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ABSTRACT 

The use of biobased monomers in emulsion polymerization arises as an attractive option for the 

synthesis of green polymers. Eugenol, a naturally occurring phenol, currently mainly produced 

from clove oil, but which could be also obtained by depolymerization of lignin, is an interesting 

molecule for the preparation of biobased monomers and polymers. Readily polymerizable 

functional groups can be easily introduced into its chemical structure through modification of the 

phenol group. In the present work, eugenol-based methacrylates have been used as monomers in 

emulsion radical polymerization with different initiation systems. Stable latexes of poly(ethoxy 

dihydroeugenyl methacrylate), poly(ethoxy eugenyl methacrylate) and poly(ethoxy isoeugenyl 

methacrylate) with particle diameter size in the range 45 nm - 71 nm were successfully obtained. 
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Glass transition temperatures of the resulting polymers ranged between 20 and 72°C. This study 

opens the way to the use of these new biobased monomers into latexes formulation for adhesives 

and coatings applications. 

INTRODUCTION 

Due to current environmental concerns and regulations, the use of biobased molecules derived 

from renewable sources to replace petroleum-based ones for the production of materials is 

strongly encouraged.
1,2

 Several recent reviews dealing with the use of such molecules in 

polymerization for the production of novel materials have been published.
3–7

 In many cases, the 

modification of the chemical structure of the biobased molecules is necessary to enhance their 

reactivity or permit their polymerization. For example, with regards to radical polymerization, it 

has been demonstrated that the double bonds present in certain fatty acids are not reactive 

enough and that phenol groups in tannins or lignin-based monomers act as inhibitors.
8,9

 Thus, 

several modifications have been performed to introduce radically polymerizable groups which 

are not widely present in biobased molecules.
10–13

 

Molecules derived from readily available and renewable biomass feedstock are of great 

advantage. One can indeed select building blocks from a vast array of functional molecules such 

as terpenes, vegetable oils, lipids, carbohydrates, proteins or lignin derivatives.
14

 Eugenol, is a 

naturally occurring phenol, obtained from several plants including clove buds, cinnamon bark, 

tulsi leaves, turmeric, pepper, ginger, oregano and thyme.
15

 It can also be obtained by 

depolymerization of lignin.
16,17

 Although depolymerization of lignin is not yet an efficient 

process, significant research efforts have been conducted in this field as it would offer the 

possibility to produce highly valuable molecules such as vanillin and eugenol in large quantities 

and with cost-efficient procedures.
18,19
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Due to the presence of several functional groups within its structure, eugenol is an attractive 

building block for biobased monomers. Readily polymerizable groups such as (meth)acrylates 

can easily be introduced in its chemical structure by modification of the phenol functional group, 

as previously reported by Rojo et al.,
20

 who functionalized eugenol to produce methacrylate 

derivatives for orthopedic and dental cements. These methacrylic eugenol-derived monomers 

were synthesized in two ways: first, via the incorporation of the methacrylic group directly onto 

the phenol by reaction with methacryloyl chloride leading to eugenyl methacrylate, and 

secondly, by introduction of an ethoxy spacer group to produce ethoxy eugenyl methacrylate. 

Both monomers were polymerized in toluene solution with 2,2’-azobisisobutyronitrile (AIBN) as 

the initiator. The resulting homopolymers were only soluble in organic solvent at low conversion 

(<10% monomer conversion). The polymerization proceeded primarily through the methacrylic 

double bond, but partial participation of the allylic double bond to the polymerization produced 

insoluble crosslinked polymers at higher conversion. Soluble copolymers of ethoxyeugenyl 

methacrylate and eugenyl methacrylate with ethyl methacrylate were also produced at low 

conversion. Deng et al. used eugenyl methacrylate in aqueous suspension polymerization using 

poly(vinyl alcohol) as stabilizer and AIBN as the initiator.
21

 In their work, the authors took 

advantage of the allylic double bond present in eugenyl methacrylate, which was envisioned as a 

difunctional monomer able to polymerize and crosslink the resulting polymer chains 

simultaneously. Microspheres with diameter ranging from 500 to 800 µm were obtained and 

their oil absorbency properties were studied for applications in environmental protection. 

Equally, isoeugenol and dihydroeugenol (the hydrogenated form of eugenol) are also 

interesting molecules for the development of biobased monomers, using the same strategy to 

introduce (meth)acrylate groups. Isoeugenol can be also obtained from clove oil
22

 and lignin.
23

 It 
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can also be synthesized via eugenol isomerization.
24

 As natural phenols, these molecules are 

potential substitutes for aromatic monomers. Recently, the synthesis of a platform of radically 

polymerizable (meth)acrylates derived from eugenol, isoeugenol and dihydroeugenol, has been 

reported by our group, and their solution homopolymerization was studied in toluene.
25

  

We believe that green chemistry principles should be implemented in the pursuit of sustainable 

biobased polymers. Not only the design of less toxic monomers and the use of renewable 

feedstock must be achieved, but less hazardous chemical synthesis and processes involving the 

use of safer solvents and reactants must also be implemented.
26,27

 The reduction of volatile 

organic compounds (VOCs) can be attained through environmentally friendly polymerization 

methods such as aqueous emulsion or suspension polymerizations. The use of water as the 

continuous phase has several advantages: it is an innocuous and non-flammable solvent; it 

reduces the viscosity of the reaction medium and improves heat transfer enabling easier reaction 

temperature control. Polymerization in aqueous dispersed media involves several related 

processes such as: emulsion polymerization, miniemulsion polymerization, microemulsion 

polymerization, dispersion polymerization, and suspension polymerization.
28–40

 Emulsion and 

suspension polymerizations processes are used at an industrial scale, whilst miniemulsion 

polymerization offers an alternative approach for very hydrophobic monomers; however, this 

technique has several constraints which hinders its wider industrial exploitation.
31,41

 Hence, 

emulsion polymerization of biobased monomers is gaining increasing interest in both the 

academic and the industrial communities and has recently been reviewed by our team.
13

 

In the present work, aqueous emulsion polymerization of biobased methacrylate monomers 

derived from eugenol, isoeugenol and dihydroeugenol (named EEMA, EIMA and EDMA 
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respectively, Figure 1) is explored for the first time as a greener route to biobased aromatic 

polymer latexes. 

 

Figure 1. Eugenol-derived methacrylates 

To the best of our knowledge, none of the monomers reported herein have been previously 

synthesized using the proposed synthetic pathway nor used in aqueous emulsion polymerization. 

Indeed, not only the synthesis of radically polymerizable biobased monomers was targeted but 

also their application in environmentally friendly processes such as aqueous emulsion radical 

polymerization. This study was conducted to assess the feasibility of this process with such 

biobased monomers under different experimental conditions, targeting potential applications in 

coatings and adhesives. 
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EXPERIMENTAL 

Materials  

Potassium persulfate (KPS, ≥99.0%, Aldrich), 4,4′-azobis(4-cyanovaleric acid) (ACVA, 

≥98.0%, Fluka), sodium dodecyl sulfate (SDS, >99%, Aldrich), 1,4-bis(trimethylsilyl)benzene 

(BTB, 96%, Aldrich), sodium metabisulfite Na2S2O5 (SMB, 99%, Aldrich), NaHCO3 (99.7%, 

Aldrich) were used as received. 2,2′-Azobis(2-methylpropionitrile) (AIBN, 98%, Fluka) was 

purified by recrystallization in methanol and dried under vacuum before use. Butyl acrylate (BA, 

≥99.0%, Aldrich) was distilled under vacuum prior to use. Deionized water (DIW) (1 μS cm
−1

) 

was obtained using a D8 ion exchange demineralizer from A2E Affinage de L’Eau. EDMA, 

EIMA and EEMA monomers were synthesized as described in a previous article from our 

group.
25

  

Methods  

General procedure for emulsion polymerization with thermal initiation using KPS at 

70°C (Scheme 1). The emulsion polymerization by thermal initiation was carried out in a 50 mL 

double-walled jacketed glass reactor with a U-shaped glass stirring rod. For a latex at 12.5-13.7 

wt% solids content, eugenol derived methacrylate (15 mmol) was placed in a glass vial and 

purged with argon for 15 minutes. 31.6 g of DI water, SDS (4 % wbm, weight based on 

monomer) and NaHCO3 (2.2 % wbm, 1:3.5 molar ratio KPS:NaHCO3), were placed in the 

reactor and degassed with argon for 30 min. The reactor was heated to 70°C. The degassed 

monomer was added to the reactor using a syringe and a degassed solution of KPS (2 % wbm) in 

4 g of DI water (out of the 31.6 g of DI water previously degassed with argon) was finally added. 

The reaction mixture was kept under a small flux of argon and mechanical stirring at 250 rpm. 
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Monomer conversion was followed through 
1
H-NMR using CDCl3 as deuterated solvent. 1,4-

bis(trimethylsilyl)benzene (BTB) was added as internal standard in the case of EEMA. 

Emulsion polymerization of EDMA with thermal initiation using KPS.  EDMA (4.183 g, 

15 mmol), DI water (31.642 g), SDS (0.168 g, 4 % wbm) and NaHCO3 (0.092 g, 2.2 % wbm) 

and KPS (0.084 g, 2 % wbm). 13.4 % solids content. 

Emulsion polymerization of EIMA with thermal initiation using KPS.  EIMA (4.179 g, 15 

mmol), DI water (31.647 g), SDS (0.167 g, 4% wbm) and NaHCO3 (0.093 g, 2.2 % wbm of 

monomer) and KPS (0.084g, 2 % wbm). 13.7 % solids content. 

Emulsion polymerization of EEMA with thermal initiation using KPS.  EEMA (4.152 g, 

15 mmol), DI water (31.679 g), SDS (0.177 g, 4.2% wbm) and NaHCO3 (0.092 g, 2.2 % wbm of 

monomer), BTB (0.181 g, 4.3 %wbm) and KPS (0.084g, 2 % wbm). 12.5 % solids content. 
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Scheme 1. Emulsion homopolymerization of eugenol-derived methacrylates using KPS thermal 

initiation at 70°C: A) EDMA, B) EIMA, C) EEMA. 

General procedure for emulsion polymerization with thermal initiation using ACVA at 

70°C (Scheme 2). The emulsion polymerization was carried out in a 50 mL double-walled 

jacketed glass reactor with a U-shaped glass stirring rod. For a latex at 12.5 wt% solids, the 

eugenol derived methacrylate (15 mmol) was placed in a glass vial and purged with argon for 15 

minutes. 31 g of DI water was mixed with NaHCO3 (1.2 % wbm, 1:2 molar ratio 

ACVA:NaHCO3) and 5 mL of the mixture were used to dissolve ACVA (2 % wbm). The 

remainder was mixed with SDS (4.2 % wbm), placed in the reactor and degassed with argon for 

30 min. The reactor was heated to 70°C. The degassed monomer was added to the reactor 
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through a syringe and ACVA was finally added. The reaction mixture was kept under a small 

flux of argon and mechanical stirring at 250 rpm. Monomer conversion was followed through 
1
H 

NMR using CDCl3 as deuterated solvent. 1,4-bis(trimethylsilyl)benzene (BTB) was added as 

internal standard in the case of EEMA. 

Emulsion polymerization of EDMA with thermal initiation using ACVA.  EDMA (4.170 

g, 15 mmol), DI water (31.859 g), SDS (0.175 g, 4.2 % wbm) and NaHCO3 (0.051 g, 1.2 % 

wbm) and ACVA (0.083 g, 2.0 % wbm). 12.5 % solids content. 

Emulsion polymerization of EIMA with thermal initiation using ACVA.  EIMA (4.142 g, 

15 mmol), DI water (31.104 g), SDS (0.177 g, 4.1 % wbm) and NaHCO3 (0.050 g, 1.2 % wbm) 

and ACVA (0.083g, 2.0 % wbm). 12.5 % solids content. 

Emulsion polymerization of EEMA with thermal initiation using ACVA.  EEMA (4.150 g, 

15 mmol), DI water (31.127 g), SDS (0.174g, 4.2 % wbm) and NaHCO3 (0.052 g, 1.2 % wbm), 

BTB (0.034 g, 0.83 % wbm) and ACVA (0.084g, 2.0 % wbm). 12.5 % solids content. 
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Scheme 2. Emulsion homopolymerization of eugenol-derived methacrylates using thermal 

ACVA initiation at 70°C: A) EDMA, B) EIMA, C) EEMA. 

General procedure for emulsion polymerization with redox initiation at 40°C (Scheme 3). 

The emulsion polymerization was carried out in a 50 mL double-walled jacketed glass reactor 

with a U-shaped glass stirring rod. Eugenol-derived methacrylate (15 mmol) was purged with 

argon for 15 min. KPS (2 % wbm) was dissolved in 12 mL of the DI water and placed aside. 

SDS (4.0 % wbm), NaHCO3 (1.6 % wbm, 1:2 molar ratio Na2S2O5:NaHCO3), Na2S2O5 (1.8 % 

wbm, 1.3 SMB/KPS molar ratio) and the rest of the water were mixed, placed in the reactor, and 
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purged with argon for 30 min. The reactor was heated to 40°C and the eugenol derived monomer 

was added. Finally, 4 mL of the previously prepared solution of KPS were added in one shot and 

this was considered as t = 0. The rest of the KPS was added over four hours at 2 mL/h. The 

polymerization proceeded under mechanical stirring at 250 rpm. Monomer conversion was 

monitored by 
1
H NMR using CDCl3 as deuterated solvent (50 µL of latex were mixed with 0.5 

mL of CDCl3 and 20 µL of solution 0.05 M of BTB used as external standard in deuterated 

chloroform). 

Emulsion polymerization of EDMA with redox initiation.  EDMA (4.177 g, 15 mmol), DI 

water (32.00 g), SDS (0.168 g, 4.0 % wbm), Na2S2O5 (0.077 g, 1.8 % wbm) and NaHCO3 (0.068 

g, 1.6 % wbm) and KPS (0.084 g, 2.0 % wbm). 12.5 % solids content. 

Emulsion polymerization of EIMA with thermal initiation with redox initiation.   

EIMA (4.147 g, 15 mmol), DI water (31.761 g), SDS (0.166 g, 4.0 % wbm), Na2S2O5 (0.075 g, 

1.8 % wbm) and NaHCO3 (0.0686 g, 1.6 % wbm) and KPS (0.083 g, 2.0 % wbm). 12.5 % solids 

content. 

Emulsion polymerization of EEMA with thermal initiation with redox initiation.  EEMA 

(4.159 g, 15 mmol), DI water (31.759 g), SDS (0.166 g, 4.0 % wbm), Na2S2O5 (0.076 g, 1.8 % 

wbm) and NaHCO3 (0.067 g, 1.6 % wbm) and KPS (0.083 g, 2.0 % wbm). 12.5 % solids 

content. 
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Scheme 3. Emulsion homopolymerization of eugenol-derived methacrylates using Na2S2O5/KPS 

redox initiation at 40°C: A) EDMA, B) EIMA, C) EEMA. 

Emulsion copolymerization of EDMA with butyl acrylate at 30 % solids content. 

The emulsion polymerization by thermal initiation was carried out in a 50 mL double-walled 

jacketed glass reactor with a U-shaped glass stirring rod. For a latex at 30 wt% solids, EDMA 

and BA were placed in a glass vial and purged with argon for 15 minutes. DI water, SDS (1.3 % 

wbm) and NaHCO3 (1.1 % wbm, 1:3.5 molar ratio KPS:NaHCO3), were placed in the reactor 

and degassed with argon for 30 min. The reactor was heated to 70°C. The degassed monomer 

was added to the reactor through a syringe and KPS (1 % wbm), previously dissolved in 4 g of 
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DI water (from the total weight) was finally added. The reaction mixture was kept under a small 

flux or argon and mechanical stirring at 250 rpm. 

Emulsion polymerization of 38 % wbm EDMA and 62 % butyl acrylate with thermal 

initiation with KPS.  EDMA (4.1753 g, 38 % wbm), butyl acrylate (6.8123g, 62 % wbm), DI 

water (26.50 g), SDS (0.1428 g, 1.3 % wbm) and NaHCO3 (0.1212 g, 1.1 % wbm) and KPS 

(0.1099 g, 1 % wbm). 30 % solids content. 

CHARACTERIZATION 

Nuclear magnetic resonance spectroscopy (NMR).  Monomer conversions were determined 

through the monitoring of the methacrylate double bond by 
1
H NMR spectroscopy with a Bruker 

Avance 400 MHz spectrometer at room temperature. The spectra were recorded by dissolving 

0.1 mL of latex in 0.5 mL of CDCl3 (when not indicated otherwise). 1,4-

bis(trimethylsilyl)benzene (BTB) was used as internal standard. 

Dynamic light scattering (DLS). Particle size measurements were performed by dynamic 

light scattering on a Vasco 3 nanoparticle size analyzer supplied by Cordouan Technologies at 25 

°C using the Cumulant model. Samples for DLS measurements were prepared by diluting one 

drop of latex with 5 mL of deionized water. The laser power, time interval, and number of 

channels were adjusted for each sample to obtain a good ACF (autocorrelation function). The 

presented results are the average of 5-10 measurements. 

Thermogravimetric Analysis (TGA). Thermogravimetric analysis was performed on 10–15 

mg samples on a TGA Q50 apparatus from TA Instruments from 20 °C to 590 °C, in an 

aluminum pan, at a heating rate of 10 °C/min, under nitrogen. Analyses were also performed 

with a PERSEUS® TGA 209 F1 Libra® from Netzch using a temperature ramp of 20°C/min 

from 20°C to 620°C under nitrogen flow of 40 mL/min in an alumina crucible. 
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Differential Scanning Calorimetry. DSC measurements were performed on 10–15 mg 

samples, under nitrogen atmosphere, with a Netzsch DSC 200 F3 instrument using the following 

heating/cooling cycle: first cooling ramp from room temperature (ca. 20 °C) to -40°C at 10 

°C/min, isotherm plateau at−40 °C for 10 min, first heating ramp from −40 °C to 170 °C at 20 

°C/min, cooling stage from 170 °C to−40 °C at 10 °C/min, isotherm plateau at−40 °C for 10 min, 

second heating ramp from −40 °C to 170 °C at 20 °C/min, cooling stage from 170 °C to−40 °C 

at 10 °C/min, isotherm plateau at−40 °C for 10 min, third heating ramp from -40 to 170º C and 

last cooling stage from 170 °C to room temperature (ca. 20 °C). Tg values are given from the 

evaluation of the third heating ramp. Calibration of the instrument was performed with noble 

metals and checked with an indium sample. 

Gel content measurements. The gel content of the polymers was measured by placing 

approximately 50 mg of dried polymer in a Teflon pocket which was subsequently immersed in 

10 mL of THF for 24 hours, then dried in a ventilated oven at 50°C for 4 hours. The gel content 

was calculated based on the initial (Wi) and final (Wf) polymer mass according to Eq. (1) below. 

               
      

  
                                                                                         

 

RESULTS AND DISCUSSION 

Synthesis of eugenol derived methacrylated monomers. 

Recently our team reported the synthesis of three eugenol-derived methacrylates and the 

results of their conventional radical polymerization in solution. The monomers were obtained in 

good yields (>70 %, up to 88 %) from a two-step synthesis consisting in the introduction of an 

ethoxy spacer group on the phenol of the molecule to increase the stability of the ester group of 

the methacrylate function (the direct eugenyl methacrylate is more prone to hydrolysis than the 
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ethoxyeugenyl methacrylate),
42

 followed by methacrylation using methacrylic anhydride at 25 ºC 

(Scheme 4). This synthesis pathway was adapted from our previous work on the 

functionalization of cardanol.
12 

 

Scheme 4. Synthesis of eugenol-derived methacrylates 

Emulsion homopolymerization of eugenol-derived methacrylates. 

The formulations were designed to have 2 % wbm of initiator (either KPS thermal peroxide 

initiation, ACVA thermal azo initiation, or SMB/KPS redox initiation), approximately 4-4.2 % 

wbm of surfactant (SDS), targeting approximately twice the value of the critical micelle 

concentration of SDS,
43

 and NaHCO3 as a buffer according to the initiator used (1.2 to 2.2 % 

wbm). The monomer conversion was monitored only by 
1
H NMR spectroscopy because 

thermogravimetric measurements were not suitable due to the high boiling point of the 

monomers. 
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As previously observed in our studies on the solution polymerization of the eugenol- and 

isoeugenol-derived methacrylates,
25

 the pendent chain comprising the allylic and propenyl 

groups were involved in secondary reactions during the course of radical polymerization, such as 

hydrogen abstraction (benzylic protons –Ar-CH2-CH=CH2 and propenyl protons –Ar-CH=CH-

CH3) and cross-propagation (allylic –Ar-CH2-CH=CH2 and propenyl –Ar-CH=CH-CH3 double 

bonds). However, in solution homopolymerization in toluene, we observed that high percentages 

of allylic and propenyl double bonds (91% and 85% respectively) were preserved.
25

 Here, 

keeping the highest amount of unreacted double bonds would also be beneficial to avoid 

extensive crosslinking during polymerization and to obtain functional latexes that could further 

undergo chemical reactions such as being photocured using thiol-ene chemistry for instance. 

This would allow tuning the properties of the coatings/adhesives after the synthesis of the 

latexes. 

The study of the behavior of the dihydroeugenol-derived methacrylate (EDMA) monomer in 

emulsion polymerization was thus carried out first as this monomer does not possess any double 

bond, leaving only benzylic protons –Ar-CH2-CH2-CH3 able to undergo degradative 

intramolecular or intermolecular chain transfer, thus limiting the risk of premature crosslinking. 

The first aqueous emulsion polymerization was performed using a thermal persulfate initiation 

(KPS, 70°C). The reaction reached 98% conversion after 5h (Figure 2), although it showed a 

rather long induction period (3h). This has been previously observed for hydrophobic monomers, 

that are in low concentration in the aqueous phase, leading the oligomeric radicals to undergo 

recombination or termination. Thus, radical entry rate coefficient is low, resulting in the 

induction period. This effect was reduced with non-ionic surfactants.
44

 A stable latex with a 

particle diameter size of ca. 63 nm was obtained (Table S1, Figure S1a). 
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Figure 2. Monomer conversion versus time of emulsion homopolymerization of EDMA 

After confirming the feasibility of emulsion polymerization with the monofunctional EDMA, 

the difunctional EIMA and EEMA monomers were polymerized following the same procedure. 

The final EEMA conversion was high, as checked by using BTB as internal standard. Both 

PEIMA and PEEMA homopolymers prepared by emulsion polymerization using KPS thermal 

initiation were crosslinked and insoluble in organic solvents (gel content > 96%, Table 1). In 

addition, after two weeks, the latex derived from EIMA coagulated, whilst that derived from 

EEMA sedimented. The particle diameter size of these latexes prior to coagulation and 

sedimentation was 70 nm and 104 nm for PEIMA and PEEMA respectively (Table S1, Figure 

S1b-S1c). The colloidal instability of these latexes was not further investigated. 

To minimize the secondary reactions that led to crosslinked polymers, a water-soluble azo 

initiator (ACVA) was used. Carbon-centered radicals produced by azo initiators are less likely to 

abstract hydrogen atoms than oxygen-centered radicals produced by thermal decomposition of 

KPS.
45,46

 Emulsion polymerization using this initiation system was first performed with EDMA 
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(Figure 2). In this case, there was no induction period. The resulting PEDMA latex was stable 

and the particle diameter was about 64 nm (Table S1, Figure S4a). The same procedure was 

carried out with EIMA and EEMA. However, under these conditions, EIMA polymerization also 

led to organic solvents-insoluble polymer as with KPS initiation, indicating pronounced 

crosslinking, due to secondary reactions such as cross-propagation reaction between 

methacrylate and propenyl double bonds. The resultant PEIMA latex was stable with a particle 

size of 45 nm (Table S1, Figure S4b, Figures S10-S11). In contrast, the emulsion polymerization 

of EEMA with ACVA showed a soluble fraction of PEEMA in CDCl3 during the 
1
H-NMR 

monitoring. However, a high gel content of 98% was obtained. The PEEMA latex was stable 

with a particle diameter size of 57 nm (Figure S4c).  

In our previous studies, it was observed that the solution homopolymerization in toluene of 

EIMA proceeded faster than that of EEMA, and that EIMA propenyl double bonds were also 

more reactive than EEMA allylic double bonds.
25

 In spite of the secondary reactions, a high 

percentage of propenyl (85%) and allylic (91%) double bonds were left unreacted in solution 

polymerization.  

The presence of soluble polymer during the EEMA emulsion polymerization with ACVA and 

its lower Tg =27°C (Figure S17) in comparison to the Tg= 48°C (Figure S14) of the polymer 

obtained using KPS as initiator, suggest that the secondary reactions producing the crosslinking 

are not the same or do not occur in the same proportion with each initiator. This implied that the 

use of ACVA diminishes the secondary reactions leading to crosslinking. However, after drying, 

the latex displayed a gel content value of 98 %. Thus, the polymer suffers from further 

crosslinking, likely caused by the oxidation of the residual double bonds, as it was observed in 

vegetable oils previously.
47,48
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Moreover, as high gel content was obtained for EIMA emulsion polymerization using ACVA 

as initiator (with a Tg of more than 60°C for PEIMA with either KPS or ACVA, Figure S13 and 

S16), it could be equally considered that the extent of the secondary reactions leading to 

crosslinked polymers is not the same for EIMA and EEMA. It could be proposed that EIMA 

undergoes mainly cross-propagation through its propenyl double bond, leading to highly 

crosslinked polymers (as this cross-propagation reaction is not diminished using ACVA), while 

EEMA undergoes mainly allylic hydrogen abstraction (which is less favored with carbon-

centered radical from ACVA compared to oxygen-centered radicals from KPS as initiator). 

Furthermore, a redox initiation system was used at lower temperature, to avoid high 

temperatures likely promoting the secondary reactions which may lead to the crosslinking of the 

polymers. Thus, sodium metabisulfite and KPS at 40°C (as EIMA m.p.: 36°C) in a molar ratio of 

1:1.3 KPS/Na2S2O5 was used.
49,50

 As for the KPS-initiated polymerizations, the first monomer to 

be tested was EDMA. In this case, the polymerization reached full conversion after 3h and no 

induction period was observed (Figure 2, Figure S23). A stable latex with particle diameter size 

of 71 nm (Table S1, Figure S7a) was obtained. The same experimental conditions were then used 

with EIMA and EEMA. The polymerization proceeded to quantitative monomer conversion for 

the three monomers in 3 h, but the polymerization rate was slower for EEMA (Figure 3). 
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Figure 3. Monomer conversion versus time of eugenol-derived methacrylates in aqueous 

emulsion homopolymerization using redox Na2S2O5/KPS initiation at 40°C. 

These polymerization conditions with SMB/KPS redox initiation resulted in quantitative 

conversions (Figures S21-S22) but high gel content (Table 1), with particle diameter of 163 nm 

for PEIMA (Figure S7b) and 53 nm for PEEMA (Figure S7c). Due to the high gel content, it was 

not possible to quantify the consumption of abstractable protons nor the consumption of the 

propenyl or allylic double bonds of EIMA and EEMA respectively. The polymerization of EIMA 

proceeded at a similar rate to that of EDMA while that of EEMA was much slower. This 

suggests that a degradative chain transfer reaction (decrease of the number of propagating 

radicals) occurred in the case of EEMA and that such transfer reaction did not occur (or to a 

much lower extent) in the case of EIMA. It is important to note that the radical formed by 

hydrogen abstraction of the allylic protons of EEMA is very poorly reactive as it is highly 

stabilized through resonance. Both PEEMA obtained with ACVA and Na2S2O5/KPS initiation 

system showed a low Tg=27°C (Figure S17) and Tg=23°C (Figure S20) respectively. This reflects 
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that, although the product is insoluble, the crosslinking density is not as high as in the PEIMA 

latexes (Tg PEIMA ca. 60°C, Figure S16 and Figure S19).
51,52

 

Furthermore, thermogravimetric analyses show that the decomposition temperatures Td,5% for 

PEIMA and PEEMA (Figures S25-S26), according to the initiation systems, decrease in the 

following order: KPS > ACVA > Na2S2O5/KPS. The thermal stability of polymers has been 

proved to increase as crosslinking density increases,
53,54

 thus higher crosslinking due to 

secondary reactions would be expected from emulsion polymerization using KPS at 70 °C as 

stated above.  
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Table 1. Polymer characterization 

 

 

 

 

 

 

 

 

 

 

 

  

Monomer Initiator 

Monomer 

conversion 

(%) 

pH 

Particle 

diameter 

Di (nm) 

Colloidal 

stability 

Gel 

Content 

(%) 

Tg 

(°C) 

 

Td,5% (°C) 

EDMA 

 

KPS (70°C) 100 8.9 63 Yes 1 26 247 

ACVA (70°C) 99 6.3 64 Yes 0 20 265 

NaS2O5/KPS 

(40°C) 
100 2.4 71 Yes 

0 28 
284 

EIMA 

 

KPS (70°C) ND 9.7 70 No 99 72 293 

ACVA (70°C) ND 6.4 45 Yes 74 63 289 

NaS2O5/KPS 

(40°C) 
99 2.4 163 No 

99 61 
237 

EEMA 

 

KPS (70°C) 79 8.9 104 No 96 48 297 

ACVA (70°C) ND 8.5 57 Yes 98 27 265 

NaS2O5/KPS 

(40°C) 
99 3.8 53 Yes 

89 23 
229 
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A latex with a higher solids content (30%) was also synthesized. The comonomer used was 

butyl acrylate. The Fox equation (Eq. 2) was used to calculate the proportion of monomers to be 

used in the formulation to reach a Tg of -28°C, considering Tg (PBA)=- 53°C
55

 and 

Tg(PEDMA)= 26°C (this work, Table 1). 

 

  
 

  

   
 

  

   
                                    

From a monomer mixture of 38 wt % EDMA - 62 wt % BA, a stable latex was obtained with a 

particle diameter size of 112 nm. After 2 h of reaction, the poly(EDMA-co-BA) copolymer was 

insoluble in organic solvents, as usual for acrylate based latexes. A film forming latex was 

obtained with a Tg=-23 °C.  

 

CONCLUSIONS 

The aqueous emulsion radical homopolymerizations of ethoxy dihydroeugenyl methacrylate 

(EDMA), ethoxy eugenyl methacrylate (EEMA) and ethoxy isoeugenyl methacrylate (EIMA) 

were successfully carried out and yielded colloidally stable biobased latexes of particle diameters 

of about 45-71 nm. These emulsion polymerizations did not require the use of large quantities of 

surfactants or of low CMC surfactants as is sometimes required for very hydrophobic 

monomers.
56

 Emulsion polymerization with ACVA resulted in stable latexes for the three 

monomers. Moreover, it was possible to observe a decrease in the Tg of PEEMA prepared using 

ACVA (T g= 23 °C) in comparison to the PEEMA obtained using KPS as the initiator (Tg = 48 

°C). This indicates that ACVA as the initiator could decrease the secondary reactions leading to 

crosslinking. During SMB/KPS redox emulsion polymerization at 40 °C, EEMA presented the 

lowest rate of polymerization compared to EDMA and EIMA, possibly due to hydrogen 
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abstraction as secondary reaction, leading to a very stable allylic radical not prone to propagate. 

Moreover, although quantitative conversion was reached for all monomers, the lower Tg values 

for PEEMA compared to PEIMA (23 ºC and 61 ºC respectively) suggested that the main 

secondary reaction in the case of EIMA is cross-propagation, leading to highly crosslinked 

PEIMA polymers while a degradative chain transfer reaction is the main secondary reaction 

during EEMA redox polymerization, leading to less crosslinked PEEMA polymers.  

A stable poly(EDMA-co-BA) copolymer latex at 30 % solids content, with film-forming 

properties (Tg = -23 °C), has also been successfully synthesized. These results open the way to 

aqueous emulsion copolymerizations of EEMA or EIMA (bearing an allylic or propenyl double 

bond, respectively) with commercial monomers to produce functional biobased reactive latexes 

for adhesives and coatings formulations.  
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SYNOPSIS 

The article presents the aqueous radical emulsion polymerization of three eugenol-derived 

monomers as an option to produce biobased latexes. 
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