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Abstract

The stability of social relationships is important to animals living in groups, and
social network analysis provides a powerful tool to help characterize and under-
stand their (in)stability and the consequences at the group level. However, the use
of dynamic social networks is still limited in this context because it requires long-
term social data and new analytical tools. Here, we study the dynamic evolution
of a group of 29 Guinea baboons (Papio papio) using a dataset of automatically
collected cognitive tests comprising more than 16M records collected over 3 years.
We first built a monthly aggregated temporal network describing the baboon’s co-
presence in the cognitive testing booths. We then used a null model, considering the
heterogeneity in the baboons’ activity, to define both positive (association) and neg-
ative (avoidance) monthly networks. We tested social balance theory by combining
these positive and negative social networks. The results showed that the networks
were structurally balanced and that newly created edges also tended to preserve
social balance. We then investigated several network metrics to gain insights into
the individual level and group level social networks long-term temporal evolution.
Interestingly, a measure of similarity between successive monthly networks was able
to pinpoint periods of stability and instability and to show how some baboons’ ego-
networks remained stable while others changed radically. Our study confirms the
prediction of social balance theory but also shows that large fluctuations in the num-
bers of triads may limit its applicability to study the dynamic evolution of animal
social networks. In contrast, the use of the similarity measure proved to be very
versatile and sensitive in detecting relationships’ (in)stabilities at different levels.
The changes we identified can be linked, at least in some cases, to females changing
primary male, as observed in the wild.

INTRODUCTION

The stability of social relationships is important to group living animals and
is a significant aspect of social structure (Hinde, 1976). In primates societies for
instance, stable and long-lasting relationships can enhance individuals fitness (Silk,
2007; Silk et al., 2010; Alberts, 2019) through offspring survival (Silk et al., 2003,
2009) and reproduction (Schülke et al., 2010). There is also evidence that disruption
of social stability can have negative consequences, in zebra finches for instance, see
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(Maldonado-Chaparro et al., 2018). Despite the benefits of stability in relationships,
natural processes such as demography naturally bring changes in social relationships
(Shizuka and Johnson, 2019): individuals thus adapt and flexibly change their social
strategies on different timescales depending on context, from a daily basis (Sick
et al., 2014), to seasonal (Henzi et al., 2009) to several years (Silk et al., 2010).
The relationship changes, which can be based for instance on factors such as genetic
relatedness (Beisner et al., 2011) and personality (McCowan et al., 2011), can in
turn give rise to stability or instability at the group level.

Social network analysis is a powerful tool to better understand the dynamic
changes in social relationships because it provides a conceptual framework that uses
dyadic interactions to infer social relationships and group level properties (Hinde,
1976; Hobson et al., 2013; Kurvers et al., 2014; Wey et al., 2008; Croft et al., 2008;
Krause et al., 2015; Whitehead, 2008; Webber and Wal, 2019). To go further and
analyse the dynamic changes in social relationships and their consequences at the
group level, a dynamic social network analysis (dynSNA) approach is needed. How-
ever, the use of a dynamic network approach is still limited for non-human animals
(Pinter-Wollman et al., 2014). In many cases progress in this direction has been
hampered by the nature of the techniques used to gather social information (Farine
and Whitehead, 2015), although recent technological developments are starting to
provide automatically collected high-resolution data (Hughey et al., 2018).

The nature and evolution of each dyadic relationship could of course be studied
by itself: it can for instance be positive, negative, appear or disappear, and its
change in case of a social instability can be investigated. Studying each relation
in isolation however is not sufficient, as the evolution of a dyadic relationship is
most often related to the other dyads of the group. To understand the evolution
of single dyads, the whole network evolution needs thus to be considered, as well
as the structures formed by dyads at various scales, such as triangles. Few tools
are however yet available to study network structures and their evolution at various
scales, from individuals’ dyadic relationships to intermediate scales and to the entire
social network. In the present work, our goal is to contribute to bridging this gap by
presenting analytical tools and a methodological framework to study the dynamics
of animal temporal networks and in particular to detect periods of stability and
instability.

The simplest social structures beyond dyadic associations involve three individ-
uals, i.e., triads, among which at most three links can exist. Triadic closure refers to
the fact that, if only two links are known to be present in a triad (e.g., between three
individuals A B and C, only the links AB and BC are known to exist), the third
link AC is predicted to exist as well or to appear in the future. This phenomenon
helps to characterize and predict the development of ties within a network and the
progression of its connectivity (Thurner, 2018; Rapoport, 1953; Granovetter, 1973).
Evidence of triadic closure in primates has been reported by Borgeaud et al. (2016)
in three groups of vervet monkeys, finding that two individuals are more likely to
be associated if they are both linked with a mutual third party associate. The
notion of triadic closure is however limited to binary associations (a link is either
present or not) and does not consider that links can be weighted or of different types
(see however Brandenberger et al. (2019) for a recent extension to multi-edge social
networks).

Triadic structures become richer when it is possible to assign signs (positive or
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negative) to the links of a social network, to denote on the one hand positive associ-
ations such as friendship or trust, and on the other hand antagonistic relationships
such as dislike, distrust or aggression. In this case, social balance theory (Heider,
1946, 1958; Wasserman and Faust, 1994; Cartwright and Harary, 1956) provides a
theoretical framework to understand the dynamic (in)stability of signed social net-
works by studying the closed triangles, which have each either 0, 1, 2 or 3 negative
links (see Fig. 1). In its strong formulation, social balance theory states that a
triangle is balanced if all three links are positive (the three nodes are all "friends"),
or if two links are negative and one is positive (two "friends" are "non-friends" with
the third). The remaining two configurations (either three negative links or two
positive links and one negative, see Fig. 1) are called unbalanced and are considered
to be a symptom of tension and social stress. For instance, the configuration with
two positive links and one negative is in contradiction with the common belief that
"a friend of a friend is a friend". A network should thus tend towards more balanced
configurations (KuŁakowski et al., 2005; Marvel et al., 2011) as, in Heider’s words,
"If no balanced state exists, then forces towards this state will arise". Studying
social balance is therefore an interesting direction for investigating the dynamics of
social networks, as the numbers of balanced and unbalanced triads could be expected
to be predictors of changes and instability.

Figure 1: Principle of social balance theory. We show the four possible signed triads. In the
original "strong" formulation of the social balance theory, two triads are balanced (B) and two
are unbalanced (U). In the "weak" formulation put forward by Davis (1967), triangles with three
negative edges are also considered balanced because such configurations can arise when more than
two subgroups exist within the social network under consideration.

Social balance theory has received a lot of theoretical attention (Marvel et al.,
2011; KuŁakowski et al., 2005) but relatively little empirical validation in human
social networks (Doreian and Mrvar, 1996, 2009; Szell et al., 2010; Leskovec et al.,
2010; Thurner, 2018). This is most probably due to the difficulty in defining signed
social networks, i.e., in having information on both affiliative (positive) and antag-
onistic (negative) ties between individuals. The study of social balance theory in
non-human animals is even more difficult, as their social networks are often built us-
ing only information of positive nature (such as proximity) and avoidance behaviour
is difficult to observe and ascertain. We know of only one study that explicitly
tested social balance in a wild, non-human system. In social rock hyrax (Procavia
capensis), Ilany et al. (2013) considered two individuals who did not share a posi-
tive interaction within a year to be ’nonfriends’ (negative link), and individuals who
shared at least one positive interaction to be friends (positive link). By counting the
number of balanced and unbalanced triangles, the authors confirmed the predictions
of social balance theory in its strong version. They also showed that unbalanced
triangles tended to change to become balanced, as predicted by the theory, but that
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some level of imbalance remained in the network, mostly due to new individuals
entering the group and forming unbalanced structures.

Social balance theory provides a very interesting framework as it formulates
predictions both on the state of a social network and on the evolution of structures
involving three individuals. However, it is limited to the smallest structures beyond
dyads, namely triads. More flexible approaches to characterize dynamic changes
across different levels of description of the social network (pairs, triads, subgroups
of individuals, entire network) are thus needed and have started to be developed in
the context of temporal networks (Holme, 2015; Fournet and Barrat, 2014; Darst
et al., 2016; Croft et al., 2016; Farine, 2018). Temporal networks representations
of the evolution of social relationships are often composed of successive snapshots
corresponding to the relationships observed or measured in successive time windows
(e.g., successive weeks or months), and tools to detect changes between these time
windows are typically based on measures of similarity between networks. Such
measures can be used to detect the multiple time scales on which a network changes
(Darst et al., 2016); they can highlight abrupt changes of the network structure, or
on the contrary periods during which the structure remains stable. They are also
easily generalised to weighted networks (Fournet and Barrat, 2014) and quantify the
amount of structural and weights change of the network.

To develop data-driven investigations of dynamic social networks in animals,
primates are particularly useful because many non-human primates have highly de-
veloped social relationships. For instance, they can use deceptive tactics (Whiten
and Byrne, 1988), be prosocial (Claidière et al., 2015), understand other’s intentions
(Tomasello et al., 2005) and can evaluate the potential helpfulness of others (An-
derson et al., 2013). Moreover, these social relationships are both structured and
flexible. In our study species for example, Guinea baboons (Papio papio) exhibits
complex social relationships and a multilevel social organization. The core unit of
Guinea baboon’s society is one primary male with 1−4 females and their offsprings;
several core-units form parties, which form larger assemblies called gangs (Patzelt
et al., 2014).

Males form strong bonds predominantly within parties; these bonds are not cor-
related with genetic relatedness and males are highly tolerant of each other (Patzelt
et al., 2014). Moreover, a recent study found that the social structure was flexible,
with half of the females of a group having changed primary male at least once in 17
months (Goffe et al., 2016), a behaviour also observed informally in our study group.
Overall, a single group of individuals is thus in fact composed of multiple core units
with a certain diversity of social structures, and the social network describing this
social structure changes spontaneously. These characteristics make Guinea baboons
ideal to study dynamic changes in social relationships.

In the present study, we leveraged a long-term dataset with high temporal reso-
lution collected automatically on a group of Guinea baboons. We developed general
analytical tools that can be used to study the structure and temporal evolution of
non-human animal networks, with a particular emphasis on detecting the periods
of stability and instability in the social network evolution (both at the individual
and global level). We first put forward a systematic way to use the data to generate
signed social networks among the individuals: to this aim, we defined both affiliative
(positive) and antagonistic (negative) links between individuals, by comparing the
data to a suitable null model (Manly, 1997; Bejder et al., 1998; Farine, 2017).
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This allowed us to investigate social balance theory in the social network of these
non-human primates. We then considered various methods to detect changes in the
network structure, either using tools linked to social balance theory, such as counts
of the numbers of triangles and triangle creations, or through quantitative similarity
measures between networks built in successive periods. In particular, the similarity
metrics we considered allowed us to investigate the rearrangements of the network at
various scales. It can indeed be measured at the scale of the whole network but also
at more detailed levels such as subgroups or for each single individual. We highlight
in particular how the local ego-network of some individuals could be completely
altered while others were left unchanged, with only partial rearrangements of the
overall social network. Notably, some of the periods of interest and rearrangements
of the ego-network of some individuals revealed by this analysis were confirmed by
external observations.

METHODS

Participants
Between January 2014 and May 2017, 29 Guinea baboons (Papio papio) be-

longing to a large social group of the CNRS Primate Center in Rousset-sur-Arc
(France) participated in cognitive tests using Automatic Learning Devices for mon-
keys (ALDM). The size of the group varied from 19 to 24 individuals, because of
several births and natural deaths during these years. The monthly average size was
of 21.8 individuals with 7.3 [7; 9] males and 14.4 [12; 17] females (mean [min; max]),
with age ranging from 0 to 21 years old. The baboons were all marked by two bio-
compatible 1.2× 0.2 cm RFID microchips injected into each forearm to individually
identify each participant.

Ethical note
The baboons lived in an outdoor enclosure (700m2) connected to an indoor area

that provided shelter when necessary. The outside enclosure was connected to ten
testing booths freely accessible to the animals at any time where they could volun-
tarily perform ALDM tests. This procedure reduces stress levels (Fagot et al., 2014).
Water was provided ad libitum within the enclosure, and they received their normal
ratio of food (fruits, vegetables, and monkey chow) every day at 5 pm. The baboons
were all born within the primate centre. This research was carried out in accordance
with French standards and received approval from the national French ethics com-
mittee, the "Comité d’Ethique CE-14 pour l’Expérimentation Animale" (approval
number APAFIS#2717-2015111708173794). Procedures were also consistent with
the guidelines of the Association for the Study of Animal Behaviour.

ALDM data
ALDM database. The dataset analysed here contains all recorded cognitive tests
performed by the group of baboons in a facility developed by J. Fagot (Fagot and
Bonté, 2010; Fagot and Paleressompoulle, 2009). In this facility baboons can freely
access 10 workstations installed in two trailers (5 workstations in each trailer) con-
nected to their enclosure. Each workstation is constituted of a test chamber with
open rear side and transparent sidewalls. The front of the test chamber is fitted with
a view port and two hand ports. By looking through the view port, participants can
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interact with an LCD touch screen installed at eye level and whenever a monkey
introduces its forearm through one arm port, its RFID identity is recognized and
triggers the presentation of the cognitive task on the touch screen. For each test,
the date and time (with millisecond precision), the nature of the task, the name,
age, sex and maternal family of the individual performing the test, and the iden-
tification number of the workstation in which the individual performed the test, is
recorded. The system provides rewards in grains of dry wheat, delivered through a
food dispenser, whenever the baboons succeed at the task.

Crucially, in the ALDM system the monkeys cannot see each other’s screen (ob-
servational learning is thus impossible), but they have visual access to each other in
neighbouring workstations through their transparent sides: they can thus approach
booths together and see each other during the tests, meaning that co-presence may
be interpreted as association. In fact, Claidière et al. (2017) recently showed that
the timings of cognitive tests could be used to construct a social network of baboons
highly similar to the one obtained from behavioural observations.

The data covers the period from January 2014 to May 2017. The facility was
however closed in the months of August 2014 and 2015, which are thus missing
from the data. Furthermore, two individuals were born in May 2017 so they do not
appear in some of the analysis (e.g., in the measures of stability from one month to
the next).

The data analysed here concern a total of 16 403 680 cognitive tests, representing
an average of 13 186 records a day over 1 244 days, and an average of 565 640 records
per individual. The duration of a single bout of trials (i.e. a succession of trials of
a given individual separated by less than 5 seconds) was on average 60 seconds.

Construction of the co-presence network: from raw data to monthly networks. Using
the ALDM dataset we built a temporal co-presence network based on the temporal
and spatial proximity of the baboons (see Fig. 2). To this aim, we first aggregated
the raw ALDM data in successive temporal windows of ∆t = 5 seconds: this interval
length was short enough to consider that the individuals performing tests in the same
time window were in co-presence, and long enough to have a sufficient number of
co-presence events. This interval length was also used by Claidière et al. (2017), and
we show in the Appendix that our main results are robust with respect to changes
in ∆t. Note that a single co-presence event lasting for instance 1 minute gave rise to
12 successive time-windows in which the individuals were detected in co-presence.

For each time window, we built a proximity network in which nodes represented
baboons, and a link was drawn between two individuals if their presence had been
recorded in two adjacent booths. We then aggregated these proximity networks on
a monthly timescale, shown by Claidière et al. (2017) to correspond to an adequate
aggregation timescale: in each monthly network, nodes represented baboons and a
weighted link between two baboons represented that they had been in co-presence
at least once; the weight of the link corresponded to the number of time windows in
which co-presence of these individuals had been recorded (i.e., the weight represented
the total co-presence time, in units of 5 seconds).

Constructing a null model for the co-presence monthly network. We considered the
ALDM data of each month, which consists of the list of tests performed in that
month, with for each test the date, identity of the individual performing the test and
identification of the workstation (see above). In this list, we reshuffled the identities
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Figure 2: Sketch of the construction of the co-presence network Top: Schematic of the
network construction from the ALDM dataset. In each time-window of ∆t = 5 seconds, links were
created between individuals (nodes) if they were recorded in adjacent workstations, as depicted in
the middle drawings: links AB and BC in the first time-window, and AB and AD in the second.
Afterwards, the instantaneous networks were aggregated to produce a weighted co-presence network
(bottom sketch).

of the individuals among the tests, swapping all observations at once and keeping the
number of occurrences of each individual. This procedure ensured that the frequency
of participation of each individual and the spatial and temporal organisation of the
trials were preserved for each month in the null model (Manly, 1997; Bejder et al.,
1998; Farine, 2017). We then used the randomized data to create a weighted co-
presence network as previously. We performed the randomization procedure 100
times. Comparison of the co-presence networks with these randomized data allowed
us to build monthly signed networks from the ALDM data as described below in
Results.

Network metrics and evolution measures
A large variety of metrics have been defined to describe the nodes of a network

and the network as a whole. The simplest metric to characterize a node is given
by its degree, i.e., the number of links to which it participates or in other words
its number of neighbors. Going beyond dyads, the clustering coefficient of a node
quantifies the cohesiveness of its neighborhood; it is defined for node i as

ci =
∆i

ki(ki − 1)/2
, (1)

where ki is the degree of node i, ∆i is the number of closed triangles ijk to which
i participated (i.e., such that all links ij, ik and jk exist), and the denominator
gives the maximum possible number of such triangles, ensuring that ci is bounded
between 0 and 1. The average clustering coefficient of a network is then simply
the average of ci over all the nodes. The transitivity of a network (Wasserman and
Faust, 1994) is also often used and gives a global quantification of its cohesiveness
through the ratio of the number of closed triangles divided by the number of triads.

Balanced and unbalanced triangles. To validate social balance theory, we counted
the triangles of each of the four possible types (see Fig. 1) in each monthly signed
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social network obtained from the ALDM data. Moreover, we compared the results
in each case to a null model in which the signs were reshuffled among the links,
to check whether the balanced triangles were over-represented and the unbalanced
ones under-represented with respect to this null model.

Triadic closure events. In social networks, a group of three individuals A,B,C such
that A and C are both friends of B are called a triad centered at B. The triad is
open, forming a "wedge", if the link from A to C is missing. The process of closing
an open triad to create a triangle is called triadic closure and is a well-known
mechanism of evolution of social networks (Rapoport, 1953; Granovetter, 1973). In
signed networks with positive and negative links, there are three possible wedge
types: ++, +− and −− (Thurner, 2018). To investigate the dynamic aspects of
social balance, we considered the triadic closure events between successive months,
in which an open "wedge" in a month t became a closed triangle in the following
month t + 1. We thus counted, for each wedge type in month t, how many became
triangles of each of the four possible types (Fig. 1) and thus whether closing wedges
became preferentially balanced or unbalanced triangles (Szell et al., 2010).

Cosine similarity measure. The cosine similarity (Singhal, 2001) is a measure defined
between two vectors. It is bounded between −1 and +1, taking a value of 1 if
the vectors are identical, a value of −1 if they are opposite, and 0 if they are
perpendicular. In the case of temporal networks, let us consider a node i and two
different months t1 and t2. We denote by w

(t1)
ij and w

(t2)
ij the weights of the links

between individual i and its neighbours j in months t1 and t2, respectively. The
local cosine similarity between months t1 and t2 is then defined for the ego-network
of node i as:

CSt1,t2(i) =

∑
j w

(t1)
ij w

(t2)
ij√∑

j

(
w

(t1)
ij

)2√∑
j

(
w

(t2)
ij

)2 . (2)

It is thus equal to 1 if i not only has the same neighbours at t1 and t2 but also divides
its co-presence time between them in the exact same way. It is equal to 0 if i has
disjoints sets of neighbours in months t1 and t2. Note that, if all links are positive,
the cosine similarity is bounded between 0 and 1. Overall, an individual whose
ego-networks changes strongly between t1 and t2 will have a low cosine similarity,
whereas individuals whose ego-network is similar in both months will be associated
with a high cosine similarity. The cosine similarity values between months therefore
follow the evolution of the (in)stability of the considered ego-network over time and
we used the average value over all individuals as a global measure of the network’s
stability between two months.

We calculated the cosine similarity for every individual and for every pair of
months. For each pair of months, we computed the average of the obtained values
over all individuals present in both months, to obtain a first global characteriza-
tion of the network rearrangements between two months. We then considered the
whole histograms of the values for all nodes, to characterize the heterogeneity of the
amount of changes observed in the ego-networks of different individuals. Finally, we
considered "trajectories" of change for each individual, by computing CSt,t+1(i) for
all t, i.e., by following for each individual the amount of change of its ego-network
from one month to the next.
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Behavioural data
Observations. We used the behavioural observations described by Claidière et al.
(2017) and recorded between July 1st and July 29th, 2014. During that time, the
group included 22 individuals, 7 males (mean age = 62 months, SD = 33) and 15
females (mean age = 124 months, SD = 75) ranging from 24 to 226 months. Obser-
vations were carried out by four trained observers using scan-sampling (Altmann,
1974). The data contained 210 behavioural observations per monkey per day during
the study period, for a total of 79 380 observations for the 22 individuals. For our
study, we decided to focus solely on grooming as it is known to be a bonding activity
in primates and therefore to represent affiliative relationships accurately (Seyfarth,
1977). More details on the behavioural observations can be found in (Claidière et al.,
2017).

Construction of the grooming network. We used the number of grooming events
observed between a pair of individuals during the observation month (July 2014) to
build a weighted and undirected network. This network was then compared to the
proximity network based on ALDM data of the same period. This network resulted
in 216 links. A fully connected network with the same number of nodes would have
had 231 links. The weights (i.e. number of grooming events per dyad) ranged from
1 to 778 and the average and the median were respectively 60.7 and 23.0.

ANALYSIS AND RESULTS

Our first objective was to use the ALDM data to build a signed social network for
the entire group. The co-presence network however contained only positive events
(proximity events), so that we first transformed it by a comparison with a suitable
null model. The definition of avoidance (negative) links made it possible to then
analyse social balance and triadic closure events. We finally focused on the temporal
evolution of the network using various network metrics, and showed how to study
it at various scales using similarity measures.

From weighted co-presence networks to affiliation and avoidance networks
A first analysis of the ALDM data revealed that the baboon’s frequency of par-

ticipation in cognitive tests was very heterogeneous (see Fig. 3a), as in Claidière
et al. (2017). This difference in participation could result in biased estimates of
link strength in the co-presence network defined in Methods, for simple statistical
reasons: individuals who are present more often in the ALDM booths have a larger
probability of being found in co-presence simply by chance, compared to individuals
who participate less frequently. To take this behavioural heterogeneity into account
and to determine which links could be interpreted as socially meaningful, we com-
pared the observed co-presence to a null model based on the random permutation of
the baboons’ names for each month analysed, as described in the Methods section:
this null model corresponds to the assumption that co-presence in the ALDM booths
was independent from social relationships.

The results showed that some links had weights compatible with the null dis-
tribution, but others had observed weights that were above the 95% confidence
interval of the null distribution (see Fig. 3b for illustrative examples), showing that
the corresponding baboons were found in co-presence much more frequently than
expected by chance, suggesting that they affiliated with each other. Interestingly,

9



Figure 3: From the weighted co-presence network to the signed social network. a) Bar
plot representing the number of cognitive tests performed by each individual in January 2014. b)
For a sample of 30 pairs of individuals, weights of the January 2014 co-presence network (blue
dots) and boxplot showing the distributions of weights for the same pairs in networks resulting
from the null model. In each box, the orange line marks the median and the extremities of the
box correspond to the 25 and 75 percentiles; the whiskers give the 5 and 95 percentiles of each
distribution.

some observed weights were significantly lower than expected by chance (below the
5th percentile of the null model distribution), showing that these baboons were in
co-presence much less often than predicted by chance: it was then natural to as-
sume that they were actively avoiding each other (see Bejder et al. (1998)). Note
that pairs with no co-presence events, i.e. which were not linked in the original
co-presence network, could be considered as avoiding each other if they were often
found in co-presence in the null model.

This comparison with a null model allowed us therefore to construct for each
month a new signed weighted network with both positive (affiliative) and negative
(avoidance) links. In this new network, the positive links were given by the co-
presence links with weights above the 95th percentile of the null model distribution.
The negative links on the other hand joined the pairs of baboons with weights below
the 5th percentile of the null distribution. Moreover, the weight of each link in the
new network was given by the z-score value of the original weight with respect to
the null model distribution (hence obtaining indeed positive values for the affiliative
links and negative values for the avoidance links). Finally, for each month we defined
the set of positive links as the monthly affiliative network and the set of negative
links as the monthly avoidance network.

Validation of the ALDM network with the grooming network
To validate the network obtained through the ALDM system, we compared the

network obtained from the ALDM data obtained during July 2014 to the one based
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Table 1: *
Correlation between grooming and co-presence networks

Timescale (days) Empirical value Mean of the random
distribution (90% CI)

3 0.257 0.065 (0.045-0.085)
5 0.309 0.066 (0.048-0.086)
7 0.309 0.069 (0.047-0.091)
10 0.396 0.094 (0.076-0.113)
14 0.330 0.079 (0.053-0.111)
18 0.413 0.105 (0.087-0.122)
21 0.431 0.104 (0.085-0.123)
25 0.389 0.094 (0.065-0.124)
29 0.473 0.121 (0.103-0.138)

Table 2: Pearson correlation coefficients between the grooming and co-presence networks cal-
culated for various aggregation timescales. The last column gives the mean and 90% confidence
interval of Pearson correlation coefficients computed between the co-presence affiliative network
and 1000 randomized versions of the grooming network in which the baboon names were randomly
reshuffled.

on grooming behaviour (see Methods). Since grooming is an affiliative behaviour,
we used as a measure of similarity the Pearson correlation coefficient between the
weights of the affiliative network (i.e., using only the positive links) and the weights
of the grooming network. In addition, as it is known that the choice of the
aggregation timescale can impact the characteristics of the network (Ribeiro et al.,
2013), we tested the robustness of the analysis by measuring the correlation between
the affiliative and the grooming networks on various timescales, ranging from 3 to
25 days within the same period (July 1-29, 2014).

Note that, for timescales T smaller than 14 days, we could define more than one
observation period of such length within the period of interest (July 1-29, 2014):
we thus divided the total dataset in successive time windows of duration T before
building the affiliative and grooming networks, computing the correlation between
their weights, and averaging over the time windows.

In addition, we compared the observed Pearson correlation to a null model based
on the random reshuffling of the baboon names in the grooming network. We sim-
ulated for each time window 1000 such randomized networks, computed for each
randomized network the correlation with the ALDM affiliative network, and built
the distributions of these Pearson correlation coefficients. The results (Table 2)
show that the observed Pearson correlation was well above the 95th percentile of
the random distribution for all the timescales considered. We also observe that the
correlation tends to increase for larger time windows, as also found by Claidière
et al. (2017), since more observational data is included and thus a more complete
view of the social network is obtained.

The correlation between the grooming and ALDM networks is an overall measure
of network similarity. Another well-known aspect of a social network’s organisation,
at an intermediate scale, is its community structure (Fortunato, 2010). We deter-
mined the community structure of the affiliative and grooming networks using the
Louvain algorithm (Blondel et al., 2008) implemented in the Gephi visualization
software (www.gephi.org, see also Bastian et al. (2009)). To compare the resulting
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partitions (see Fig. 4), we calculated the adjusted Rand Index (ARI; (Rand, 1971;
Hubert and Arabie, 1985)) implemented in the sklearn Python module (Pedregosa
et al., 2011). The Rand Index takes values between 0 and 1, with 1 indicating that
the two partitions are the same and 0 corresponding to a case in which the two
partitions disagree on all pairs of elements. The ARI is a version of the Rand index
corrected for chance, i.e., yielding a value close to 0 when comparing two random
partitions. Finally, we compared the observed ARI value with a distribution of ARI
values obtained by randomizing the community structure of the grooming network,
keeping the number and size of communities fixed but reshuffling individuals among
communities. We observed an ARI value of 0.23, well above the null distribution
with mean −0.0001 (SD = .067), i.e., very close to 0 as expected between random
partitions.

Figure 4: Affiliative network and grooming network. (a) and (c): Visualization, made
using the Gephi software, of grooming (a) and affiliative (c) network of July 2014. The widths of
the links are proportional to the weights of the networks (respectively number of grooming events
and z-scores of the number of co-presence events), reflecting the strength of the relationships
between nodes. Each colour correspond to a modularity class (i.e., a community) as assigned
by the implementation (within Gephi) of the Louvain algorithm. The positions of the nodes were
obtained by a Gephi layout implemented for the grooming network, and kept fixed for the affiliative
network to facilitate visual comparison. (b): Visualization of the differences in the community
structures between the two networks by the flow of individuals across communities. Numbers give
the community sizes and the widths of the lines are proportional to the number of individuals
common to grooming and affiliative networks communities.

Social Balance: static and dynamic points of view
Negative interactions such as avoidance behaviour are very difficult to observe

among animals. The construction described above however yielded a signed social
network for each month, with both positive and negative links. This made it possible
to study social balance theory in the baboons’ social network. To this aim, we
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counted in each monthly network the number of triangles of each type, i.e., with
0, 1, 2 or 3 negative links. These numbers and also the total number of triangles
fluctuated between months, but in all months the balanced triangles were more
numerous than the unbalanced ones. This was true both within the strong and the
weak versions of the social balance theory (see Fig. 1).

Moreover, we compared the obtained numbers in each month with a null model
in which the monthly network structure was fixed but the signs of the links were
shuffled. Fig. 5 shows that the triangles with three positive links were strongly over-
represented in each month (100% of the months) with respect to this null model.
It also shows that the triangles with only one positive link (balanced in both weak
and strong balance theory) were also over-represented in most months (74% of the
months), while the unbalanced triangles with two positive and one negative links
were clearly under-represented (95% of the months). Triangles with three negative
links tended to be moderately under-represented (82% of the months). We recall that
these triangles are unbalanced in the strong version but balanced in the weak version
of the social balance theory. Overall, balanced triangles were over-represented and
unbalanced ones were under-represented with respect to the null model, showing
that the signed monthly networks built from co-presence data did respect social
balance theory.

Figure 5: Evolution of the number of signed triangles through time. Coloured filled
circles: Number of triangles of each type (shown on the left part of the figure) in the empirical
monthly signed co-presence networks (union of affiliative and avoidance networks). Shadowed area:
confidence interval (5th to 95th percentiles) of the distributions of numbers of triangles of each type
in the randomized monthly networks. In the strong version of social balance theory, the triangle
types in the two bottom panels are balanced, while the ones in the two top panels are unbalanced.
In the weak version, triangles with three negative links (top panels) are also considered balanced.

In the union of the affiliative and avoidance networks, social balance theory
implies that wedges (structures of two links AB and AC such that the link BC does
not exist, see Methods) should preferentially close by forming balanced triangles.
We thus calculated, for each pair of successive months (t, t + 1), the number of
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wedges of each type at t (++ with two positive links, +− with one positive and
one negative, and −− with two negative links) that became closed triangles at t+ 1
(Thurner, 2018). The results, summed over all values of t, showed that the total
number of triadic closure events producing balanced triangles was larger than the
total number of events producing unbalanced triangles, both using the strong or the
weak version of the social balance (see Fig. 6). Note that we obtained a substantial
number of events in which a −− wedge became a −−− triangle, which is considered
balanced only in the weak formulation of social balance theory.
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Figure 6: Social balance in the signed monthly networks. Total numbers of triadic closures
of each type from a month t to the next one t + 1, i.e., numbers of transitions from the various
types of wedges (from bottom to top, −−, +−, ++) to balanced triangles (left column of each
table) or unbalanced triangles (right column of each table). We present the numbers of transitions
summed over all the period of investigation (39 months) and for both the (a) strong and (b) weak
formulations of social balance. For instance, over the whole period there were 3200 transitions
from a wedge −− to balanced triangles, and 208 to unbalanced ones, in the weak social balance
formulation.

Stability and instability from network dynamics
The long-term nature of the data set makes it an ideal setting to study the

evolution of the social network structure and to investigate tools able to detect pe-
riods of stability and instability. We first investigated the temporal evolution of
the number of balanced and unbalanced triangles and the number of triadic closure
events of each type. Indeed, given the interpretation of the social balance theory
that unbalanced triangles are a sign of tension and social stress, one could expect
(i) an increase in the number of balanced triangles and a decrease in the number of
unbalanced ones during periods of stability, and (ii) that a large number of unbal-
anced triangles could lead to an instability of the network and thus to important
rearrangements in the following month. However, these numbers fluctuated widely
from one month to the next (see Fig. A14 in the Appendix), and these variations
showed no clear temporal signal or trend.

We therefore decided to conduct a different investigation considering only the
affiliative links. To detect (in)stability in the resulting affiliative network, we mea-
sured the similarity between monthly networks using the cosine similarity measure
(see Methods), which we calculated for every individual and for every pair of months.
The cosine similarity values at the group level (averaged over all individuals) are
shown in Fig. 7a. The figure clearly shows that the average cosine similarity be-
tween different months remained very high in certain periods (yellow blocks along
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the diagonal). For instance, the average of the values obtained between two differ-
ent months between January and July 2014 was 0.794 (SD = 0.07). The average of
the values over different months taken between September 2014 and May 2015 was
0.784 (SD = 0.054). These examples are shown as blocks 1 and 2 in Fig. 7b. Such
large values of the average cosine similarity between different months imply that
the ego-networks of the individuals did not change much, and therefore highlight
periods of high network stability.

Figure 7: Dynamics of the social network at the group level. (a) Colour-coded matrix of
the average cosine similarity values for all pairs of months. Several periods of strong structural
stability clearly appear as blocks of lighter (yellow-white) colour. In contrast, the average CS
between July and September 2014 was 0.577, and the one between July and and September 2015
was 0.65. (b) the same matrix is represented with highlighted periods of particular interest. The
principal periods of stability are shown as block 1 (January-July 2014: the average of the average
CS values, excluding the diagonal, was 0.794, SD = 0.07), block 2 (September 2014-May 2015:
average of values 0.784, SD = 0.054), and block 3 (September 2015-December 2016: average of
values 0.814, SD = 0.044). Note that values tended to be progressively smaller away from the
diagonal, i.e. for months separated by longer and longer times. For example, the block 4, which
represents the average CS values between the periods January-July 2014 and September 2014-May
2015, had a mean of 0.61 and a SD = 0.045, while in block 5, between January-July 2014 and
September 2015-December 2016, the mean value was 0.454 and a SD = 0.047.

On the other hand, at some moments the average cosine similarity between
successive months was lower, such as between July and September 2014 (CS =
0.577) and between July and September 2015 (CS = 0.65). These lower values
indicate that the networks in those cases differed between the successive months, i.e.,
that some social network rearrangements took place, suggesting potential periods of
network instability.

We also note that the average cosine similarity values tended to be progressively
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lower away from the diagonal, i.e. for months separated by longer and longer times.
For instance, the block 4 in Fig. 7b corresponds to all pairs of months (t1,t2) with t1
between January and July 2014 and t2 between September 2014 and May 2015: the
average of the values within this block was 0.61 (SD = 0.045). When considering
instead block 5 in Fig. 7b, which correspond to comparing a month in the period
January-July 2014 to a month between September 2015 and December 2016, the
average of the cosine similarity values was 0.454 (SD = 0.047). This is consistent
with the fact that the social network became more and more different, and did not
come back to a previous structure during the period of study.

Fig. 8 sheds more light into these two types of periods by presenting the distribu-
tions of individual cosine similarity values for two periods corresponding to high and
low group level similarity. When the similarity is high (Fig. 8a), the distribution is
highly skewed with most individual’s cosine similarity values close to 1. This shows
that the network global stability was the result of the stability at the individual’s
level. In contrast, when the average similarity is lower (Fig 8b), the distribution of
the individual cosine similarity values is broader with some individuals maintaining
their ego-network (large value of the cosine similarity) while others changed dramat-
ically (cosine similarity values close to 0). This implies that the instability of the
network was not a global one but that some parts of the networks remained stable
while others underwent important changes.
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Figure 8: Ego-network dynamics. Histograms of individual’s cosine similarity values between
weighted ego-networks for two different pairs of successive months: (a) April 2014, May 2014; (b)
April 2015, May 2015. For each panel, the histogram corresponds to the cosine similarity values of
all the ego-networks of the individuals present in both months. The vertical line gives the average
value of the cosine similarity (i.e., the value shown in Fig. 7a), that correspond to 0.884 and 0.731
for April 2014, May 2014 and for April 2015, May 2015 respectively.

In order to better understand the network’s dynamic, we studied the evolution
of ego-networks independently. Fig. 9 shows the cosine similarity between the
ego-networks of specific individuals in successive months. The resulting patterns
differed greatly between individuals (we show the results for all individuals in the
Appendix). For instance, as can be seen in Fig 9a, Vivien (adult male) and Angele
(adult female) had on average high cosine similarity values over the entire study
(resp. 0.96 and 0.95), showing prevalently a strong stability of their ego-networks,
but these averages hide an interesting pattern: in a synchronized way, these two
baboons went through a strong rearrangement of their ego-networks, with cosine
similarity values of respectively 0.23 and 0.01, between July and September 2014.
Both individuals had thus very stable ego-networks before and after this period, but
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their ego-networks between the first and second stability periods differed strongly. In
particular, between these two periods Angele lost her strong link with Pipo (adult
male), the links between Vivien and most of his females became much weaker,
and a strong link between Angele and Vivien appeared. On the other hand, both
individuals kept a stable ego-network during other structural changes observed in
the matrix of Fig. 7a, such as between March and June 2015: this highlights once
again, as deduced also from Fig. 8b, that a low average cosine similarity between
two different months can be the result of a large variation of some ego-networks
while others remain completely unchanged. Fig. 9b shows that other individuals
went through very different patterns of ego-network stability and instability: some
kept a relatively stable ego-network throughout the whole period, with only small
changes (for instance, Petoulette, adult female, in Fig. 9b), and some had much
more important and frequent changes in their local ego-network (such as Brigitte,
adult female). Fig. A16 in the Appendix displays the evolution of the ego-network
cosine similarity values for all the individuals.
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Figure 9: Dynamics of ego-networks. Evolution of ego-network cosine similarity values com-
puted between one month and the next for several individuals (CSi(t, t + 1) for each month t).
The lines give for each individual the average of its cosine similarity value over time, minus one
standard deviation. The filled areas correspond therefore to very unstable periods, i.e. to periods
where the ego-network cosine similarity between successive months are more than a standard de-
viation below the average. The two individuals in panel (a) showed a stable ego-network overall
(Vivien: mean = 0.96, SD = 0.12; Angele: mean = 0.95, SD = 0.15) but displayed a sudden and
synchronized change between July and September 2014. The two individuals in panel (b) had
very different patterns of ego-network stability and instability both in terms of variability of values
(Petoulette: mean = 0.94, SD = 0.12; Brigitte: mean = 0.71, SD = 0.06) and in terms of (absence
of) synchronization: for instance in August 2016 we note that while Brigitte’s trajectory has a
local maximum (0.93), Petoulette’s trajectory undergo a local minimum (0.83).

Finally, we sought to analyse in more details the important change in the network
between July and September 2014 (see Fig. 7a). Indeed, the average cosine similarity
between these months was equal to 0.577, while the average between May and July
was 0.779, and 0.845 between September and November 2014. As already discussed
above, these average values hide a heterogeneous amount of local rearrangements, as
shown by the distributions of Fig. 8. Fig. 10 shows a visualization of the affiliative
networks in these months, as well as the flux of individuals between communities
obtained by the Louvain algorithm. The ARI between the resulting partitions in
July and September was equal to 0.16, while it was equal to 0.67 between the
partitions in communities of the September and November networks and to 0.41
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Figure 10: Visualization of the co-presence networks and of the flow between com-
munities across the months of May, July, September and November 2014. Different
colours in the graphs correspond to different communities. In he flow diagram, the numbers spec-
ify the community size and the widths of the lines are proportional to the number of individuals
common to the communities joined by the lines.

between partitions in communities of May and July networks.
The visualization reveals several important changes in the network:

• Angele moved from a community to another. The strong link with Pipo dis-
appeared and a new strong link with Vivien emerged;

• Links between Vivien and other females of his community weakened as the
link with Angele abruptly became very strong;

• The number of individuals went from 23 to 22 because Grim was removed from
the group for a medical reason unrelated to the experiment.

The two first points are clearly related to the synchronization in the timelines of
Fig. 9a. The visualization also made clear how certain parts of the network were
on the contrary quite stable between these months, as discussed above in relation
to Fig 8b.

Note that all these points were deduced only from the study of the affiliative
network built from the proximity in ALDM booths, without any external knowledge.
Interestingly, it turned out that direct annotations of observations of the group in
the period of the summer 2014 confirmed that two important changes occurred in
July 2014, namely: (i) Grim died and (ii) Angele changed primary male during that
month.

DISCUSSION

In the present study, we have analysed one of the largest (more than 16 million
records) long-term (more than 3 years) high resolution dataset collected on a group
of non-human primates. We then used this dataset to test social balance theory and
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to study the dynamic patterns of social relationships’ (in)stability in a non-human
primate.

We used this dataset, composed of automatically collected cognitive tests per-
formed by a group of Guinea baboons, to build a co-presence network. By comparing
the observed co-presence to a random distribution generated under the assumption
that the co-presence in neighbouring ALDM booths was due only to randomness
and independent from the actual social relationships among the baboons (Manly,
1997; Bejder et al., 1998; Farine, 2017), we were able to establish a signed network
representing both affiliative and avoidance relationships. This network building
procedure has two main advantages. First, it takes into account the heterogeneity
in the number of records of different individuals, thus reducing potential biases in
the estimation of bond strength. Heterogeneity in the number of observations of
individuals is a common feature of social network analysis in animals and several
association coefficients have been developed to limit common biases (see e.g. White-
head (2008)). Developing a null-model of social interaction to estimate link strength
however, has the second advantage of allowing the researcher to determine both af-
filiative and avoidance relationships from positive interactions simply by assuming
that individuals who meet more than chance are actively seeking each other’s com-
pany while individuals who meet less than chance are actively avoiding each other
(Bejder et al., 1998). Notably, negative interactions are more difficult to study in
nature than positive interactions because they are often less evident (such as avoid-
ance) and/or less frequent (such as open fights). Consequently, little attention has
been paid to agonistic social networks but according to social balance theory for
instance, negative links are crucial to understand the social evolution of a group.
Using the lack of positive interactions, compared to a null-model, as an indicator of
a negative relationship could therefore prove a useful general tool.

Indeed, in our study we were able to use the signed network to show that the
networks followed the predictions of social balance theory (Heider, 1946). From a
static point of view, the results showed that balanced triangles were over-represented
and unbalanced triangles under-represented when compared to a null distribution
based on random permutation of the networks’ edge signs. Furthermore, from a
dynamic point of view, we found that wedges (unclosed triangles) tended to close
into balanced triangles more frequently than into unbalanced ones. Interestingly, we
also observed many closure events towards triangles with three negative edges: this
could be linked to the fact that the group of baboons was composed of more than
two sub-units, so that triangles with three avoidance links were not rare.

Our results are in line with two previous studies that aimed at testing social
balance theory directly. Szell et al. (2010) in an online game with more than 300
000 participants and Ilany et al. (2013) in a study of rock hyraxes, both found
that their networks were generally balanced with an over-representation of balanced
triangles (especially + + + triangles) and an under-representation of unbalanced
triangles (especially + + − triangles). In these two studies, as in ours, there was
substantially more support for the weak formulation of social balance theory (Davis,
1967), compared to its stronger alternative. Finally, Szell et al. (2010) also studied
the triangle closure dynamic and also found, like us, that more wedges (unclosed
triangles) closed into balanced triangles than unbalanced ones. Based on these
three studies with different species and in very different contexts, it is tempting
to conclude that (weak) social balance theory may represent general principles of
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social organisation, as envisaged by Heider (1946). Surprisingly however, very few
studies have tested social balance theory and in our opinion it deserves more scrutiny
especially because it provides a clear static and dynamic theoretical framework to
understand the structure of social networks and their evolution.

Unfortunately, the analysis of the temporal evolution of social balance measures
(in proportion or number of balanced vs. unbalanced triangles with both the weak
or strong interpretation) did not yield clear insights into the temporal evolution of
the structure of the social network (see Appendix). There were no clear changes in
the different measures between periods of social stability and instability that were
instead revealed by the analysis of the cosine similarity. One explanation could be
that our analysis did not consider the correct timescale on which changes in social
balance occur. For instance, there is some evidence in chacma baboons (Papio
ursinus) that individuals adapt their social strategies on very different timescales
(Sick et al., 2014; Henzi et al., 2009; Silk et al., 2010). If the social network we
studied can be reorganised rapidly, going from balanced to unbalanced to balanced
again on a scale of a few days, then we should expect to find a large difference in
a similarity measure (the network has changed) but little difference in terms of the
number of balanced-unbalanced triangles on a monthly timescale. This problem may
not be easy to solve because networks established on shorter timescales are subject
to imprecise estimates of link strengths, which in turn could mask changes in the
network. In our study for instance, we found that the monthly timescale usually
recommended (Whitehead, 2008), represented a good compromise between a precise
estimate of link strength and the possibility to detect temporal changes. However,
the best aggregation timescale is likely to change depending on the situation, study
species, group and data gathering technique (Farine and Whitehead, 2015; Davis
et al., 2018). The investigation of the cosine similarity measure also shows a limit
of the social balance theory. We observed important changes in the structure of
the network (Fig. 7) that were not reflected by changes in the social balance of
the social network, probably because they were linked to changes occurring in the
relationships of only some of the individuals (Fig. 8). This suggests that the measure
of social balance through the counting of balanced and unbalanced triangles may be
too coarse and too global a measure to be able to detect and follow changes in the
relationships between individuals. In particular, social balance focuses on the sign
of these links but does not take into account their weights and hence the relative
importance of the relationships in the social network.

We were nevertheless able to study the social network’s dynamics using the co-
sine similarity between the affiliative ego-networks in successive months. Cosine
similarity is a very versatile measure and can be used to compare networks over
different timescales but also across scales within the network, from single individu-
als to sub-groups to the entire network. The group averaged cosine similarity value
allowed us to visualize periods of global stability, and to identify moments of insta-
bility (Fig. 7a). More detailed investigation of the cosine similarity values showed
that the periods of stability corresponded to high stability (large similarity values)
for almost all individuals, as could be expected. However, the instability revealed by
the average did not necessarily come from an instability of the entire network, but
rather from a mixture of locally stable and changing structures (Fig. 8). Following
individual cosine similarities therefore allowed us to identify, for each period of inter-
est, individuals with more or less stable ego-networks, as well as interesting patterns
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of synchronization of ego-networks evolution (Fig. 9). The patterns we identified on
a monthly timescale often suggest sudden and important changes that correspond,
at least in some cases, to adult females changing primary males, as observed in the
wild (Goffe et al., 2016). We suspect that stronger perturbations of the network
could be linked to high ranking females changing males (such as Angele), whereas
smaller perturbations could be linked to more peripheral females (such as Brigitte)
changing principal male.

Importantly, if some individuals in a wild population have more stable ego-
networks compared to other members of the group, we may expect these individuals
to have higher fitness, with increased longevity and a greater number of offspring
for instance, because stable social relationships have been associated with all these
factors, especially in baboons (Silk et al., 2003, 2009, 2010; Alberts, 2019). However,
this effect on fitness may be more difficult to study in captivity where food, health
and reproduction are controlled.

CONCLUSION AND PERSPECTIVES

Social interactions are an important fitness component of group living animals
(see e.g. Alberts (2019)) and social network analysis provides powerful tools to
describe social interactions and analyse their evolution through time (Hinde, 1976).
In fact, social network analysis has transformed research in ecology and evolution (for
a review see Cantor et al. (2019)). Here, we have analysed the temporal (in)stability
of a social group of baboons using an automatically collected high-resolution long-
term dataset. We have developed general tools to construct a signed network and
shown that our study group’s social network respected the predictions of social
balance theory. However, the use of a similarity measure proved to be more sensitive
and more versatile to understand changes in the individuals’ social relationships
and their consequences at the group level. In particular, our results show that
behind what, at first glance, looks like a stable social network, there is a complex
and subtle mixture of stable and unstable ego-networks. In the future, long-term
high-frequency data (see Krause et al. (2013) for a review of recent technological
developments) could help determine the fitness consequences of individuals’ social
strategies.
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Appendix

Robustness of the analysis with respect to the ALDM aggregation time window
In the Methods section, we described how we built a temporal co-presence net-

work based on the temporal and spatial proximity of the baboons in the ALDM
workstations: we aggregated the raw data in time windows of length ∆t = 5s and
considered that the individuals performing tests in the same time window and in
neighboring workstations were in co-presence.

For the sake of completeness, we report here results obtained with a different
value of the aggregating window, namely ∆t = 10s, to show the robustness of the
observed phenomenology.

Fig. 11 and 12 show the results concerning social balance theory, and Fig. 13
displays the colour-coded matrix of the average individual cosine similarity values
between the monthly affiliative networks for all pairs of months. In all cases, results
very similar to the ones presented in the main text were obtained.

Figure 11: Evolution of the number of signed triangles through time (∆t = 10s). Number
of triangles of each type in the 39 monthly signed co-presence networks built using ∆t = 10s. As
in the main text, the shadowed areas correspond to the confidence interval (5th to 95th percentiles)
of the distributions of the numbers of triangles of each type in randomized monthly networks.

Temporal evolution of triadic closure events and of indicators linked to the numbers
of triangles

Fig. 6 gives the global number of triadic closure events from one month to the
next. These events are defined by the fact that a wedge in one month (a structure
of two links AB and AC such that the link BC does not exist) becomes a triangle
in the next month. We classified these events depending on the type of wedge and
on the type of resulting triangle (balanced or unbalanced). In Fig. 14, we show the
numbers of each type of event for each month.

Moreover, we mention in the main text that the number of triangles and the
number of triadic closure events fluctuate widely, with no clear temporal signal or
trend. This is illustrated both by Fig. 14 and by Fig. 15, which shows the average
clustering coefficient and the transitivity of each monthly network.
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Figure 12: Social balance theory from the dynamical point of view in the signed monthly
networks built with ∆t = 10s: Numbers of transitions from one month to the next, from
the various types of wedges to balanced or unbalanced triangles, summed over all the period of
investigation (39 months) and for both strong (a) and weak (b) formulations of social balance.
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Figure 13: Group level dynamics for the monthly networks built using ∆t = 10s. Colour-
coded matrix of the group cosine similarity values for all pairs of months. Patterns of stability and
instability are the same as the case of ∆t = 5s shown in the main text.
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Figure 14: Numbers of transitions from one month to the next, from wedges of each type to
balanced and unbalanced triangles, where balanced and unbalanced triangles are defined either
according to the strong (top row) or to the weak (bottom row) version of social balance.
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gation.
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Dynamics of individual ego-networks
Fig. 9 illustrates the evolution of individuals’ ego-networks similarities between

successive months. Fig. 16 displays the same information for all individuals.
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Figure 16: Evolution of ego-network cosine similarity values for all the individuals who were
present at least two successive months during the study. In each plot, the x-axis corresponds to
the month and the y-axis gives the value of the cosine similarity between the ego-networks of the
individual in one month and the next. Red vertical bars correspond to the period of absence of
that individual from the enclosure.
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