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To predict the shape of solidifying material onto a substrate is currently motivating

an increasing number of studies related to additive manufacturing. Here we consider

the solidification of a liquid drop on a cold substrate, below the freezing temperature,

under continuous feeding at a constant flow-rate through a thin needle placed above.

We compare experimental shapes to those predicted by a theoretical model where

heat transfer is mainly due to conduction within the solid and when the inner flow

is neglected. Hence, this is an analogous of Stefan problem for a sessile drop, with

additional feeding of liquid. We show that, depending on the control parameters,

namely the initial angle, substrate temperature and flow-rate, different shapes are

observed, in particular original overhanging ones. We provide a simple model, which

is in very good agreement with experiments. We then discuss on the limitations of

the model.
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I. INTRODUCTION

The shape of liquid free-surface solidifying from a cold substrate has motivated numer-

ous studies related to heat exchange, crystal growth1, geophysics2,3, prevention of frost

formation4,5 or additive manufacturing6. For the latter application, it is often required to

deposit on a solid a given amount of fluid with well controlled three-dimensional shape6.

However, the shape results from a complex interplay between spreading dynamics with fast

advancing contact-line during early stages, and heat transfer, phase change, mass conserva-

tion and shaping by surface tension and gravity during late stages7. In applied situations,

an additional complexity comes from the non-newtonian rheology of the material used, e.g.

a melted polymer that cools down and solidifies at ambient temperature.

Here, we consider a model situation of a liquid drop gently deposited on a substrate

colder than the freezing temperature, that progressively freezes and is simultaneously inflated

from above, by a continuous supply of liquid at ambient temperature and fixed flow-rate.

As the liquid meets the substrate, it first spreads radially under the antagonist effects of

inertia, viscosity and surface tension8 and reaches a final radius of arrest that depends on the

substrate temperature9. As liquid is constantly poured on top of the freezing basal melt, it

eventually freezes and forms a solid puddle that grows both upwards and radially outwards.

Figure 1 shows a typical sequence of the freezing of such a continuously fed drop.

This situation is reminiscent of a sessile drop freezing on a cold substrate, that forms

pointy shapes in the final stage of freezing10–13. The formation of this pointy shape was

explained from a simple static model with mass conservation coupled to the geometry of

the drop. It was found that it originates from that liquid water is denser than ice10–12 and

that the tip angle only depends on the density ratio between solid and liquid phases12,13.

Therefore, this singular shape is not observed for most substances, which are denser in

their solid phase. Another example of a material denser in its liquid phase is silicium,

and the formation of a forest of similar pikes was observed during cycles of melting and

solidification14, showing a general character in these pointy shapes.

Related to the present study, the shape of freezing wax puddles formed by the successive

impact of droplet sprays onto a cold substrate was investigated by Schiaffino and Sonin15,16.

Their study was focused on the arrest and spreading criterion of the puddle at the contact-

line, and found a pinning criterion based on a threshold value for the contact angle between
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0 s 0.5 s 3.2 s

5 s 10.7 s 24.6 s

0.75 mm

FIG. 1. Successive shapes of a drop of water freezing from its base on a cold substrate, under

continuous feeding. After a first stage of fast spreading, the liquid is laterally pinned and reaches

its final basal diameter. Then, the drop thickens and grows upwards as the freezing front progresses

also upwards.

0.45 mm

0 s 2.1 s 7.9 s

19.2 s 33.6 s 61.6 s

FIG. 2. Successive shapes of a drop of hexadecane freezing from its base on a cold substrate, under

continuous feeding. Flow-rate Q = 0.1 µl/s, ∆T = 4◦. Under these conditions, the freezing drop

adopts an overhanging shape, which constitutes its final one before the liquid on top collapses and

falls under gravity.
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the liquid and the basal solid. Another study revisited the pinning criterion in terms of

critical frozen volume near the triple line17. More recently, a kinetic criterion based on the

advancing velocity of a spreading drop was quantitatively and successfully tested9. The

apparent discrepancies between these studies reveal that the pinning seems dependent on

the geometry and history of spreading.

Besides the computation of the final shape, various studies investigated the time evolution

of the freezing front (i.e. the Stefan problem adapted to convex and time-evolving geometry),

which departs from the trivial square-root law expected for a half-space geometry18–20. Other

recent studies added the effect of supercooling21, of thermal convection22, and of using ice

as the substrate23, revealing more complex behavior. Overall, the peculiar shape of the drop

itself has a significant influence on the heat transfer between the substrate, the solidified

material and the remaining liquid on top. Our study is also motivated by fundamental

questions on this non-trivial coupling between the drop shape and thermal gradients within

the solid and the liquid.

How does a continuous supply of liquid influence the final shape of the frozen ice deposit

? We address this question both experimentally and numerically. The theoretical model,

inspired from Snoeijer and Brunet12, is quasi-static : it assumes a straight horizontal front, it

neglects the flow dynamics in the liquid and the resulting convection. Though, by comparing

both experimental and numerical shapes, we find very good quantitative agreement for a

large investigated range of control parameters. In particular, we observed and explained

overhanging shapes for the drop and we determine the maximal aspect ratio such a drop

can get before the liquid flows over by gravity before freezing. In this prospect, this study is

also of interest for the understanding of the first steps of the formation of natural structures

by successive deposition of ice, like in stalagmites24–26 or snow penitents27. However, under

specific conditions, we noticed a strong discrepancy between experiments and theory, which

is seemingly related to the appearance of the phenomenon of recalescence. From a liquid

drop initially in undercooling situation, recalescence appears as a brief (typically t � 1 s)

formation of a mixed ice-and-liquid state within the whole drop, before the solid-liquid front

rises17,21.

The paper is organised as follow : we first describe the experimental setup in Section

II, then we present theoretical elements of the problem in Section III. In Section IV, we

compare experimental and numerical shapes for various sets of control parameters. In Section
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V, we give possible explanation for the few cases where discrepancy is observed between

experiments and numerics. Finally, Section VI concludes the paper.

II. EXPERIMENTAL SETUP

The experimental setup is depicted in Fig 3. A thin (350 microns thick) silicon wafer

is cooled at controlled temperature with a Peltier cell (RadioSpare : CP1.4-127-06L-RTV)

installed below, in contact with a heat dissipator and powered by a stabilised power supply.

Thermal contact between the silicon wafer and the Peltier cell is ensured with thermal paste.

The wafer temperature is controlled with a thermocouple in contact to the silicon wafer.

A vertical needle of diameter d=0.7 mm, placed a distance between 1 to 5 mm from above

the surface, pours the liquid at constant flow-rate, which eventually forms the growing drop.

The flow rate Q is controlled by a syringe pump (HARVARD APPARATUS B-67085) and

ranges between 10−11 to 10−8 m3s−1, or 0.01 µl/s to 10 µl/s. Two different liquids have

been used : water and hexadecane, which liquid density ρl, solid density ρs, viscosity η

and surface tension at T = Tm, γ, are respectively : ρl = 1000 and 774 kg.m−3 in liquid

phase, ρs = 917 and 833 kg.m−3 in solid phase, η = 1.793 10−3 and 0.003 Pa.s and γ =

0.07564 and 0.028 N/m. Their melting temperature Tm are respectively 273 K and 291.5 K

at atmospheric pressure. The thermal conductivity k of the solid, latent heat L and heat

capacity Cpl of the liquid are respectively 2.1 W/m/K and 0.15 W/m/K, 3.34×105 J/kg and

2.3×105 J/kg, 4185 J/kg/K and 2310 J/kg/K.

In order to prescribe different wetting conditions, the substrate can be chemically treated

with a grafting of a self-assembled monolayer (SAM) of a fluorosilane : 1H,1H,2H,2H per-

fluorodecyltrichlorosilane, hereafter denoted as PFTS, ensuring non-wetting conditions for

water and partial wetting conditions for hexadecane. This grafting with covalent bonds is

known to ensure a robust and durable coating, both mechanically and chemically. When

any sign of coating degradation was detected, we replaced the wafer with a new coating.

The time evolution of the shape is recorded with a side-view camera (Imaging Source

DMK 23U445), as in the sequence of Figure 1.

We identified three main control parameters that significantly influence the final shape

of the frozen drop: the substrate temperature Tp (through its difference with Tm, namely

∆T = Tm−Tp), the flow-rate Q and the initial contact-angle θ0. The injection temperature
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Ti was found to play no significant influence on the final frozen shape for both liquids, so

we opted to operate at ambient temperature (20◦C) for convenience.

A typical experiment begins after the drop has spread to its final basal radius R0, with the

solidification starting from the bottom in contact with the cold substrate. A solidification

front rising upwards is observed. The typical final height h of frozen drops is smaller than

roughly 5 mm. This maximal height is ruled by the limit situation occurring when the

thermal gradient ∇zT = Tm−Tp
h

becomes too weak to ensure the cooling and freezing of the

freshly poured liquid. Once the limit height is attained, the liquid that accumulated on top

is at some point going to flow down the solid by gravity. Before this limit height is reached,

the solidification front velocity decreases inside the droplet, following Stefan’s law1,28. The

remaining liquid on top of the solid, has a typical volume V , with V 1/3 < lc (where the

capillary length lc =
(
γ
ρg

)1/2

), so that its shape is ruled mainly by surface tension and

adopts that of a spherical cap. In the case of a relatively low flow-rate Q, the experiment

finishes when the solid front reaches the needle location. In the case of a relatively high Q,

the experiment ends when some liquid falls down the formed solid, breaking the axisymmetry

and preventing the further rise of the front. The typical timescale of experiments is between

10 and 30 s.

III. THEORETICAL MODEL

We present a theoretical model that predicts the shape of the ice drop, inspired from

Snoeijer and Brunet12. The front is assumed to be horizontal, see Fig. 3, while the re-

maining liquid sits on the solid puddle with an angle θ(z). We also assume that the heat

flux dominates mainly through the solid, and that the heat from the surrounding vapour

is negligible. The shape of the ice drop is entirely defined by R(z), as the shape remains

axisymmetric. Overall, this model includes no dynamics nor convection, only mass conser-

vation. In this sense, the ratio between liquid and solid density ν = ρs
ρl

has proven to be

a crucial quantity for the shape of the ice drop, in particular for the appearance of a final

pointy shape12,13, which is observed only for liquids expanding upon freezing (ν < 1) like

water.

Following the assumptions of figure 3, the model contains three geometrical quantities:

the liquid volume V (z), the radius of the ice/liquid interface R(z) and the contact angle of
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𝜽(z)
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V(z)

z z+dz
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Tp<Tm

z
.

FIG. 3. Geometrical model for the solidification of droplet with continuous feeding rate Q. The

liquid/solid interface is assumed to be flat, horizontal and the unfrozen liquid is assumed to adopt

the shape of a spherical cap. Consequently, the axisymmetric shape is entirely defined by R(z),

and the liquid drop forms an angle θ(z) = tan−1(− dz
dR) with the ice front.

liquid with ice θ(z). The assumption of a flat front was questioned in previous studies13,

and it turns out that a curved front intersecting the free-surface with a right angle was

more realistic to predict the final shape of pointy ice drops. In the present study though, a

flat horizontal front could fairly reproduce the experimental shapes. With millimeter-sized

drops, gravity can be neglected and the liquid that sits on the solid base, adopts the shape

of a spherical cap. Hence, the volume is given by:

Vsc

R3
=
π

3

(
2− 3 cos θ + cos3 θ

sin3 θ

)
(1)

From simple trigonometry, we relate R(z) and θ(z) as:

dz

dR
= − tan θ (2)

We now write the local relationship coming from the balance between the solidifying

liquid and the liquid brought by the injector Qdt. In the layer of thickness dz above the

solid front, the volume of freezing liquid is −νπR2dz. Taking dV (z) as the infinitesimal

variation of liquid volume when the front rises from z to z + dz, mass conservation yields:

dV

dz
= −νπR2 +

Q

ż
(3)
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with ż stands for the speed of the solidification front. This speed can be estimated by

the classical relationship deduced from the Stefan problem, assuming a constant and ver-

tical temperature gradient ∇zT = Tm−Tp
z

= ∆T
z

and considering that the temperature is

continuous at the solidification front, and equal to the melting temperature Tm:

ż =
k∆T

ρsLz
(4)

with k the thermal conductivity of the solid phase and L the latent heat. This Stefan

condition is deduced from energy conservation : indeed the amount of heat generated by

the phase change is balanced by the difference in heat flux from either side of the solid-

liquid front. The assumption of a linear temperature profile across the ice layer is justified,

considering that ice or solid hexadecane have a significantly larger conductivity (2.1 and

0.15 W/m/K) than that of ambient air (0.024 W/m/K). Now considering the liquid volume

as a function of R and z, we can write the differential equation of Vsc as:

dVsc

dz
= − 1

tan θ

∂Vsc

∂R
+
∂Vsc

∂θ

∂θ

∂z
(5)

With a bit of algebra, i.e. working out the partial derivatives with trigonometry

relationships12, equations (2), (3) and (5) can be simplified into a system of two coupled

differential equations for R and θ as:

dθ

dz
= − 1

R

[
(ν − Q

2πR2ż
)− (1− ν +

Q

2πR2ż
)(2 cos θ + cos2 θ)

]
(6)

dR

dz
= − 1

tan θ
(7)

Once the initial radius R0 = R(z = 0) and angle θ are fixed, the system of equations (6)

and (7) fully determines the shape of the solid drop R(z).

We solve this system of equations, numerically using Matlab. The computed shapes are

compared with experiments taking the same set of parameters In particular, we compared

shapes obtained with the two liquids (water and hexadecane), having different physical

properties, and in particular different values for the density ratio ν, respectively equal to

0.917 and 1.076. Hereafter, we show examples of experimental and computed shapes under

different sets of parameters (Q, ∆T and θ0).
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FIG. 4. Experimental and numerical shapes of a frozen drop. (a) Hexadecane with initial contact

angle θ0 = 40◦ and initial radius R0 = 1.71 mm. ∆T = 4 ◦C and Q=0.83 µl/s (b) Water with

initial contact angle θ0 = 120◦ and initial radius R0 = 2 mm. ∆T = 9 ◦C and Q=0.32 µl/s

IV. COMPARISON BETWEEN EXPERIMENTAL AND COMPUTED

SHAPES

Figures 4-(a) and (b) show typical examples of superimposed experimental and numerical

shapes, i.e. the dimensionless height z∗ = z
R0

versus dimensionless radius R∗ = R−R0

R0
,

with very good agreement between both. Error bars are due to the uncertainty in the

determination of the shape position, as the roughness of the solid-air interface diffuses the

light from the back. Figure 4-(a) corresponds to an initial condition with partial wetting

(θ0 ≤ π
2
), obtained with hexadecane on PFTS, and figure 4-(b) corresponds to a non-wetting

initial condition (θ0 ≥ π
2
) with water on PFTS, with other control parameters being specified

in the caption. It is remarkable that in both situations, dR
dz

changes sign above a critical

z. The situation of a drop freezing without additional liquid supply12, exhibits this change

of sign for θ0 ≥ π
2
, but not for θ0 ≤ π

2
. Hence, the resulting overhanging shape shown in

Fig. 4-(a) can be attributed to the continuous supply of liquid.

To check more quantitatively the influence of flow-rate Q, a series of experiments were

carried out over a broad range of values of Q, while keeping ∆T and θ0 constant. Results are

shown in Figure 5 for three values of Q, which again evidences a good agreement between
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FIG. 5. Experimental and numerical shapes of frozen ice (water) drops for different flow-rate Q,

with ∆T=9 ◦C and θ =120◦. The data points (experiments) and related plain lines (numerics)

correspond to : Q=0.16 µl/s (green) Q=0.32 µl/s (red) and Q=0.5 µl/s (blue)

the model and experimental results. These shapes also show that increasing flow-rate leads

to a broader, thicker shape for the frozen drop, which can sometimes be overhanging, for

large enough Q (here, the blue curve for Q=0.5 µl/s).

By a systematic comparison between experiments and numerics, we validate the model

over a large range of experimental parameters. Hence, we confidently addressed the calcula-

tion of the frozen shape and its systematic dependence on the different control parameters

mentioned above : Q, ∆T and θ0. The complexity of the shape makes it difficult to find a

relevant quantity to characterise it. We opted for two choices :

- the radius of the frozen shape at z = 2 mm. The choice was motivated by (a) that frozen

ice shape reaches this height for most parameters sets (i.e. before the supplied liquid from

the top falls down), and (b) that the influence of control parameters can be more sensitive

at relatively high z than in the first stages of the freezing. Furthermore, this value is close

to the capillary length of water (equal to lc = 2.76 mm at 273 K).

- the radius of the frozen shape at the highest inflection point zi of the curve R(zi),

i.e. where
(
d2R
dz2

)
z=zi

= 0 and the value of zi itself. This inflection point corresponds to the

steepest overhanging slope. This is also the moment when the radius slows down its increase
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FIG. 6. Calculated radius of the frozen drop (distilled water) at a height of 2 mm versus flow rate

for different values of ∆T . Other parameters are : θ0 = π/2, R0=1 mm.

FIG. 7. Calculated radius of the frozen drop (distilled water) at a height of 2 mm versus under-

cooling ∆T , for different flow-rates Q. Other parameters are : θ0 = π/2, R0=1 mm.

with z.

Figures 6, 7 and 8 are plots of R (z=2 mm) obtained from the numerical results of the

model. In Fig. 6, we addressed the influence of flow-rate on the radius, and as stated above

it turns out that thicker shapes are obtained for increasing Q, and the typical radius follows
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FIG. 8. Calculated radius of the frozen drop (distilled water) at a height of 2 mm versus (π − θ0)

and different values of ∆T . Other parameters are : Q = 0.1 µl/s, R0= 1 mm.

a power law R ∼ Qα, with the coefficient α ranging between 0.20 and 0.29. It is also

remarkable that the value of α is only slightly dependent on the undercooling ∆T .

Figure 7 presents the influence of ∆T on the typical radius. A stronger undercooling

leads to thinner shapes, which can be understood as that when ∆T increases, the supplied

liquid freezes more quickly and it is less susceptible to spread radially and inflate the shape.

Of course, this effect is more acute at smaller Q. The following power laws comes out from

the results : R ∼ (∆T )−β, with β ranges from 0.20 to 0.42 depending on the flow-rate.

Under the extreme situation of a very small Q (= 0.01 µl/s) and high ∆T (30◦C), the radius

can be smaller than 200 µm.

Figure 8 shows the dependence of the radius versus the angle (π−θ0), for different values

of ∆T . Under partial wetting conditions (π − θ0 ≥ 90◦), the initial angle has almost no

influence on R. Conversely, for non-wetting conditions (θ0 ≥ 90◦), the shape gets thicker for

increasing θ0. The higher the undercooling ∆T , the sharper the increase of R with θ0.

Now we consider the radius of the frozen drop at z = zi. Although being significant to

determine the location of the shape inflection, this height does not keep a fixed value over

the described ranges of parameters. First, let us determine the height zi versus Q and ∆T .

These values are plotted in figures 9 and 10.

Figure 9 shows the evolution of zi with Q, for different ∆T . For very small ∆T , zi
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monotonically decreases with Q following a power law zi ∼ Qα′
. The value of α′ roughly

equals −2
9
. For higher ∆T , zi first increases with Q then decreases for larger values of Q,

following a similar power law as the one for small ∆T , with an exponent of −2
9
. It is striking

that whatever the value of ∆T , zi keeps smaller than 2.6 mm, which is roughly the capillary

length lc for water.

Figure 10 presents the dependence of zi on ∆T . For low enough flow-rates (Q� 1 µl/s),

the typical height of the inflection point increases monotonically with ∆T , with an increase

becoming slighter at high Q. For higher Q (≥ 1 µl/s), the trend is different : zi first increases

with ∆T then decreases at higher ∆T (plot at Q = 1 µl/s), or even decreases monotonically

(plot at Q = 10 µl/s).

Obviously, the dependence of zi on the different experimental parameters, has significant

influence on the radius at zi, R(zi), giving trends which can be different from those related

to the radius at fixed height. Figure 11 shows R(zi) versus Q for different ∆T . Overall,

one notices a significant increase of the drop radius, which is sharper for lower Q, and that

converges to a plateau value (slightly lower than 2 mm) at higher Q.

In Figure 12, the evolution of R(zi) with ∆T is plotted. For high Q, the radius is almost

independent on ∆T and roughly equal to 2 mm, while it significantly decreases with ∆T at

smaller Q. Again, the competition between the freezing rate and the rate of liquid supply

is clearly illustrated here. While under a stronger undercooling, the liquid freezes before

accumulating on top, and hence the shape tends to be slender, the increase of Q makes this

shape being thicker and almost independent on ∆T .

V. DISCUSSION AND LIMITATIONS OF THE MODEL

The originality of the frozen shapes resulting from freezing under continuous liquid supply,

is their ability to take overhanging shapes. The reason appears in eq. (3) : in the absence

of liquid feeding (Q=0), mass conservation would simply lead to dV
dz
< 0, which corresponds

to R(z) decreasing with z. Conversely, in our situation the sign of dV
dz

depends on the value

of νπR2ż
Q

= νπR2k∆T
QρsLz

: if the ratio is ≤ 1, dV
dz
≥ 0 and conversely if the ratio is ≥ 1, dV

dz
≤ 0.

During freezing, the thickness of the frozen layer z increases from 0 up to a few mm, while

other quantities keep constant. Hence, dV
dz

should be negative during the first stages of

solidification (as z is very small) and become positive at large enough z, according to what
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FIG. 9. Calculated height of the highest inflection point zi, versus flow rate for the case of water

and different values of ∆T . Other parameters are : θ0 = π/2, R0=1 mm.

FIG. 10. Calculated height of the highest inflection point zi, versus undercooling ∆T , for distilled

water. Other parameters are : θ0 = π/2, R0=1 mm.

has been stated just before. Hence, there is an increase of the volume of liquid accumulating

on top and it leads to an increase of R(z) with z. To some extent, the increase of R(z)

should counterbalance the decrease of the thermal gradient ∆T/z as the freezing goes on.

This explains why overhanging shapes are observed. This is well captured by the model,

14



FIG. 11. Calculated radius of the frozen drop (distilled water) at zi, versus flow rate, for different

values of ∆T . Other parameters are : θ0 = π/2, R0=1 mm.

FIG. 12. Calculated radius of the frozen drop (distilled water) at zi, versus undercooling ∆T .

Other parameters are : θ0 = π/2, R0=1 mm.

according to the trends shown in the previous section.

However, the validity of the model is limited and two main situations have been found

to show discrepancies between the predicted and measured shapes :

a) when the supplied liquid does not stay on top of the already frozen shape and simply

15



flows down the foot of ice before it freezes. This is due to the limited power of the cooling

element, compared to the rate of liquid supply. Drops with very pronounced overhanging

shapes often constitute the first signs of this regime, which is out of the scope of the present

study.

b) with water only, sometimes recalescence occurs prior to the appearance of the ice-water

front, as observed in previous studies17,21. By recalescence, we denote the observation of a

sudden nucleation and expansion of frozen solid inside the drop which transforms the initial

liquid volume into an ice-water mixture within less than one second.

Situation (a) occurs in case of either too low undercooling ∆T , either too high flow-rate or

either of shapes which become too tall (too large aspect ratio z
R0

) : the model is then unable

to reproduce the observed shapes. We can roughly predict when the supplied liquid will

flow down before being frozen. From the rate of liquid poured from the injector during an

infinitesimal duration δt at ambient temperature Ti, we evaluate the heat transfer required

to cool it down Tf and the heat required to freeze it :

δHi = (ρsL+ ρlCpl∆Ti)Q δt (8)

where ∆Ti = Ti−Tm. We compare this heat with the flux through the solid across the area

πR2 :

δHf =
k∆T

z
πR2 δt (9)

Let us first remark that in δHi, the term of latent heat is generally dominant over that

of thermal capacity : it requires more heat transfer to freeze a given mass of liquid than

to put this liquid from ambient to freezing temperature. Quantitatively, we can evaluate a

Stefan number for the heat transfer in the liquid :

Ste =
Cpl∆Ti
L

(10)

which equals 0.25 for water and 0.015 for hexadecane at ambient Ti=20◦. Hence, for the

rough estimation of zmax we intend to make, we only keep the latent heat term in (8).

If we equal δHi and δHf , it yields :

ρsLQ '
k∆T

z
πR2
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which allows to determine a maximal height :

zmax =
k∆TπR2

ρsLQ
(11)

For typical values taken in experiments (∆T = 10◦, Q = 0.3 µl, R0 = 2 mm) and

assuming a rather constant radius (θ keeps constant, around 90◦), one finds : zmax = 2.7

mm for ice/water and 0.41 mm for hexadecane. This coarse prediction is consistent with

what is observed experimentally : hexadecane drops generally reach a maximal thickness of

freezing between 200 microns and about one millimeter (see e.g. Fig.2), . Water drops can

freeze to thicknesses up to 5 mm, also depending on Q and ∆T . Both frozen hexadecane and

ice drops eventually show the fluid accumulating on top and flowing down at some point.

For this reason also, it is almost impossible to experimentally obtain shapes with radius

larger than roughly 3 mm, as again gravity makes the liquid on top collapse and fall down.

Let us finally remark that to neglect the contribution of the cooling of the supplied liquid

should lead to slightly overestimate zmax, especially for water.

Let us now focus on the latter situation (b), for which a typical sequence is depicted in

Fig. 13. It shows that recalescence can appear and invade the liquid droplet during a typical

time scale of less than half a second, hence much shorter than the duration required for

the rise of the ice front. Indeed in the sequence, the ice front starts to appear roughly 5 s

after the initial time of recalescence, and reaches the top of the drop in about 100 s. Careful

observations of the drop before and after recalescence reveal that, apart that the inner liquid

turns opaque, the shape remains unchanged. Therefore, the density of this amorphous ice

should equal that of liquid water.

Nevertheless, the shapes computed by the model show significant discrepancy with the

experimental ones. Figure 14 shows the shapes in both liquid and frozen states. Also plotted

is the computed shape with the usual properties of water (plain green line) : the agreement

is fine only for z < 0.6 mm. The causes for the discrepancy remain unknown. In this case

though, we found out that the profile could be correctly fitted by taking a latent heat L as

a stepwise function of z. More precisely, we chose L equal to an arbitrarily small value (= 1

J/kg) for z < zc and L equal to that of water freezing (= 334 kJ/kg) for z > zc. The result

of the numerical calculation in this case is also plotted in Fig. 14.
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0 s 0.3 s

16.3 s6.4 s

1.1 s

65 s

Solid-liquid 
mixtureLiquid

FIG. 13. Sequence of recalescence within a drop (snapshots 2 and 3), observed before the ice-

water front appears at much longer times. The initial time corresponds to the first image where

recalescence appears. We note that the drop shape remains unchanged during recalescence.

FIG. 14. Drop profile of liquid drop before (green) and after (blue) the solidification. Distilled

water with initial contact angle θ = 125◦ and initial radius r = 2.15 mm. Q = 1.16 µl/s.

VI. CONCLUSIONS

The shape of a freezing sessile drop continuously fed from its top can be predicted with

a quasi-static model that includes mass conservation and heat transfer via the Stefan rela-

tionship. We carried out experiments with both water and hexadecane to validate it. The

predicted shapes show very good agreement with experimental ones providing two conditions

are fulfilled :

- the supplied liquid remains on top of the freezing solid and does not flow over it.

- there is no recalescence in the early stages of the drop freezing. This phenomenon oc-
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curring only for water, is avoided if undercooling is controlled and prevented, for instance by

adding tiny amount of salts either on the substrate or in the liquid. The reason why recales-

cence induces discrepancy between experiments and the model remains ill-understood. At

this stage, our experiments and numerical attempts suggest that the density of undercooled

water seems equal to that of amorphous ice formed after recalescence, and that the experi-

mental shapes are better fitted by taking the latent heat between water and amorphous ice

at a value much smaller that the usual one between water and cristalline ice.

Under most situations, the obtained shapes show overhanging geometry, for which we

quantified the dependence on the three main important parameters, namely the initial wet-

ting angle θ0, the difference between freezing temperature and substrate temperature ∆T

and the feeding flow-rate Q.

Finally, besides its fundamental frame, the present study could be of interest for various

applied or geophysical situations, for instance in additive manufacturing or to understand

the first steps of the formation of stalagmites. We hope that this will motivate further studies

with more complex - time dependent - liquid deposition and/or more powerful cooling that

could enable the observation of frozen shapes with higher aspect ratio, and possibly with

ripples like in some real stalagmites24–26.
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