒ C�(T) ⊇ C�(τ),

χ = can(T) ⇐⇒ C(χ) ⊆ C(T) ⇐⇒ C�(χ) ⊇ C�(T),

χ = rec(τ) ⇐⇒ C(χ) ⊆ C(τ) ⇐⇒ C�(χ) ⊇ C�(τ).

In particular, Cambrian classes are formed by all permutations whose braid cone belong to the
same Cambrian cone. Finally, the 1-skeleta of the permutahedron Perm(n), associahedron Asso(ε)
and parallelepiped Para(n), oriented in the direction (n, . . . , 1)− (1, . . . , n) =

∑
i∈[n](n+ 1− 2i) ei

are the Hasse diagrams of the weak order, the Cambrian lattice and the boolean lattice respectively.
These geometric properties originally motivated the definition of Cambrian trees in [LP13].

1.2. Cambrian Hopf Algebra

In this section, we introduce the Cambrian Hopf algebra Camb as a subalgebra of the Hopf
algebra FQSym± on signed permutations, and the dual Cambrian algebra Camb∗ as a quotient
algebra of the dual Hopf algebra FQSym∗±. We describe both the product and coproduct in
these algebras in terms of combinatorial operations on Cambrian trees. These results extend
the approach of F. Hivert, J.-C. Novelli and J.-Y. Thibon [HNT05] to construct the algebra of
J.-L. Loday and M. Ronco on binary trees [LR98] as a subalgebra of the algebra of C. Malvenuto
and C. Reutenauer on permutations [MR95].

We immediately mention that a different generalization was studied by N. Reading in [Rea05].
His idea was to construct a subalgebra of C. Malvenuto and C. Reutenauer’s algebra FQSym
using equivalent classes of a congruence relation defined as the union

⋃
n∈N ≡εn of εn-Cambrian

relation for one fixed signature εn ∈ ±n for each n ∈ N. In order to obtain a valid Hopf algebra,
the choice of (εn)n∈N has to satisfy certain compatibility relations: N. Reading characterizes
the “translational” (resp. “insertional”) families ≡n of lattice congruences on Sn for which the
sums over the elements of the congruence classes of (≡n)n∈N form the basis of a subalgebra
(resp. subcoalgebra) of FQSym. These conditions make the choice of (εn)n∈N rather constrained. In
contrast, by constructing a subalgebra of FQSym± rather than FQSym, we consider simultaneously
all Cambrian relations for all signatures.

1.2.1. Signed shuffle and convolution products. For n, n′ ∈ N, let

S(n,n′) := {τ ∈ Sn+n′ | τ(1) < · · · < τ(n) and τ(n+ 1) < · · · < τ(n+ n′)}

denote the set of permutations of Sn+n′ with at most one descent, at position n. The shifted
concatenation τ τ̄ ′, the shifted shuffle product τ �̄ τ ′, and the convolution product τ ? τ ′ of two
(unsigned) permutations τ ∈ Sn and τ ′ ∈ Sn′ are classically defined by

τ τ̄ ′ := [τ(1), . . . , τ(n), τ ′(1) + n, . . . , τ ′(n′) + n] ∈ Sn+n′ ,

τ �̄ τ ′ :=
{

(τ τ̄ ′) ◦ π−1 | π ∈ S(n,n′)
}

and τ ? τ ′ :=
{
π ◦ (τ τ̄ ′) | π ∈ S(n,n′)

}
.

As shown by J.-C. Novelli and J.-Y. Thibon in [NT10], these definitions extend to signed permu-
tations as follows. The signed shifted shuffle product τ �̄ τ ′ is defined as the shifted product of
the permutations where signs travel with their values, while the signed convolution product τ ? τ ′
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is defined as the convolution product of the permutations where signs stay at their positions. For
example,

12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}.

1.2.2. Subalgebra of FQSym±. We denote by FQSym± the Hopf algebra with basis (Fτ )τ∈S±
and whose product and coproduct are defined by

Fτ · Fτ ′ =
∑

σ∈τ �̄ τ ′

Fσ and 4Fσ =
∑

σ∈τ?τ ′
Fτ ⊗ Fτ ′ .

It naturally extends to signed permutations the Hopf algebra FQSym on permutations defined by
C. Malvenuto and C. Reutenauer [MR95].

We denote by Camb the vector subspace of FQSym± generated by the elements

PT :=
∑
τ∈S±

ct(τ)=T

Fτ =
∑

τ∈L(T)

Fτ ,

for all Cambrian trees T (recall that {τ ∈ S± | ct(τ) = T} = L(T) is the set of linear extensions
of T). The following result is a straightforward adaptation of a similar result [HNT05]. We skip
the proof, whose details can be found in [CP14].

Theorem 16. Camb is a Hopf subalgebra of FQSym±.

In the remaining of this section, we provide direct descriptions of the product and coproduct
of P-basis elements of Camb in terms of combinatorial operations on Cambrian trees.

Product The product in the Cambrian algebra can be described in terms of intervals in Cam-

brian lattices. Given two Cambrian trees T,T′, we denote by T↗ T̄′ the tree obtained by grafting
the rightmost outgoing leaf of T on the leftmost incoming leaf of T′ and shifting all labels of T′.
See Figure 7 (left). Note that the resulting tree is εε′-Cambrian, where εε′ is the concatenation of
the signatures ε = ε(T) and ε′ = ε(T′). We define similarly T↖ T̄′.

Proposition 17. For any Cambrian trees T,T′, the product PT · PT′ is given by

PT · PT′ =
∑

S

PS,

where S runs over the interval between T↗ T̄′ and T↖ T̄′ in the ε(T)ε(T′)-Cambrian lattice.

Proof. By Proposition 8, the linear extensions L(T) of any Cambrian tree T form an interval of
the weak order. Moreover, the shuffle product of two intervals of the weak order is an interval of
the weak order. Therefore, the product PT ·PT′ is a sum of PS where S runs over an interval of the
Cambrian lattice. It remains to characterize the minimal and maximal elements of this interval.
Let µT and ωT denote respectively the smallest and the greatest linear extension of T in weak order.
The product PT · PT′ is the sum of PS over the interval [µT, ωT] �̄ [µT′ , ωT′ ] = [µTµ̄T′ , ω̄T′ωT],

7

6

5

4

3

2

1

4

3

2
1

3

2
1 7

6

5

4

3

2

1

2

3

1

2

1

2

1

T  =
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Figure 7. Grafting Cambrian trees (left) and cutting a Cambrian tree (right).
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where ¯ denotes as usual the shifting operator on permutations. The result thus follows from the
fact that

ct(µTµ̄T′) = T↗ T̄′ and ct(ω̄T′ωT) = T↖ T̄′. �

Coproduct The coproduct in the Cambrian algebra can also be described in combinatorial
terms. Define a cut of a Cambrian tree S to be a set γ of edges such that any geodesic vertical
path in S from a down leaf to an up leaf contains precisely one edge of γ. Such a cut separates the
tree S into two forests, one above γ and one below γ, denoted A(S, γ) and B(S, γ), respectively.
See Figure 7 (right).

Proposition 18. For any Cambrian tree S, the coproduct 4PS is given by

4PS =
∑
γ

( ∏
T∈B(S,γ)

PT

)
⊗
( ∏

T′∈A(S,γ)

PT′

)
,

where γ runs over all cuts of S.

Proof. Let σ be a linear extension of S and τ, τ ′ ∈ S± such that σ ∈ τ ? τ ′. The tables of τ and τ ′

respectively appear in the bottom and top rows of the table of σ. We can therefore associate a cut
of S to each element which appears in the coproduct 4PS. Reciprocally, given a cut γ of S, we are
interested in the linear extensions of S where all indices below γ appear before all indices above γ.
These linear extensions are precisely the permutations formed by a linear extension of B(S, γ)
followed by a linear extension of A(S, γ). But the linear extensions of a forest are obtained by
shuffling the linear extensions of its connected components. The result immediately follows since
the product PT · PT′ precisely involves the shuffle of the linear extensions of T with the linear
extensions of T′. �

Matriochka algebras Observe that the commutative diagram of Proposition 15 ensures that
the Cambrian algebra is sandwiched between the signed permutation algebra and the recoils
algebra, defined as the Hopf subalgebra of FQSym± generated by the elements

Xχ :=
∑
τ∈S±

rec(τ)=χ

Fτ =
∑

T∈Camb
can(T)=χ

PT,

for all sign vectors χ ∈ ±n−1.

Multiplicative bases For a Cambrian tree T, define ET :=
∑

T≤T′ PT′ and HT :=
∑

T′≤T PT′ .

The sets (ET)T∈Camb and (HT)T∈Camb are then multiplicative bases of Camb:

ET · ET′ = ET↗T̄′ and HT ·HT′ = HT↖T̄′ .

A Cambrian tree S is called E-indecomposable if ES = ET · ET′ implies T = S or T′ = S. As for
J.-L. Loday and M. Ronco’s algebra, it turns out that

• Camb is freely generated by the elements ES for all E-indecomposable Cambrian trees S,
• for any ε ∈ ±n, there are Cn−1 E-indecomposable ε-Cambrian trees,
• the set of E-indecomposable elements is a principal upper ideal of the ε-Cambrian lattice.

We omit here the proofs of these results since they are much more involved than in J.-L. Loday
and M. Ronco’s algebra. Details can be found in [CP14].

1.2.3. Quotient algebra of FQSym∗±. We switch to the dual Hopf algebra FQSym∗± with basis
(Gτ )τ∈S± and whose product and coproduct are defined by

Gτ ·Gτ ′ =
∑

σ∈τ?τ ′
Gσ and 4Gσ =

∑
σ∈τ �̄ τ ′

Gτ ⊗Gτ ′ .

The following statement is automatic from Theorem 16.
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Theorem 19. The graded dual Camb∗ of the Cambrian algebra is isomorphic to the image
of FQSym∗± under the canonical projection

π : C〈A〉 −→ C〈A〉/ ≡,
where ≡ denotes the Cambrian congruence. The dual basis QT of PT is expressed as QT = π(Gτ ),
where τ is any linear extension of T.

Similarly as in the previous section, we can describe combinatorially the product and coproduct
of Q-basis elements of Camb∗ in terms of operations on Cambrian trees.

Product Call gaps the n + 1 positions between two consecutive integers of [n], including the
position before 1 and the position after n. A gap γ defines a geodesic vertical path λ(T, γ) in
a Cambrian tree T from the bottom leaf which lies in the same interval of consecutive negative
labels as γ to the top leaf which lies in the same interval of consecutive positive labels as γ. See
Figure 9. A multiset Γ of gaps therefore defines a lamination λ(T,Γ) of T, i.e. a multiset of
pairwise non-crossing geodesic vertical paths in T from down leaves to up leaves. When cut along
the paths of a lamination, the Cambrian tree T splits into a forest.

Consider two Cambrian trees T and T′ on [n] and [n′] respectively. For any shuffle s of their
signatures ε and ε′, consider the multiset Γ of gaps of [n] given by the positions of the negative
signs of ε′ in s and the multiset Γ′ of gaps of [n′] given by the positions of the positive signs of ε in s.
We denote by T s\T′ the Cambrian tree obtained by connecting the up leaves of the forest defined
by the lamination λ(T,Γ) to the down leaves of the forest defined by the lamination λ(T′,Γ′).

Example 20. Consider the Cambrian trees T© and T� of Figure 8. To distinguish signs in T©

and T�, we circle the signs in ε(T©) = 		⊕ and square the signs in ε(T�) = ����. Consider
now an arbitrary shuffle s = �		��⊕� of these two signatures. The resulting laminations of T©

and T�, as well as the Cambrian tree T©
s\T� are represented in Figure 8.
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1

3

2
1

s=

T  =

T  =

= T s\T  

5
4

1

7

6
2

3

(e)(d)(c)(b)(a)

Figure 8. (a) The two Cambrian trees T© and T�. (b) Given the shuffle s = �		��⊕�, the
positions of the � are reported in T© and the positions of the ⊕ are reported in T�. (c) The
corresponding laminations. (d) The trees are split according to the laminations. (e) The resulting
Cambrian tree T©

s\T�.

Proposition 21. For any Cambrian trees T,T′, the product QT ·QT′ is given by

QT ·QT′ =
∑
s

QT s\T′ ,

where s runs over all shuffles of the signatures of T and T′.

Proof. Let τ and τ ′ be linear extensions of T and T′ respectively, let σ ∈ τ ? τ ′ and let S = ct(σ).
The convolution τ ? τ ′ shuffles the columns of the tables of τ and τ ′ while preserving the order of
their rows. According to the description of the insertion algorithm ct, the tree S thus consists in T
below and T′ above, except that the vertical walls falling from the negative nodes of T′ split T
and similarly the vertical walls rising from the positive nodes of T split T′. This corresponds to
the description of T s\T′, where s is the shuffle of the signatures of T and T′ given by σ. �
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Coproduct To describe the coproduct of Q-basis elements of Camb∗, we also use gaps and
vertical paths in Cambrian trees. Namely, for a gap γ, we denote by L(S, γ) and R(S, γ) the left
and right Cambrian subtrees of S when split along the path λ(S, γ). See Figure 9.

Proposition 22. For any Cambrian tree S, the coproduct 4QS is given by

4QS =
∑
γ

QL(S,γ) ⊗QR(S,γ),

where γ runs over all gaps between vertices of S.

Proof. Let σ be a linear extension of S and τ, τ ′ ∈ S± such that σ ∈ τ �̄ τ ′. As discussed in
Section 1.2.1, τ and τ ′ respectively appear on the left and right columns of σ. Let γ denote the
vertical gap separating τ from τ ′. Applying the insertion algorithm to τ and τ ′ separately then
yields the trees L(S, γ) and R(S, γ). The description follows. �

4
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1

3

2

1

7

6

5

4

3

2

1

Figure 9. A gap γ (left) defines a vertical cut (middle) which splits the Cambrian tree (right).

Part 2. The Baxter-Cambrian Hopf Algebra
2.1. Twin Cambrian trees

We now consider twin Cambrian trees and the resulting Baxter-Cambrian algebra. It provides
a straightforward generalization to the Cambrian setting of the work of S. Law and N. Reading on
rectangulations [LR12] and S. Giraudo on twin binary trees [Gir12]. The bases of these algebras
are counted by the Baxter numbers. In Section 2.1.5 we provide references for the various Baxter
families and their bijective correspondences, and we discuss the Cambrian counterpart of these
numbers. Definitions and combinatorial properties of twin Cambrian trees are given in this section,
while the algebraic aspects are treated in the next section.

2.1.1. Twin Cambrian trees. We consider the following pairs of Cambrian trees (see Figure 10).

Definition 23. Two ε-Cambrian trees T◦,T• are twin if the union T◦��T• of T◦ with the reverse
of T• (reversing the orientations of all edges) is acyclic.
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1 ,

Figure 10. A pair of twin Cambrian trees.
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If T◦,T• are twin ε-Cambrian trees, they necessarily have opposite canopy (see Section 1.1.5),
meaning that can(T◦)i = −can(T•)i for all i ∈ [n− 1]. The reciprocal statement for the constant
signature (−)n is proved by S. Giraudo in [Gir12].

Proposition 24 ([Gir12]). Two binary trees are twin if and only if they have opposite canopy.

We conjecture that this statement holds for general signatures. Consider two ε-Cambrian
trees T◦,T• with opposite canopies. It is easy to show that T◦��T• cannot have trivial cycles,
meaning that T◦ and T• cannot both have a path from i to j for i 6= j. To prove that T◦��T• has
no cycles at all, a good method is to design an algorithm to extract a linear extension of T◦��T•.
This approach was used in [Gir12] for the signature (−)n. In this situation, it is clear that the
root of T• is minimal in T◦ (by the canopy assumption), and we therefore pick it as the first value
of a linear extension of T◦��T•. The remaining of the linear extension is constructed inductively.
In the general situation, it turns out that not all maximums in T• are minimums in T◦ (and
reciprocally). It is thus not clear how to choose the first value of a linear extension of T◦��T•.

2.1.2. Baxter-Cambrian correspondence. We send a permutation τ ∈ Sε of Sε to a pair of

twin ε-Cambrian trees by inserting τ = τ1 · · · τn and its mirror
←
τ = τn · · · τ1 ∈ Sε with the map ct

from Section 1.1.2.

Proposition 25. The map ct�� defined by ct��(τ) :=
[
ct(τ), ct(

←
τ )
]

is a surjection from signed
permutations to pairs of twin Cambrian trees.

Proof. By definition, τ is a linear extension of ct(τ) and of the reverse of ct(
←
τ ), so that ct(τ)��ct(

←
τ )

is indeed acyclic. Moreover, the fiber (ct��)−1([T◦,T•]) of a pair of twin ε-Cambrian trees T◦,T•
is the set L(T◦��T•) of linear extensions of the graph T◦��T•. This set is non-empty since T◦��T•
is acyclic by definition of twin Cambrian trees. �

2.1.3. Baxter-Cambrian congruence. We now characterize by a congruence relation the signed
permutations τ ∈ Sε which have the same image ct��(τ).

Definition 26. For a signature ε ∈ ±n, the ε-Baxter-Cambrian congruence is the equivalence
relation on Sε defined as the transitive closure of the rewriting rules

UbV adWcX ≡��ε UbV daWcX if a < {b, c} < d and εb = εc,

UbV cWadX ≡��ε UbV cWdaX if a < {b, c} < d and εb 6= εc,

UadV bWcX ≡��ε UdaV bWcX if a < {b, c} < d and εb 6= εc,

where a, b, c, d are elements of [n] while U, V,W,X are words on [n]. The Baxter-Cambrian con-
gruence is the equivalence relation on all signed permutations S± given by all ε-Baxter-Cambrian
congruences:

for τ ∈ Sε, τ ′ ∈ Sε′ τ ≡�� τ ′ ⇐⇒ ε = ε′ and τ ≡��ε τ ′.

Proposition 27. The ε-Cambrian congruence classes are precisely the fibers of the map ct��:

for τ, τ ′ ∈ Sε τ ≡��ε τ ′ ⇐⇒ ct��(τ) = ct��(τ ′).

Proof. The proof of this proposition consists essentially in seeing that ct��(τ) = ct��(τ ′) if and only

if τ ≡ε τ ′ and
←
τ ≡ε

←
τ ′ (by definition of ct��). The definition of the ε-Baxter-Cambrian equivalence

≡��ε is exactly the translation of this observation in terms of rewriting rules. �

Proposition 28. The ε-Baxter-Cambrian class indexed by a pair [T◦,T•] of twin ε-Cambrian
trees is the intersection of the ε-Cambrian class indexed by T◦ with the (−ε)-Cambrian class
indexed by the reverse of T•.

Proof. The ε-Baxter-Cambrian class indexed by [T◦,T•] is the set of linear extensions of T◦��T•,
i.e. of permutations which are both linear extensions of T◦ and linear extensions of the reverse
of T•. The former form the ε-Cambrian class indexed by T◦ while the latter form the (−ε)-
Cambrian class indexed by the reverse of T•. �
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2.1.4. Rotations and Baxter-Cambrian lattices. We now present the rotation operation on
pairs of twin ε-Cambrian trees.

Definition 29. Let [T◦,T•] be a pair of ε-Cambrian trees and i → j be an edge of T◦��T•. We
say that the edge i→ j is rotatable if and only if one of the following holds:

• i→ j is an edge in T◦ and j → i is an edge in T•,
• i→ j is an edge in T◦ while i and j are incomparable in T•,
• i and j are incomparable in T◦ while j → i is an edge in T•.

If i→ j is rotatable in [T◦,T•], its rotation transforms [T◦,T•] to the pair of trees [T′◦,T
′
•], where

• T′◦ is obtained by rotation of i→ j in T◦ if possible and T′◦ = T◦ otherwise, and
• T′• is obtained by rotation of j → i in T• if possible and T′• = T• otherwise.

Proposition 30. Rotating a rotatable edge i → j in a pair [T◦,T•] of twin ε-Cambrian trees
yields a pair [T′◦,T

′
•] of twin ε-Cambrian trees.

Proof. By Proposition 10, the trees T◦,T• are ε-Cambrian trees. To see that they are twins,
observe that switching i and j in a linear extension of T◦��T• yields a linear extension of T′◦��T

′
•. �

Remark 31 (Number of rotatable edges). Note that a pair [T◦,T•] of ε-Cambrian trees has always
at least n− 1 rotatable edges. This will be immediate from the considerations of Section 2.1.6.

Consider the increasing rotation graph whose vertices are pairs of twin ε-Cambrian trees and
whose arcs are increasing rotations [T◦,T•]→ [T′◦,T

′
•], i.e. for which i < j in Definition 29. This

graph is illustrated on Figure 11 for the signatures ε = −+−− and ε = +−−−.

Proposition 32. For any cover relation τ < τ ′ in the weak order on Sε, either ct��(τ) = ct��(τ ′)
or ct��(τ)→ ct��(τ ′) in the increasing rotation graph.

Proof. Let i, j ∈ [n] be such that τ ′ is obtained from τ by switching two consecutive values ij
to ji. If i and j are incomparable in ct(τ), then ct(τ) = ct(τ ′). Otherwise, there is an edge i→ j
in ct(τ), and ct(τ ′) is obtained by rotating i → j in ct(τ). The same discussion is valid for the

trees ct(
←
τ ) and ct(

←
τ ′) and edge j → i. The result immediately follows. �

It follows that the increasing rotation graph on pairs of twin ε-Cambrian trees is acyclic and
we call ε-Baxter-Cambrian poset its transitive closure. In other words, the previous statement
says that the map ct�� defines a poset homomorphism from the weak order on Sε to the ε-Baxter-
Cambrian poset. The following statement extends the results of N. Reading [Rea06] on Cambrian
lattices and S. Law and N. Reading [LR12] on the lattice of diagonal rectangulations.

Proposition 33. The ε-Baxter-Cambrian poset is a lattice quotient of the weak order on Sε.

Proof. By Proposition 28, the ε-Baxter-Cambrian congruence is the intersection of two Cambrian
congruences. The statement follows since the Cambrian congruences are lattice congruences of
the weak order [Rea06] and an intersection of lattice congruences is a lattice congruence. �

Remark 34 (Extremal elements and pattern avoidance). Since the Baxter-Cambrian classes are
generated by rewriting rules, we immediately obtain that the minimal elements of the Baxter-
Cambrian classes are precisely the signed permutations avoiding the patterns:

b-da-c, b-da-c, c-da-b, c-da-b, b-c-da, b-c-da, c-b-da, c-b-da, da-b-c, da-b-c, da-c-b, da-c-b.

Similarly, the maximal elements of the Baxter-Cambrian classes are precisely the signed permu-
tations avoiding the patterns:

(?) b-ad-c, b-ad-c, c-ad-b, c-ad-b, b-c-ad, b-c-ad, c-b-ad, c-b-ad, ad-b-c, ad-b-c, ad-c-b, ad-c-b.

2.1.5. Baxter-Cambrian numbers. In contrast to the number of ε-Cambrian trees, the num-
ber of pairs of twin ε-Cambrian trees depends on the signature ε. For example, there are 22
pairs of twin (−−−−)-Cambrian trees and only 20 pairs of twin (−+−−)-Cambrian trees. See
Figures 11 and 12.
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For a signature ε, we define the ε-Baxter-Cambrian number Bε to be the number of pairs of
twin ε-Cambrian trees. We immediately observe that Bε is preserved when we change the first
and last sign of ε, inverse simultaneously all signs of ε, or reverse the signature ε:

Bε = Bχ0(ε) = Bχn(ε) = B−ε = B←
ε
,

where χ0 and χn change the first and last sign, (−ε)i = −εi and (
←
ε )i = εn+1−i.

In the following statements, we provide an inductive formula to compute all ε-Baxter-Cambrian
numbers, using a two-parameters refinement. The pairs of twin ε-Cambrian trees are in bijection
with the weak order maximal permutations of ε-Baxter-Cambrian classes. These permutations are
precisely the permutations avoiding the patterns (?) in Remark 34. We consider the generating
tree T ��ε for these permutations. This tree has n levels, and the nodes at level m are labeled
by permutations of [m] whose values are signed by the restriction of ε to [m] and avoiding the
patterns (?). The parent of a permutation in T ��ε is obtained by deleting its maximal value. See
Figure 12.

We consider the possible positions of m+ 1 in the children of a permutation τ at level m in this
generating tree T ��ε . Index by {0, . . . ,m} from left to right the gaps before the first letter, between
two consecutive letters, and after the last letter of τ . Free gaps are those where placing m+1 does
not create a pattern of (?). Free gaps are marked with a blue dot in Figure 12. It is important to
observe that gap 0 as well as the gaps immediately after m−1 and m are always free, no matter τ
or the signature ε.

Define the free-gap-type of τ to be the pair (`, r) where ` (resp. r) denote the number of free
gaps on the left (resp. right) of m in τ . For a signature ε, let Bε(`, r) denote the number of free-
gap-type (`, r) weak order maximal permutations of ε-Baxter-Cambrian classes. These refined
Baxter-Cambrian numbers enables us to write inductive equations.

Proposition 35. Consider two signatures ε ∈ ±n and ε′ ∈ ±n−1, where ε′ is obtained by deleting
the last sign of ε. Then

Bε(`, r) =


∑
`′≥`

Bε′(`
′, r − 1) +

∑
r′≥r

Bε′(`− 1, r′) if εn−1 = εn, (=)

δ`=1 · δr≥2 ·
∑

`′≥r−1
r′≥1

Bε′(`
′, r′) + δ`≥2 · δr=1 ·

∑
`′≥1
r′≥`−1

Bε′(`
′, r′) if εn−1 6= εn, ( 6=)

where δ denote the Kronecker δ (defined by δX = 1 if X is satisfied and 0 otherwise).

Proof. Assume first that εn−1 = εn. Consider two permutations τ and τ ′ at level n and n−1 in T ��ε
such that τ ′ is obtained by deleting n in τ . Denote by α and β the gaps immediately after n− 1
and n in τ , by α′ the gap immediately after n− 1 in τ ′, and by β′ the gap in τ ′ where we insert n
to get τ . Then, besides gaps 0, α and β, the free gaps of τ are precisely the free gaps of τ ′ not
located between gaps α′ and β′. Indeed,

• inserting d :=n + 1 just after a value a located between b :=n − 1 and c :=n in τ would
create a pattern b-ad-c or c-ad-b with εb = εc;

• conversely, consider a gap γ of τ not located between α and β. If inserting n+ 1 at γ in τ
creates a forbidden pattern of (?) with c = n, then inserting n at γ in τ ′ would also create
the same forbidden pattern of (?) with c = n − 1. Therefore, all free gaps not located
between gaps α′ and β′ remain free.

Let (`, r) denote the free-gap-type of τ and (`′, r′) denote the free-gap-type of τ ′. We obtain that

• `′ ≥ ` and r′ = r − 1 if n is inserted on the left of n− 1;
• `′ = `− 1 and r′ ≥ r if n is inserted on the right of n− 1.

The formula follows immediately when εn−1 = εn.
Assume now that εn−1 = −εn, and keep the same notations as before. Using similar arguments,

we observe that besides gaps 0, α and β, the free gaps of τ are precisely the free gaps of τ ′ located
between gaps α′ and β′. Therefore, we obtain that

• ` = 1, r ≥ 2, and `′ ≥ r − 1 if n is inserted on the left of n− 1;
• ` ≥ 2, r = 1, and r′ ≥ `− 1 if n is inserted on the right of n− 1.

The formula follows for εn−1 = −εn. �
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Before applying these formulas to obtain bounds on Bε for arbitrary signatures ε, let us consider
two special signatures: the constant and the alternating signature.

Alternating signature Since it is the easiest, we start with the alternating signature (+−)
n
2

(where we define (+−)
n
2 to be (+−)m+ when n = 2m+ 1 is odd).

Proposition 36. The Baxter-Cambrian numbers for alternating signatures are central binomial
coefficients (see [OEI10, A000984]):

B
(+−)

n
2

=

(
2n− 2

n− 1

)
.

Proof. We prove by induction on n that the refined Baxter-Cambrian numbers are

B
(+−)

n
2

(`, r) = δ`=1 · δr≥2 ·
(

2n− 2− r
n− r

)
+ δ`≥2 · δr=1 ·

(
2n− 2− `
n− `

)
.

This is true for n = 2 since B+−(1, 2) = 1 (counting the permutation 21) and B+−(2, 1) = 1
(counting the permutation 12). Assume now that it is true for some n ∈ N. Then Equation ( 6=)
of Proposition 35 shows that

B
(+−)

n+1
2

(`, r) = δ`=1 · δr≥2 ·
∑

`′≥r−1

(
2n− 2− `′

n− `′

)
+ δ`≥2 · δr=1 ·

∑
r′≥`−1

(
2n− 2− r′

n− r′

)

= δ`=1 · δr≥2 ·
(

2n− r
n+ 1− r

)
+ δ`≥2 · δr=1 ·

(
2n− `
n+ 1− `

)
,

since a sum of binomial coefficients along a diagonal
∑p
i=0

(
q+i
i

)
simplifies to the binomial coeffi-

cient
(
q+p+1
p

)
by multiple applications of Pascal’s rule. Finally, we conclude observing that

B
(+−)

n
2

=
∑
`,r∈[n]

B
(+−)

n
2

(`, r) = 2
∑
u≥2

(
2n− 2− u
n− u

)
= 2

(
2n− 3

n− 2

)
=

(
2n− 2

n− 1

)
. �

Constant signature We now consider the constant signature (+)n. The number B(+)n is the
classical Baxter number (see [OEI10, A001181]) defined by

B(+)n = Bn =

(
n+ 1

1

)−1(
n+ 1

2

)−1 n∑
k=1

(
n+ 1

k − 1

)(
n+ 1

k

)(
n+ 1

k + 1

)
.

These numbers have been extensively studied, see in particular [CGHK78, Mal79, DG96, DG98,
YCCG03, FFNO11, BBMF11, LR12, Gir12]. The Baxter number Bn counts several families:

• Baxter permutations of [n], i.e. permutations avoiding the patterns b-da-c and c-ad-b,
• weak order maximal (resp. minimal) permutations of Baxter congruence classes on Sn,

i.e. permutations avoiding the patterns b-ad-c and c-ad-b (resp. b-da-c and c-da-b),
• pairs of twin binary trees on n nodes,
• diagonal rectangulations of an n× n grid,
• plane bipolar orientations with n edges,
• non-crossing triples of path with k − 1 north steps and n− k east steps, for all k ∈ [n],
• etc.

Bijections between all these Baxter families are discussed in [DG96, DG98, FFNO11, BBMF11].

Remark 37 (Two proofs of the summation formula). There are essentially two ways to obtain
the above summation formula for Baxter numbers: it was first proved analytically in [CGHK78],
and then bijectively in [Vie81, DG98, FFNO11]. Let us shortly comment on these two techniques
and discuss the limits of their extension to the Baxter-Cambrian setting.

(i) The bijective proofs in [DG98, FFNO11] transform pairs of binary trees to triples of non-
crossing paths, and then use the Gessel-Viennot determinant lemma [GV85] to get the sum-
mation formula. The middle path of these triples is given by the canopy of the twin binary
trees, while the other two paths are given by the structure of the trees. We are not yet able
to adapt this technique to provide summation formulas for all Baxter-Cambrian numbers.

https://oeis.org/A000984
https://oeis.org/A001181
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(ii) The analytic proof in [CGHK78] is based on Equation (=) of Proposition 35 and can be par-
tially adapted to arbitrary signatures as follows. Define the extension of a signature ε ∈ ±n
by a signature δ ∈ ±m to be the signature ε C δ ∈ ±n+m such that (ε C δ)i = εi for i ∈ [n]
and (ε C δ)n+j = δj · (ε C δ)n+j−1 for j ∈ m. For example, ++− C +−−+ = ++−−+−−.
Then for any ε ∈ ±n and δ ∈ ±m, we have

BεCδ =
∑
`,r≥1

Xδ(`, r)Bε(`, r),

where the coefficients Xδ(`, r) are obtained inductively from the formulas of Proposition 35.
Namely, for any `, r ≥ 1, we have X∅(`, r) = 1 and

X(+δ)(`, r) =
∑

1≤`′≤`

Xδ(`
′, r + 1) +

∑
1≤r′≤r

Xδ(`+ 1, r′),

X(−δ)(`, r) =
∑

2≤`′≤r+1

Xδ(`
′, 1) +

∑
2≤r′≤`+1

Xδ(1, r
′).

These equations translate on the generating function Xδ(u, v) :=
∑
`,r≥1Xδ(`, r)u

`−1vr−1 to

the formulas X∅(u, v) = 1
(1−u)(1−v) and

X(+δ)(u, v) =
Xδ(u, v)− Xδ(u, 0)

(1− u)v
+

Xδ(u, v)− Xδ(0, v)

u(1− v)
,

X(−δ)(u, v) =
Xδ(v, 0)− Xδ(0, 0)

(1− u)(1− v)v
+

Xδ(0, u)− Xδ(0, 0)

u(1− u)(1− v)
.

Note that the u/v-symmetry of Xδ(u, v) is reflected in a symmetry on these inductive equa-
tions. We can thus write this generating function Xδ(u, v) as

Xδ(u, v) =
∑
i,j≥0

k∈[|δ|+1]

Y i,j,kδ

(−u)i (−v)j

(1− u)|δ|+2−k(1− v)k
,

where the non-vanishing coefficients Y i,j,kδ are computed inductively by Y 0,0,1
∅ = 1 and

Y i,j,k(+δ) =

(
k

j + 1

)
Y i,0,kδ − Y i,j+1,k

δ +

(
|δ|+ 3− k
i+ 1

)
Y 0,j,k−1
δ − Y i+1,j,k−1

δ ,

Y i,j,k(−δ) =

(
k − 1

j

)[(
|δ|+ 2− k
i+ 1

)
Y 0,0,k
δ − Y i+1,0,k

δ

]
+

(
|δ|+ 2− k

i

)[(
k − 1

j + 1

)
Y 0,0,k−1
δ − Y 0,j+1,k−1

δ

]
.

We used that Y i,j,kδ = Y
j,i,|δ|+2−k
δ to simplify the second equation. Note that this decom-

position of Xδ is not unique and the inductive equations on Y i,j,kδ follow from a particular
choice of such a decomposition.

At that stage, F. Chung, R. Graham, V. Hoggatt, and M. Kleiman [CGHK78], guess and
check that the first equation is always satisfied by

Y i,j,k(+)n−1 =

(
n+1
k

)(
n+1
k+i+1

)(
n+1
k−j−1

)[(
k+i−2
i

)(
n+j−k−1

j

)
−
(
k+i−2
i−1

)(
n+j−k−1

j−1

)](
n+1

1

)(
n+1

2

)
from which they derive immediately that

B(+)n = B+C(+)n−1 =
∑
`,r≥1

X(+)n−1(`, r)B+(`, r) = X(+)n−1(1, 1) = X(+)n−1(0, 0)

=
∑
k∈[n]

Y 0,0,k
(+)n−1 =

(
n+ 1

1

)−1(
n+ 1

2

)−1 n∑
k=1

(
n+ 1

k − 1

)(
n+ 1

k

)(
n+ 1

k + 1

)
.

Unfortunately, we have not been able to guess closed formulas for the coefficients Y i,j,kδ

for arbitrary δ ∈ ±n.
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Arbitrary signatures We now come back to an arbitrary signature ε. We were not able to
derive summation formulas for arbitrary signatures using the techniques presented in Remark 37
above. However, we use here the inductive formulas of Proposition 35 to bound the Baxter-
Cambrian number Bε for an arbitrary signature ε.

For this, we consider the matrix Bε :=
(
Bε(`, r)

)
`,r∈[n]

. The inductive formulas of Proposition 35

provide an efficient inductive algorithm to compute this matrix Bε and thus the ε-Baxter-Cambrian
number Bε =

∑
`,r∈[n]Bε(`, r). Namely, if ε is obtained by adding a sign at the end of ε′, then

each entry of Bε is the sum of entries of Bε′ in a region depending on whether εn = εn−1. These
regions are sketched in Figure 13.

εn = εn−1 εn = −εn−1

Figure 13. Inductive computation of Bε: the black entry of Bε is the sum of the entries
of Bε′ over the shaded region. Entries outside the upper triangular region always vanish.
When εn = −εn−1, the only non-vanishing entries of Bε are in the first row or in the first column.

We observe that the transformations of Figure 13 are symmetric with respect to the diagonal

of the matrix. Since Bε1ε2 =

[
0 1
1 0

]
is symmetric, and Bε is obtained from Bε1ε2 by successive

applications of these symmetric transformations, we obtain that Bε is always symmetric. Although
this fact may seem natural to the reader, it is not at all immediate as there is an asymmetry on
the three forced free gaps: for example gap 0 is always free.

For a matrix M := (mi,j), we consider the matrix M se :=
(
mse
i,j

)
where

mse
i,j :=

∑
p≥i, q≥j

mp,q

is the sum of all entries located south-east of (i, j) (in matrix notation). Observe that (Bε)
se
1,1 is

the sum of all entries of Bε, and thus equals the ε-Baxter-Cambrian number Bε. Using Figure 13,
we obtain a similar rule to compute the entries of Bse

ε as sums of entries of Bse
ε′ when ε is obtained

by adding a sign at the end of ε′. This rule is presented in Figure 14.

εn = εn−1 εn = −εn−1

Figure 14. Inductive computation of Bse
ε : the black entry of Bse

ε is the sum of the entries of Bse
ε′

over the shaded region. Entries outside the triangular shape always vanish. When εn = −εn−1,
the only non-vanishing entries of Bse

ε are in the first row or in the first column.

This matrix interpretation of the formulas of Proposition 35 provides us with tools to bound
the Baxter-Cambrian numbers. For a signature ε, we denote by switch(ε) the set of gaps where ε
switches sign.

Proposition 38. For any two signatures ε, ε̃ ∈ ±n, if switch(ε) ⊂ switch(ε̃) then Bε > Bε̃.
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Proof. For two matrices M := (mi,j) and M̃ := (m̃i,j), we write M < M̃ when mi,j ≥ m̃i,j for all

indices i, j (entrywise comparison), and we write M � M̃ when M < M̃ and M 6= M̃ . Consider
four signatures ε, ε̃ ∈ ±n and ε′, ε̃′ ∈ ±n−1 such that ε′ (resp. ε̃′) is obtained by deleting the last
sign of ε (resp. ε̃). From Figure 14, and using the fact that Bε is symmetric, we obtain that:

• if εn = εn−1 while ε̃n = −ε̃n−1, then Bse
ε′ < Bse

ε̃′ implies Bse
ε � Bse

ε̃ .
• if either both εn = εn−1 and ε̃n = ε̃n−1, or both εn = −εn−1 and ε̃n = −ε̃n−1, then Bse

ε′ �
Bse
ε̃′ implies Bse

ε � Bse
ε̃ .

By repeated applications of these observations, we therefore obtain that switch(ε) ⊂ switch(ε̃)
implies Bse

ε � Bse
ε̃ , and thus Bε > Bε̃. �

Corollary 39. Among all signatures of ±n, the constant signature maximizes the Baxter-Cambrian
number, while the alternating signature minimizes it: for all ε ∈ ±n,(

2n− 2

n− 1

)
= B

(+−)
n
2
≤ Bε ≤ B(+)n =

(
n+ 1

1

)−1(
n+ 1

2

)−1 n∑
k=1

(
n+ 1

k − 1

)(
n+ 1

k

)(
n+ 1

k − 1

)
.

Remark 40. The proof of Proposition 38 may seem unnecessarily intricate. Observe however
that the situation is rather subtle:

• If switch(ε) 6⊆ switch(ε̃), we may have Bε < Bε̃ even if |switch(ε)| < |switch(ε̃)|. The
smallest example is given by B+++−++−−− = 18376 < 18544 = B++−+++−++.

• We may have Bse
ε < Bse

ε̃ but Bε 6< Bε̃.

2.1.6. Geometric realizations. Using similar tools as in Section 1.1.6 and following [LR12], we
present geometric realizations for pairs of twin Cambrian trees, for the Baxter-Cambrian lattice,
and for the map ct��. For a partial order ≺ on [n], we still define its incidence cone C(≺) and its
braid cone C�(≺) as

C(≺) := cone {ei − ej | for all i ≺ j} and C�(≺) := {x ∈ H | xi ≤ xj for all i ≺ j} .
The cones C(T◦��T•) for all pairs [T◦,T•] of twin ε-Cambrian trees form (together with all their
faces) a complete polyhedral fan that we call the ε-Baxter-Cambrian fan. It is the common re-
finement of the ε- and (−ε)-Cambrian fans. It is therefore the normal fan of the Minkowski
sum of the associahedra Asso(ε) and Asso(−ε). We call this polytope Baxter-Cambrian asso-
ciahedron and denote it by BaxAsso(ε). Note that BaxAsso(ε) is clearly centrally symmetric
(since Asso(ε) = −Asso(−ε)) but not necessarily simple. Examples are illustrated on Figure 15.
The graph of BaxAsso(ε), oriented in the direction (n, . . . , 1)− (1, . . . , n) =

∑
i∈[n](n+ 1− 2i) ei,

is the Hasse diagram of the ε-Baxter-Cambrian lattice. Finally, the map ct�� can be read geomet-
rically as

[T◦,T•] = ct��(τ) ⇐⇒ C(T◦��T•) ⊆ C(τ) ⇐⇒ C�(T◦��T•) ⊇ C�(τ).

2.2. Baxter-Cambrian Hopf Algebra

In this section, we define the Baxter-Cambrian Hopf algebra BaxCamb, extending simultane-
ously the Cambrian Hopf algebra and the Baxter Hopf algebra studied by S. Law and N. Read-
ing [LR12] and S. Giraudo [Gir12]. We present again the construction of BaxCamb as a subalgebra
of FQSym± and that of its dual BaxCamb∗ as a quotient of FQSym∗±.

2.2.1. Subalgebra of FQSym±. We denote by BaxCamb the vector subspace of FQSym± gener-
ated by the elements

P[T◦,T•]
:=

∑
τ∈S±

ct��(τ)=[T◦,T•]

Fτ =
∑

τ∈L(T◦��T•)

Fτ ,

for all pairs of twin Cambrian trees [T◦,T•] (recall that
{
τ ∈ S±

∣∣ ct��(τ) = T◦ �� T•
}

= L(T◦ �� T•)
is the set of linear extensions of T◦ �� T•). For example, for the pair of twin Cambrian trees of
Figure 10 (left), we have

P ,


= F2175346 + F2715346 + F2751346 + F7215346 + F7251346 + F7521346.
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Asso(−+−−) Asso(+−++)

Asso(+−−−) Asso(−+++)

Asso(−+−−) + Asso(+−++)

Asso(+−−−) + Asso(−+++)

Figure 15. The Minkowski sum (blue, right) of the associahedra Asso(ε) (red, left) and Asso(−ε)
(green, middle) gives a realization of the ε-Baxter-Cambrian lattice. Illustrated with the signatures
ε = −+−− (top) and ε = +−−− (bottom) whose ε-Baxter-Cambrian lattice appear in Figure 11.

The following statement is similar to Theorem 16.

Theorem 41. BaxCamb is a Hopf subalgebra of FQSym±.

As for the Cambrian algebra, we can describe combinatorially the product and coproduct of
P-basis elements of BaxCamb in terms of operations on pairs of twin Cambrian trees.

Product The product in the Baxter-Cambrian algebra BaxCamb can be described in terms of
intervals in Baxter-Cambrian lattices.

Proposition 42. For any two pairs [T◦,T•] and [T′◦,T
′
•] of twin Cambrian trees, the prod-

uct P[T◦,T•] · P[T′◦,T
′
•]

is given by

P[T◦,T•] · P[T′◦,T
′
•]

=
∑

[S◦,S•]

P[S◦,S•],

where [S◦,S•] runs over the interval between
[
T◦ ↗ T̄′◦,T• ↖ T̄′•

]
and

[
T◦ ↖ T̄′◦,T• ↗ T̄′•

]
in

the ε(T◦)ε(T
′
◦)-Baxter-Cambrian lattice.

Proof. The result relies on the fact that the ε-Baxter-Cambrian classes are intervals of the weak
order on Sε, and that the shuffle product of two intervals of the weak order is again an interval
of the weak order. See the similar proof of Proposition 17. �

Coproduct A cut of a pair of twin Cambrian trees [S◦,S•] is a pair γ = [γ◦, γ•] where γ◦ is
a cut of S◦ and γ• is a cut of S• such that the labels of S◦ below γ◦ coincide with the labels
of S• above γ•. Equivalently, it can be seen as a lower set of T◦��T•. An example is illustrated in
Figure 16.

We denote by AB([S◦,S•], [γ◦, γ•]) the set of pairs [A◦, B•], where A◦ appears in the prod-
uct

∏
T∈A(S◦)

PT while B• appears in the product
∏

T∈B(S◦)
PT, and A◦ and B• are twin Cambrian

trees. We define BA([S◦,S•], [γ◦, γ•]) similarly exchanging the role of A and B. We obtain the
following description of the coproduct in the Baxter-Cambrian algebra BaxCamb.
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Figure 16. A cut γ of a pair of twin Cambrian trees.

Proposition 43. For any pair of twin Cambrian trees [S◦,S•], the coproduct 4P[S◦,S•] is given by

4P[S◦,S•] =
∑
γ

( ∑
[B◦,A•]

P[B◦,A•]

)
⊗
( ∑

[A◦,B•]

P[A◦,B•]

)
,

where γ runs over all cuts of [S◦,S•], [B◦, A•] runs over BA([S◦,S•], [γ◦, γ•]) and [A◦, B•] runs
over AB([S◦,S•], [γ◦, γ•]).

Proof. The proof is similar to that of Proposition 18. The difficulty here is to describe the linear
extensions of the union of the forest A(S◦, γ◦) with the opposite of the forest B(S•, γ•). This
difficulty is hidden in the definition of AB([S◦,S•], [γ◦, γ•]). �

2.2.2. Quotient algebra of FQSym∗±. As for the Cambrian algebra, the following result is auto-
matic from Theorem 41.

Theorem 44. The graded dual BaxCamb∗ of the Baxter-Cambrian algebra is isomorphic to the
image of FQSym∗± under the canonical projection

π : C〈A〉 −→ C〈A〉/ ≡��,
where ≡�� denotes the Baxter-Cambrian congruence. The dual basis Q[T◦,T•] of P[T◦,T•] is expressed
as Q[T◦,T•] = π(Gτ ), where τ is any linear extension of T◦��T•.

We now describe the product and coproduct in BaxCamb∗ by combinatorial operations on pairs
of twin Cambrian trees. We use the definitions and notations introduced in Section 1.2.3.

Product The product in BaxCamb∗ can be described using gaps and laminations similarly
to Proposition 21. An example is illustrated on Figure 17. For two Cambrian trees T and T′

and a shuffle s of the signatures ε(T) and ε(T′), we still denote by T s\T′ the tree described in
Section 1.2.3.

4

3
2

1

3

2
1

s=
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Figure 17. Two pairs of twin Cambrian trees [T◦,T•] and [T′◦,T
′
•] (left), and a pair of twin

Cambrian tree which appear in the product Q[T◦,T•] ·Q[T′◦,T
′
•]

(right).

Proposition 45. For any two pairs of twin Cambrian trees [T◦,T•] and [T′◦,T
′
•], the prod-

uct Q[T◦,T•] ·Q[T′◦,T
′
•]

is given by

Q[T◦,T•] ·Q[T′◦,T
′
•]

=
∑
s

Q[T◦ s\T′◦,T′• s\T•],

where s runs over all shuffles of the signatures ε(T◦) = ε(T•) and ε(T′◦) = ε(T′•).
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Proof. The proof follows the same lines as that of Proposition 21. The only difference is that
if τ ∈ L(T◦��T•), τ ′ ∈ L(T′◦��T

′
•), and σ ∈ τ ? τ ′, then T◦ = ct(τ) appears below T′◦ = ct(τ ′)

in ct(σ) since σ is inserted from left to right in ct(σ), while T• = ct(
←
τ ) appears above T′• = ct(

←
τ ′)

in ct(
←
σ ) since σ is inserted from right to left in ct(

←
σ ). �

Coproduct The coproduct in BaxCamb∗ can be described combinatorially as in Proposition 22.
For a Cambrian tree S and a gap γ between two consecutive vertices of S, we still denote by L(S, γ)
and R(S, γ) the left and right Cambrian subtrees of S when split along the path λ(S, γ).

Proposition 46. For any pair of twin Cambrian trees [S◦,S•], the coproduct 4Q[S◦,S•] is given by

4Q[S◦,S•] =
∑
γ

Q[L(S◦,γ),L(S•,γ)] ⊗Q[R(S◦,γ),R(S•,γ)],

where γ runs over all gaps between consecutive positions in [n].

Proof. The proof is identical to that of Proposition 22. �
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