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Abstract

We propose a new discrete element method supporting general polyhedral meshes. The
method can be understood as a lowest-order discontinuous Galerkin method parametrized
by the continuous mechanical parameters (Young’s modulus and Poisson’s ratio). We con-
sider quasi-static and dynamic elasto-plasticity, and in the latter situation, a pseudo-energy
conserving time-integration method is employed. The computational cost of the time-
stepping method is moderate since it is explicit and used with a naturally diagonal mass
matrix. Numerical examples are presented to illustrate the robustness and versatility of
the method for quasi-static and dynamic elasto-plastic evolutions.

1 Introduction

Discrete element methods (DEM) constitute a large class of particle methods which have orig-
inally been used for crystalline materials [15] and geotechnical problems [¢] and have found
applications in granular materials, soil and rock mechanics. In their original formulation,
DEM consisted in representing a domain by small spherical particles interacting by means of
forces and torques. A wide range of models for the expression of these bonds has been devel-
oped depending on the material constitutive law. Computing the deformation of the domain
then consists in computing the evolution of the particle system. Advantages of DEM are their
ability to deal with discontinuous materials, such as fractured or porous materials, as well as
the possibility to take advantage of GPU computations [23]. Other, similar, particle methods
have been derived in the context of Smooth Particles Hydrodynamics (SPH) methods, which
require an interaction kernel [13]. The main difficulty in DEM consists in deriving a correct set
of forces between elements to discretize the continuous equations (in the present case, dynamic
elasto-plasticity). DEM originally used sphere packing to discretize the domain [17] and were
forced to fit parameters in order to obtain relevant values for the Young modulus F or the
Poisson ratio v [16, 6]. Moreover simulating a material with a Poisson ratio v larger than 0.3
met with difficulties [2]. Note also the possibility to use DEM only in a limited zone, where
crack occurs for instance, in order to mitigate these issues. For example, a modified DEM
(MDEM) has been coupled with a consistent virtual element method (VEM) for elasticity to
discretize fracturing porous media [20)].

A discrete element method was developed in [19] and was formally proved to be consistent
with Cauchy elasticity. A first attractive feature of this method was that the discrete force



parameters were directly derived from the Young modulus and the Poisson ratio without the
need for a fitting process. Moreover the method exhibited robustness in the incompressibility
limit (¥ — 0.5). Similar ideas have been used to handle brittle fracture [I]. However several
limitations remain in this approach. First the evaluation of the forces between particles hinges
on the use of a Voronoi mesh and does not adapt to general (not even tetrahedral) meshes.
This is due to a nearest-neighbour evaluation of the gradient on a facet of the mesh (known
in the Finite Volume community as the “two-point flux problem”). Secondly the expression of
the forces for a Cauchy continuum cannot be readily extended to more general behaviour laws.
Finally the convergence proof is mostly formal (on a Cartesian grid) and no convergence proof
is given on general (Voronoi) meshes, apart from numerical evidence.

The main goal of the present contribution is to circumvent the above issues by extending the
discrete element method of [19] to general polyhedral meshes and elasto-plastic behaviour laws.
The present particle method can be viewed as a space-discretization scheme with a diagonal
mass matrix, and as such shares a number of properties with finite volumes [11, 12] and lowest-
order discontinuous Galerkin (dG) methods [9]. Specifically we use piecewise constant gradient
reconstructions in each mesh cell evaluated from local displacement reconstructions at the
facets of the mesh. Volumetric unknowns are also added to compute plastic strains. We devise
the scheme for both quasi-static and dynamic elasto-plasticity, and in the latter situation we
perform the time discretization using the explicit pseudo-energy conserving time-integration
method developed in [18]. Numerical results are presented to illustrate the robustness and
versatility of the proposed method in two and three space dimensions. Finally the convergence
of the scheme can be studied using the framework of gradient discretization methods (GDM)
[10]. GDM lead to a unified and powerful framework allowing one to prove convergence and
error estimates for a wide range of numerical schemes.

This paper is organised as follows. Section 2 briefly recalls the equations of dynamic elasto-
plasticity in a Cauchy continuum. Section 3 introduces the proposed DEM and presents the
space discretization of the governing equations. Some numerical tests to verify the convergence
of the space discretization in a steady setting are reported. Section 4 deals with the DEM
discretization for quasi-static elasto-plasticity and presents test cases in two and three space
dimensions. Section 5 addresses the time discretization of the dynamic elasto-plasticity problem
using the explicit pseudo-energy conserving time-integrator developed in [18]. This section also
assesses the coupled DEM and time discretization on test cases in three space dimensions.
Finally Section 6 draws some conclusions.

2 Governing equations for dynamic elasto-plasticity

We consider an elasto-plastic material occupying the domain Q € R%, d € {2, 3}, in the reference
configuration and evolving dynamically on the finite time interval (0,7"), 7" > 0, under the
action of volumetric forces and boundary conditions. The strain regime is restricted to small
strains so that the linearized strain tensor is £(u) := £(Vu-+(Vu)"), where u is the displacement
field. The plastic constitutive law hinges on a von Mises criterion with nonlinear isotropic
hardening. The material is supposed to be homogeneous, isotropic and rate-independent.
The presented formalism can be extended to the case of anisotropic, inhomogeneous, rate-
dependent, anisothermal materials as well as finite strains. The stress tensor ¢ is such that

o:=C: (e(u) —¢gp), (1)



where C is the fourth-order stiffness tensor and ¢, is the (trace-free) tensor of remanent plastic
strain. The von Mises yield function ¢ is given by

o(o.0) = [ 2ldev(o)] ~ (o0 + (), ®)

1
where dev(o) is the deviatoric part of o and |7] = (ngjzl 75)2 for a second-order tensor 7, p

is the scalar cumulated plastic deformation, R(p) := dj—; where the function w, is the part of
the Helmholtz free energy related to isotropic hardening, and g is the initial yield stress, so
that the actual yield stress is o9 + R(p). Admissible states are characterized by the inequality
¢(o,p) < 0, the material is in the elastic domain if p(o,p) < 0 and in the plastic domain if

¢(o,p) = 0.
In strong form, the dynamic elasto-plasticity equations consist in searching for the displace-
ment field u : (0,7) x Q — R?, the remanent plastic strain tensor gp: (0,T) x Q2 — R4 and

the scalar cumulated plastic deformation p: (0,7") x € — R such that the following equations
hold in Q for all t € (0,7):

pii — div(o) = f,
80(0-7})) S 07 (3)
) . Dy
A=p>0, Ap(o,p) =0, é,=A=(0),
oo

where p > 0 is the density of the material, dots indicate time derivatives, f is the imposed
volumetric force, and A is the Lagrange multiplier associated with the constraint (o, p) < 0.

Note that owing to (2), we have &, = A %ﬁgig;', so that p=\ = \/g\ép|.

Let 992 = 0Qn U I p be a partition of the boundary of 2. By convention 02p is a closed
set and J€)p is a relatively open set in 0€2. The boundary 9Q2p has an imposed displacement
up, whereas a normal stress g is imposed on 0{2y, i.e. we enforce

u=up on (0,T) x 0Qp, o-n=gy on (0,T)x . (4)

Note that up and gy can be time-dependent. Finally the initial conditions prescribe that
u(0) = ug, u(0) = vy and p(0) =0 in .

To formulate the governing equations (3) together with the Neumann boundary condi-
tion (4) in weak form, we consider time-dependent functions with values in space-dependent
functional spaces. Let us set

VD = {1} c Hl(Q;Rd) | U\aQD = UD}, V() = {U S Hl(Q;Rd) ’ ’U|39D = 0}. (5)

(Note that the space Vp is actually time-dependent if the Dirichlet data is time-dependent.)
We also set

Q= Lz(QSRdXd)v Qo = {7712 €q | tr(ﬁp) =0}, (6)

and P := L?*(Q). Here L?(2;RY), ¢ > 1, is the Hilbert space composed of Ri-valued square-
integrable functions in 2, and H'(Q;RY) is the subspace of L?(£2;R?) composed of those func-
tions whose weak gradient is also square-integrable. All of the above functional spaces are
equipped with their natural inner product. Then the weak solution is searched as a triple
(u,ep,p) : (0,T) = Vp x Qo x P. To alleviate the mathematical formalism, we do not specify
here the regularity in time (see [11] and [5]). We introduce the mass bilinear form such that

m(a,v) := <pa,17>vol7vo , V(a,0) € V§ x W, (7)



where V{j denotes the dual space of Vj and (-, '>Vo' v, the duality pairing, and the stiffness bilinear
form parameterized by a member 7, € ()g such that

alnyiv.9) = [ (€5 (@) =n) 1 2(0), V(0,5) € Vo x Vo, 0

The governing equations (3) are rewritten as follows: Find (u,ep,p) : (0,T) = Vp x Qo x P
such that, for all t € (0,T),

m(ii(t),0) + alep(t); u(t), ) = I(t;0), Vo e V,
w(o,p) <0, in €, 9)

=520, Ap(e.0) =0, 4=2P(0) 0,
g

>

where the time-dependency is left implicit in the second and third equations, and with the
linear form [(¢) acting on Vj as follows:

I(t;5) ::/Qf(t)-17+ R (10)

Note that the Dirichlet condition is enforced strongly, whereas the Neumann condition is en-
forced weakly. Define the elastic energy FEelas(t) := % [oo(t) : C7! 1 o(t) with o(t) := C :
(e(u(®)) — (1), Ewin(t) := sm(a(t),a(t)), Epas(t) == [qoop(t) + wp(p(t)), and Eex(t) :=
fOT [(t;0(t)). Then assuming for simplicity a homogeneous Dirichlet condition, we have the
following energy balance equation:

Eelas(t) + Ekin(t) + Eplas(t) — Eext(t)~ (11)

3 Space semi-discretization

In this section we present the DEM space semi-discretization of the weak formulation (9), and
we present a few verification test cases for static linear elasticity.

3.1 Degrees of freedom

The domain €2 is discretized with a mesh T, of size h made of polyhedra with planar facets in
three space dimensions or polygons with straight edges in two space dimensions. We assume
that € is itself a polyhedron or a polygon so that the mesh covers ) exactly and we also
assume that the mesh is compatible with the partition of the boundary 02 into the Dirichlet
and Neumann parts.

Let C denote the set of mesh cells and 29 the set of mesh vertices sitting on the boundary
of Q. Vector-valued volumetric degrees of freedom (dofs) for a generic displacement field
ve = (Ve)ece € R are placed at the barycentre of every mesh cell ¢ € C, where #(S)
denotes the cardinality of a set S. Additional vector-valued boundary degrees of freedom
vzo = (Vy),cz0 € RI#(Z%) for the displacement are added at every boundary vertex z €
Z9. The reason why we introduce boundary vertex dofs is motivated in Section 3.3. These
dofs are also used to enforce the Dirichlet condition on 9€2p. We use the compact notation
vp := (ve,vzo) for the collection of all the cell dofs and all the boundary vertex dofs. Figure
1 illustrates the position of the displacement dofs. In addition a (trace-free) tensor-valued
dof representing the internal plasticity variable n,. € R4 is attached to every mesh cell
¢ € C, as well as a scalar dof p. representing the cumulated plastic deformation. We write
Mp,C = (np,c)ceC € Qp = R(@-D#(C) and pe = (pe)eec € Pn = R#(©).
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Figure 1: Continuum §2 covered by a polyhedral mesh and vector-valued degrees of freedom
for the displacement.

Let F denote the set of mesh facets. We partition this set as F = F* U F°, where F* is the
collection of the internal facets shared by two mesh cells and F? is the collection of the boundary
facets sitting on the boundary 9 (such facets belong to the boundary of only one mesh
cell). Using the cell and boundary-vertex dofs introduced above, we reconstruct a collection of
displacements vr := (vp)per € R (F) on the mesh facets. The facet reconstruction operator
is denoted R and we write

vrE = R(vp). (12)

The precise definition of the facet reconstruction operator is given in Section 3.3. Using the
reconstructed facet displacements, it is possible using a discrete Stokes formula to devise
a discrete R%?-valued piecewise-constant gradient field for the displacement that we write
Ge(vr) = (Ge(vr))ece € RTE#C) . Specifically we set in every mesh cell ¢ € C,

F
Cetwr)i= 3 Hlop g, vor e RO, (13

Feoc | |

where the summation is over the facets F' of ¢ and np,. is the outward normal to ¢ on F'. Note
that for all v, € V}, we have

G(Rwy = 3 1

(R(vn)F — ve) @ N, (14)
Fede |C|

since Y pege |F|nre = 0. Finally we define a constant linearized strain tensor in every mesh
cell ¢ € C such that

1
ec(vr) := §(GC(U}‘) + Go(vr)T) € R4, (15)
3.2 Discrete problem
Let us set Vj, 1= RI#(C) x RI#(Z?) and (recall that 0Qp is a closed set)

{ Vip = {vn € Vi | v2 = up(z) Vz € 22N o0y}, (16)

Vio :=={vn € Vi | v, =0Vz € 22Nn0Qp}.



(Note that the space Vj,p is actually time-dependent if the Dirichlet data is time-dependent.)
The discrete stiffness bilinear form is parameterized by a member 7, ¢ € @)}, and is such that,
for all (vp,p) € Vap X Vi (compare with (8))

an(np,c; vn, Bn) = D |e[(C: (€e(R(vh)) = Mpe))  €c(R(n)) + sn(vn, Tn)- (17)
ceC
Here sj, is a weakly consistent stabilization bilinear form intended to render aj coercive and
which is defined on V}, x V}, as follows:

sn(vn, On) = ) ’F’hl[UC]F [Telr + ) \F!hn (R(vn)Fp = ve_) - (R(Tn)p — Te_),  (18)
FeFi F FeFb F

where hp is the diameter of the facet F' € F and where ve and 9¢ collect the cell dofs of v, and
Op, respectively. For an interior facet F' € F*!, writing c_ and cy the two mesh cells sharing
F.ie., FF = 0c_NJcy, and orienting F' by the unit normal vector ng pointing from c_ to c4,
one has [ve]r := v — v, . The sign of the jump is irrelevant in what follows. The role of the
summation over the interior facets in (18) is to penalize the jumps of the cell dofs across the
interior facets. For a boundary facet F' € FP, we denote c_ the unique mesh cell containing
F and we orient F' by the unit normal vector ng := n._ which points outward 2. The role
of the summation over the boundary facets in (18) is to penalize the jumps between the cell
dofs and the boundary vertex dofs. The parameter n > 0 in (18) is user-defined with the only
requirement that > 0. In practice a very small, but positive, value is taken in our simulations,
of the order of 1076 times the Young modulus.

We can next define a discrete mass bilinear form my, similar to (7) and a discrete load linear
form [ (t) similar to (10); details are given below. Then the space semi-discrete version of the
evolution problem (9) amounts to seeking (up,epc,pc) : (0,7) = Vip X Qp X Py, such that, for
all t € (0,7,

mp(Un(t), 0n) + an(epc(t); un(t), op) = Uh(t, On), Vo, € Vo,
@(Ec(uh)vpc) < 07 Ve € C, (19)

0
)\c = pc > 07 /\c(P(Ec(Uh),pc) = 07 2"—:p,c = Ac%(zc<uh))a Ve e C,

where the time-dependency is left implicit in the second and third equations and where we
introduced in every mesh cell ¢ € C the local stress tensor

Se(up) == C: (ee(R(up)) — epe) € R, (20)

Note that the plasticity relations in (19) are enforced cellwise, i.e., a mesh cell ¢ € C is either
in the elastic state or in the plastic state depending on the value of ¢(3.(up), pe).

The definition of the discrete mass bilinear form mj, hinges on subdomains to condense the
mass associated with the dofs. Figure 2 represents our choice for the subdomains. For all the
interior cells, the subdomain w, is chosen as the whole cell, i.e., w. = ¢. For the boundary
vertices and for the cells having a boundary face, a dual barycentric subdomain is constructed,
leading to subdomains denoted by w, and w,, respectively (see Figure 2). For the discrete load
linear form, we compute averages of the external loads f and gy in the mesh cells and on the
Neumann boundary facets, respectively. As a consequence, my and I, (t) can be written as
follows for all (vp, o) € Vi X V}, (compare with (7) and (10)):

n(vp, On) Z myv, - U, + Z MV - Ve, (21)
2€Z9 ceC
t wh Z fc - We + Z gF(t) . R(T)h)p, (22)
ceC FeFtnoQn
with m, := [, p, me:= [, p, fe(t) :== [, f(t) and gr(t) == [pgn(t
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Figure 2: Integration domains to determine the mass associated with the displacement dofs.

3.3 Reconstruction operator on facets

The reconstruction operator R is constructed in the same way as in the finite volume methods
studied in [12, Sec. 2.2] and in the cell-centered Galerkin methods from [9]. For a given facet
F € F, we select neighbouring boundary vertices collected in the subset Zg and neighbouring
cells collected in the subset Cr, as well as coeflicients (a%)zezg and (a%)cecy, and we set

R(vp)p = Z apv, + Z A Ue, Yoy, € Vy,. (23)

ZEZg ceCp

The neighbouring dofs should stay O(h) close to the facet F. The coefficients a7 and af. are
chosen as the barycentric coordinates of the facet barycenter x g in terms of the location of the
boundary vertices in Zg and the barycenters of the cells in Cp. Thus they verify

Za’ZFjLZa%:l, VF € F. (24)

ZGZI‘?- ceCp

The main rationale for choosing the neighboring dofs is to ensure as much as possible that all
the coefficients a% or a% lie in the interval (0, 1), so that the definition of R(vy)p in (23) is
based on an interpolation formula (rather than an extrapolation formula if some coefficients
lie outside the interval (0,1).) For most internal facets F' € F', far from the boundary 052, it
is possible to choose an interpolation-based reconstruction operator using only cell dofs, i.e.,
we usually have Z}? := (). Figure 3 presents an example for an interior facet F' using three
neighbouring cell dofs located at the cell barycenters 2%, 2/ and z*. Close to the boundary 052,
the use of boundary vertex dofs helps to prevent extrapolation. In all the cases we considered,
interpolation was always possible using the algorithm described below.

On the boundary facets, the reconstruction operator only uses interpolation from the bound-
ary vertices of the facet, i.e., we always set Cp := ) for all F' € F?. In three space dimensions,
the facet can be polygonal and the barycentric coordinates are generalized barycentric coor-
dinates. This is achieved using [1] and the package 2D Triangulation of the geometric library
CGAL. In the case of simplicial facets (triangles in three space dimensions and segments in
two space dimensions), this procedure reduces to a classical barycentric interpolation.

The advantage of using interpolation rather than extrapolation is relevant in the context of
explicit time-marching schemes where the time step is restricted by a CFL condition depending



Figure 3: Dofs associated with the interior facet F' used for the reconstruction.

on the largest eigenvalue A\ of the stiffness matrix associated with the discrete bilinear form
an(0;-,-) (see, e.g., (40)). It turns out that using extrapolation can have quite an adverse effect
on the maximal eigenvalue of the stiffness matrix, thereby placing quite a severe restriction on
the time step, and this restriction is significantly alleviated if enough neighboring dofs are used
in (23) to ensure that interpolation is being used. We refer the reader to Table 1 below for an
illustration.

Let us now briefly outline the algorithm used for selecting the reconstruction dofs associated
with a given mesh facet F' € F. This algorithm has to be viewed more as a proof-of-concept
than as an optimized algorithm, and we observe that this algorithm is only used in a pre-
processing stage of the computations. Fix an integer I > d 4 1; in our computations, we took
I=10ifd=2and I =25if d=3. Let F € F.

1. Compute a list of points (z;)1<;<s ordered by increasing distance to zp; each point can
be either the barycenter of a mesh cell or a boundary vertex. To this purpose, we use
the KDTree structure of the scipy.spatial module of Python.

2. Find the smallest index J € {d+1,...,I} such that xp lies in the convex hull of the
set (x;)1<i<s. If there is no such index J, extrapolation must be used. Otherwise find a
subset of (z;)1<i<s containing (d + 1) points and use the barycentric coordinates of the
resulting simplex to evaluate the interpolation coefficients to be used in (23).

To illustrate the performance of the above algorithm in alleviating time step restrictions
based on a CFL condition, we report in Table 1 as a function of the integer parameter I from
the above algorithm the largest eigenvalue Apax of the stiffness matrix and the percentage
of the mesh facets where extrapolation has to be used. The results are obtained on the two
three-dimensional meshes considered in Section 5.3.1 together with the DEM discretization for
the dynamic elasto-plastic evolution of a beam undergoing torsion. The columns labeled I = 4
required in very few cases an additional point because the four closest points turned out to be
coplanar.

mesh I=14 I =6 =9 I =12 I =15
coarse | 2-1019 [ 81% | 1-101° | 28% | 2:10° | 4% | 1-10°0 | 1.3% | 1-10%0 | 0.4%
fine | 5-10% | 74% | 5-10% | 28% | 9-10%8 | 4.1% | 4-10°® | 0.8% | 2-10° | 0%

Table 1: Largest eigenvalue of the stiffness matrix and percentage of inner facets with extrap-
olation for various values of the parameter I on the coarse and fine meshes used in the DEM
discretizations reported in Section 5.3.1.

3.4 Interpretation as a Discrete Element Method

In this section we rewrite the first equation in (19) as a particle method by introducing the dofs
of the discrete displacement uy(t) € V3 p attached to the mesh cells and to the boundary vertices



lying on the Neumann boundary, which we write Upgn := (Up(t))pep with P := C U 2§ and
28 :={2¢€ 29| 2 € 0Qp}. Here P can be viewed as the indexing set for the set of particles.
Recalling the definition of the discrete mass bilinear form, we set m,, := fwc pif p=ceC and
mp = [, pifp==z¢€ 2% Concerning the external loads, we set Fprm(t) := (Fp(t))pep with
Fylt) = folt) = [ f(2) if 2 = ¢ and Fy(t) i= Yper. abgr(t) = Yper. 0b frgn(t) if p = 2,
where F, C F? is the collection of the boundary faces to which z belongs and the coefficients
a% are those used in (23) for the facet reconstruction. Since the Neumann boundary 0Qy is
relatively open in OS2, all the faces in F, belong to 0Qy if z € Z]%.

Recall that )¢ : (0,7) — @, is the discrete tensor of remanent plastic strain. Let us use
the shorthand notation ¥.(t) := ¥.(up(t)) as defined in (20), as well as X¢(t) := (Zc(f))cec-
For a piecewise-constant function defined on the mesh cells, say we = (wc)cec, we define the
mean-value {wc}lp = 3(we_ + we,) for all F = dc_ N dcy € F'. Recall that the interior
facet F' is oriented by the unit normal vector ng pointing from c_ to ¢4 and that the jump
across F' € F' is defined such that [we]p := we_ — w, .- Recall also that for a boundary facet
F € F?, c_ denotes the mesh cell to which F belongs and that np is the unit normal vector to
F pointing outward 2. Then a direct calculation shows that for all o5, € Vg,

—ap(epc(t);un(t), o) = Y |FI({Sc(t)}rnr) - [Tc]r
FeFi

+ Y |FI([Ze(®)]pnr) - ({c}r — R(Th)F)
FeFi

+ 3 F(Se_(t)np) - (Be_ — R(0h) ) (25)
Ferb

n -
- F%:T B, e @l - [oc] e

- ’F’%(R(Uh(t))F = ue_ (1)) - (R(0n)F — 0c_)-
FeFb

To simplify some expressions, we are going to neglect the second term on the above right-hand
side since this term is of higher-order (it is essentially the product of two jumps). Recall that,
by definition, the reconstruction operator R on a boundary facet F' € F° makes use only of

the vertex dofs of that facet. Then, letting (V},),cp be the collection of the dofs of the discrete
test function ¥, we infer that

—an(epc(t);un(t), o) = Y BP(t) - Vp, (26)
peEP

where ®;P(t) is the elasto-plastic force acting on the particle p € P. For all ¢ € C, we have
QP (t) 1= Y perivgy Pop(t) with Fi = {F € F' | F C dc}, FYY :={F € F* | F C 9¢cn 9},
and

P Fl{Ze(OYpnp — Lue(t if e F?,
BT (t) = {L N : N (27)
’ IFI(Se (8)nr — 2 (ue (8) = R(un(t)r)) i F e FN,
with ¢ p :=n.-np, and for all z € Z]%, we have
OP(t) 1= — Y aFPL L(t), (28)

FEFZ

with ®._ p defined in (27). Note that the principle of action and reaction is encoded in the
fact that te_ g + te, p = 0 for all F' = dc_ N ey € F'. Finally, putting everything together,
we infer that the the first equation in (19) becomes

mpU(t) = BP(1) + Fy(t), Ve P. (20)

9



Remark 1 (Matrix formulation). Let us briefly describe the matriz formulation of the space
semi-discrete problem (19) in the case of elastodynamics, i.e., without plasticity. For simplic-
ity we focus on the pure Neumann problem. A matriz R € R#FIIXHP) corresponding to the
reconstruction operator R can be constructed. Its entries are the barycentric coefficients of the
dofs used for the reconstruction on the face associated with the given line of R. The lines of
R associated with boundary facets have, by construction, non-zero entries only for boundary
vertices degrees of freed‘%n. The linearized strain matriz E € RT#C)xd#(F) 4 composed of the
1

tensorial coefficients iw(@mp + np®) on the lines associated with the mesh cell ¢ € C and

the columns associated with the facets F' C Oc. The linear elasticity matriz C € RE#(C)xd*#(C)
can be written as the block-diagonal matriz where each block corresponds to the double con-
traction with the fourth-order elastic tensor C and multiplication by |c|. The jump matric
J € RF#F)*d#P) s composed of lines such that: (i) For an interior facet F € F', the line
contains exactly one 1 and one —1, corresponding to the connectivity matrixz of the facet F with
the adjacent cells c— and cy; (i) For a boundary facet F € F?, the line contains —1 for the
adjacent cell c_ and the corresponding coefficients of R for the boundary vertices. Denoting
D € RWFIXGHF) the diagonal matriz with entry %|F| for the facet F, the stabilization matriz

S corresponding to the bilinear form sy, can be written S := JTDJ e R P)xd#(P)  Rinally,
denoting K := RTETCER + S ¢ RAH#(P)xd#(P) he stiﬁness matriz, the space semi-discrete
system (19) in the case of elastodynamics reduces to MUpgnm(t) + KUpem(t) = Fprwm(t).

3.5 Convergence tests for linear elasticity

The goal of this section is to briefly verify the correct implementation of the method in the
case of static linear elasticity by comparing the numerical predictions using DEM with some
analytical solutions and reporting the orders of convergence on sequences of uniformly refined
meshes. The model problem thus consists of finding « € Vp such that

/6(VU):C:6(V&):/ foa,  VaeW. (30)
Q Q

The energy error ||u — up|len is based on the reconstructed linearized strain of the discrete
solution in each mesh cell, whereas the L*-error ||u — up|/12(q) is evaluated by means of the
piecewise-affine displacement reconstruction uy, such that uy.(z) := uec + Ge(R(un)) - (x — )
for all x € ¢ and all ¢ € C, where x. denotes the barycenter of c.

Let us first consider an isotropic two-dimensional elasticity test case in the domain 2 =
(0,1)% with the Young modulus set to E = 70 - 103Pa and the Poisson ratio to v = 0.3. The
reference solution is u(z, y) = %(z*+y?)(ex+€,) with a = 0.8 and (e, €,) are the Cartesian basis
of R2. The load term f, which is computed accordingly, is f(x,y) = —a(A+3u)(ez+e€,). A non-
homogeneous Dirichlet boundary condition is enforced on the whole boundary. Convergence
results are reported in Table 2 showing that the energy error converges to first-order with the
mesh size and the L?-error to second-order.

h dofs |lu —upllp2(q) | order | [[u — upllen | rder
0.03555 | 4 464 1.13e-4 - 1.86e-2 -
0.01855 | 17 190 2.82e-5 2.24 9.08e-3 1.06
0.00971 | 68 502 7.11e-6 1.96 4.61e-3 1.02
0.00495 | 271 112 1.78e-6 2.04 2.29e-3 1.02

Table 2: Linear elasticity test case: size of the mesh, number of dofs, L2-error and order of
convergence, energy error and order of convergence.
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For the second test case, we consider an orthotropic plate with a hole under tensile stress.
The domain is a square plate of size L = 1 with a hole in its center of radius R = 0.1. We
only consider one quarter of the domain owing to the symmetries. The material is supposed
to be orthotropic homogeneous with Young’s moduli £, = 100Pa, E, = 10Pa, Poisson ratio
Vgy = 0.3, and shear modulus G, = 5Pa. Figure 4 shows the problem setup together with
the boundary conditions. The applied boundary tension on the top boundary is g = oscn with
0o = 0.001N.m~2. The left and bottom boundaries are mixed boundaries, where the normal
component of the displacement is set to zero as well as the tangential component of the normal
stress. This test case is drawn from [3].

0N = 05N

u-n=0

Figure 4: Linear anisotropic elasticity test case: problem setup.

Table 3 reports the energy error and the L2-error and the orders of convergence. The
reference solution is computed on the finest mesh using conforming P2-Lagrange finite elements
(FEM). The convergence rates are slightly lower than in the previous test case, possibly because
of the lack of smoothness of the exact solution.

h dofs lu — unllr2(q) | order | [|u — upllen | order
0.21657 276 1.04e-6 - 2.37e-5 -
0.14125 572 5.41e-7 1.80 1.71e-5 0.89
0.06868 | 2 256 1.69e-7 1.73 9.24e-6 0.90
0.03698 | 8 764 6.39e-8 1.61 5.60e-6 0.83
0.01807 | 34 224 3.15e-8 1.45 3.38e-6 0.81
0.00920 | 147 664 6.27e-9 1.63 1.57e-6 0.86

Table 3: Linear anisotropic elasticity test case: size of the mesh, number of dofs, L?-error and
order of convergence, energy error and order of convergence.

4 Quasi-static elasto-plasticity

In this section we present the quasi-static elasto-plasticity problem, its DEM discretization,
and we perform numerical tests to assess the methodology.

4.1 Governing equations

The quasi-static elasto-plastic problem is a simplified formulation of (9) where the intertia term
in the mass bilinear form is negligible and where the time derivatives are substituted by discrete
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increments. Thus we consider a sequence of loads I™ € Vj for alln = 1,..., N, and we consider

the following sequence of problems where (u", Eps p") €Vp xQopx Pforalln=1,...,N:
a(ey;u”,0) =1"(v), Vo € V), (31)
(e, p",Cl,,0™) = PLAS_IMP(e) "', p" 1, e" 1 e"), in Q,

where e 1= g(u""1), e := e(u™), and where variables with a superscript "~! come from the

solution of the quasi-static problem (31) at the previous load increment or from a prescribed
initial condition if n = 1. Given a quadruple (e Old,p‘)ld gold gnew) the procedure PLAS_IMP
returns a quadruple (e,", p**", CEo™, 0™¢%) such that

(p(o_newjpneW) S 07

)\new — §p . pneW pold > O )\new (O_new pnew) 0 ( )
5 > 5IleW E()ld new 1 new

Moreover o"*" = C : (™" — g,°") is the new stress tensor, and Cg5" is the consistent elasto-
plastic modulus [21] such that

new __ Uold + ngw . (56, S 1= ghew _ sold, O_old = C (Eold _ Eold)_ (33)

g P

The consistent elastoplastic modulus is instrumental to solve (31) iteratively using an implicit
radial return mapping technique (close to Newton—Raphson iterations) [22]: For all k£ > 0, we
solve the linear problem in u™* € Vp such that

{“C””fr (), e(0))g = (D) = 1(B) — (0™, 2(D))g, VO €V,

34
( ok ok Cgpk, n.k ) = PLAS_IMP(eZ_l,p"_I,5"_1,5"’k), in Q, (34)

where the state for £k = 0 comes from the previous loading step or the initial condition. Con-
vergence of the iterative process in k is reached when the norm of the residual r™* is small
enough.

4.2 DEM space discretization

Using the DEM space discretization, the sequence of quasi-static problems (31) amounts to

seeking a discrete triple (uj, 6Z7C,pg) € Vip X Qp X Py forallm=1,..., N, such that
an(epcsun, 0n) =l (Tn), Vo, € Vho, (35)
(ep P Cly o) = PLAS_IMP(ep .t pi~eptel), VeeC,

where [} represents a suitable discretization of the load linear form [". Using the radial return
mapping technique as in (34), we solve for all £ > 0 the linear problem in qu € Vip such that

k ~ k/~ ~
S lel(CLE eo(Rup™))) : ec(R()) = 15" (0n), Vop, € Vo,
ceC (36)
(eph, pik, Ck o) = PLAS_IMP(epr ! pli~ ! el elh), Veed,

with the residual rg’k(f)h) = ") — Y pec lcloF - eo(R (1)), and where the discrete state for
k = 0 comes from the previous loading step or by interpolating the values of the initial condition
at the cell barycenters and the boundary vertices. Convergence of the iterative process in k is
reached when the norm of the residual rg’k is small enough (we use a scaled Euclidean norm).
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4.3 Numerical tests

This section contains two three-dimensional tests, a beam in quasi-static flexion and a beam
in quasi-static torsion, and a two-dimensional test case on the swelling of an infinite cylinder
with internal pressure.

4.3.1 Beam in quasi-static traction

A beam of square section S = 0.016m? and L = 1m is stretched by a displacement up(t)
imposed at its right extremity, whereas the normal displacement and the tangential component
of the normal stress are null at the left extremity. An homogeneous Neumann condition (o-n =
0) is enforced on the four remaining sides of the beam. Figure 5 shows a sketch of the problem
setup. The Young modulus is taken as £ = 7T0MPa and the Poisson ratio as v = 0.3. The yield
stress is 09 = 250Pa, and the material is supposed to be elasto-plastic with linear kinematic
hardening. Specifically the tangent plastic modulus is set to E;, = %E, so that we have
R(p) = Hp with H = EE_Eét. The imposed displacement is linearly increased in 20 loading
steps from 0 to 3d,, where §, = 92 L is the yield displacement. For this test case the analytical
solution is available.

u=up(t)

Figure 5: Beam in quasi-static traction: problem setup.

Table 4 reports the energy error and the L%-error together with the convergence results.
These quantities are evaluated as described in Section 3.5. Figure 6 shows the stress-strain
response curve, showing perfect agreement with the analytical solution as the mesh is progres-
sively refined. Note that in this test case, the stress tensor is constant in the beam for its only
non-zero component (up to symmetry).

h dofs | [|u—up|z2(q) | order | [|u — upllen | order
0.338 | 894 1.04e-6 - 2.37e-5 -
0.281 | 1881 5.41e-7 1.80 1.71e-5 0.89
0.236 | 3483 1.69e-7 1.73 9.24e-6 0.90
0.185 | 8643 3.15e-8 1.45 3.38e-6 0.81
0.153 | 17019 6.39e-8 1.61 5.60e-6 0.83

Table 4: Beam in quasi-static traction: size of the mesh, number of dofs, L2-error and estimated
order of convergence, error in energy norm and estimated order of convergence.

4.3.2 Beam in quasi-static torsion

A beam of length L = 0.2m with a circular section of radius R = 0.05m is subjected to torsion
at one of its extremities. The Young modulus is taken as £ = 70MPa and the Poisson ratio as
v = 0.3. The yield stress is o9 = 250Pa, and the material is supposed to be perfectly plastic so
that R(p) = 0. The beam is clamped at one of its extremities, a torsion angle «/(t) is imposed at
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Figure 6: Beam in quasi-static traction: stress-strain response curve for the analytical solution
and the DEM solution.

the other extremity, and the rest of the boundary of the beam is stress free (o -n = 0). Figure
7 presents the problem setup. The torsion angle «(t) is increased linearly in 20 loading steps

from 0 to amax = 20y, where oy, = ;;?55 is the yield angle and p is the second Lamé coefficient.

The analytical solution is given in the cylindrical frame (e, eq, €.) as u(r, z,t) = a(t)rfey.

u = a(t)reg

Figure 7: Beam in quasi-static torsion: problem setup.

Table 5 reports the L?-error on the displacement (evaluated as in Section 3.5) and on the
cumulated plastic strain. A reference solution is computed on a fine mesh of size h = 0.014175
with P!-Lagrange FEM. The errors are evaluated as described in Section 3.5. Figure 8 presents
the torque-angle response curve for the reference solution and the DEM solution on various
meshes, showing good agreement and the convergence of the DEM predictions as the mesh is
refined.

4.3.3 Inner swelling of an infinite cylinder

This test case consists in the inner swelling of an infinite cylinder. The inner radius is R; = 1m
and the outer radius is R, = 1.3m. Owing to the symmetries, the computation is carried out
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h dofs | [Ju—up|lz2(q) | order | [|p — pullp2(q) | order
0.745 723 7.11e-06 - 1.21e-04 -
0.05881 | 3021 9.69e-07 4.18 8.06e-05 0.85
0.03294 | 12726 5.78e-07 2.63 5.81e-05 0.77
0.02871 | 18996 4.56e-07 2.52 4.95e-05 0.82
0.01965 | 47670 2.46e-07 2.41 4.04e-05 0.79

Table 5: Beam in quasi-static torsion: size of the mesh, number of dofs, L%-error in « and order
of convergence, L?-error in p and order of convergence.

Torsion torque Error on torsion torque
=9 h=0.05
0.035 1 cecoe?® ® h=0.025
® h=0.0125 °
0.030 1 h=0.0075 o ® eoo000 0004,
1073 4 ° °
o 00251 o ° °
E 2 L] o ® e o ®
£ 0.020 o P °
s 5 ° . .
2 0.015 1 2 ° e ®®
= < ° ° °
10744 °
0.010 1 h=0.05 L4
® h=0.025
0.005 4 ® h=0.0125
h=0.0075
0.000 1 —— Analytical solution
0.00 0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04
a - imposed rotation (rad) a - imposed rotation (rad)

Figure 8: Beam in quasi-static torsion. Left: torque-angle response curve for the analytical
solution and the DEM solution on various meshes. Right: difference between the analytical
solution and the DEM solution on various meshes.
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on a quarter of a planar section of the cylinder with a plane strain formulation. A sketch of
the problem setup is presented in Figure 9. On the lateral sides of the quarter of cylinder, a
null normal displacement and a null tangential component of the normal stress are enforced.
The outer side of the cylinder is stress free (o - n = 0), and the inner pressure w imposed on

the inner side is linearly increased from 0 to pmax = %O’an (%), where oy = 250N.m~2 is

the initial yield stress. The tangent plastic modulus is set to E; = ﬁE.

Figure 9: Inner swelling of an infinite cylinder: problem setup.

Table 6 reports the L?-error on the displacement (evaluated as in Section 3.5) and on the
cumulated plastic strain. The reference solution is computed on the finest mesh and is based
on P%Lagrange FEM using the implementation available in [3]. The results in Table 6 show
that the method converges at order 2 in the reconstructed displacement u;, and at order 1 in
the cumulated plastic strain pj, in the L?-norm. The method also converges at order 1 in the
energy norm (not reported for brevity).

h dofs | [Ju—up|lz2(q) | order | [|p — pullp2(q) | order
0.07735 | 992 2.21e-4 - 2.20e-03 -
0.04217 | 3412 6.24e-5 2.05 1.13e-03 1.08
0.02879 | 7588 1.73e-5 2.50 6.47e-04 1.21
0.02172 | 13380 1.08e-5 2.32 4.88e-04 1.16
0.01464 | 29528 4.25e-6 2.33 2.96e-04 1.18

Table 6: Inner swelling of an infinite cylinder: size of the mesh, number of dofs, L2-error in u
and order of convergence, L?-error in p and order of convergence.

5 Fully space-time discrete elasto-plasticity

In this section we consider the dynamic elasto-plasticity equations from Section 2. The time
discretization is performed by means of an explicit, pseudo-energy conserving, time-integration
scheme recently introduced in [18] and hereafter referred to as the MEMM scheme. The
space discretization is achieved by means of the DEM scheme discussed in Section 3. Three-
dimensional test cases are presented to assess the proposed methodology.
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5.1 Time semi-discretization of dynamic elasto-plasticity

For simplicity we consider in this section only the time semi-discretization of the dynamic
elasto-plasticity equations (9). We deal with the fully space-time discrete setting in the next
section. The MEMM time-integration scheme is a two-step method of order two which ensures
a discrete pseudo-energy conservation, if the integration of forces is exact, even for nonlinear
systems. Symmetric Gaussian quadratures of the forces can be used in practice as long as
they are of order at least two. The time interval (0,7") is discretized using the time nodes
0=ty <...<tp, <...<ty =T, and for simplicity we consider a constant time step At. We
define the half-time nodes tn+% = %(tn +typy1) for all m = 0,..., N. The time step is limited
by a CFL condition which we specify in the fully discrete setting in the next section.

The key idea in the MEMM scheme is to approximate the displacement field at the time
nodes by means of functions u”, for all n = 0,..., N, with u° specified by the initial condition
on the displacement, and thelvelocity field at the half-time nodes by means of functions v”+%,
for all n = 0,..., N, with v2 specified by the initial condition on the velocity. For all n =
0,...,N, given u" and v”+%, the MEMM scheme performs two substeps: (i) A time-dependent
displacement field is predicted on the time interval [t,,t,+1] using the free-flight expression
a(t) = u™ + (t — tn)v"Jr% for all ¢t € [tn,tn+1]; (i) The velocity field v"t3 s predicted by
means of a quadrature on the time-integration of the forces in the time interval [t,, t,+1]. Let
{tni}trex and {wy, i }rex be the nodes and the weights for the quadrature in the time interval
[tn,tnt1]. We then set

u™t ="+ (tnk — tn)v"Jr%, Vk e K,
1 B
§m(v"+% — v”*%,f)) = Z W,k (l(tmk,f)) — a(eg’k;u”’k,ﬁ)), Vo € Vo, (37)
ke
(ep®, p™*) = PLAS_EXP(eph 1, pmh=t gy, vk € K,
where e™F .= 5(u”’k) is known from the free-flight displacement prediction and where the state

for the first Gauss node k = 1 comes from the previous time step or the initial condition. Given
a triple (Egld, p°ld, e"eW) the procedure PLAS_EXP returns a pair (ep7", p"°Y) such that, letting
oW = C: (e"V — g)®V), we have

SD(O_I'IEW’ZQHGW) S 07

Anew . 5}7 — pnew _ pold >0, )\newcp(o_new’pneW) =0, (38)

new Hwa(p new
> —egld:)\e %((C:(se —521‘1)).

The main difference with respect to the procedure PLAS_IMP described in (32) is on the incre-
ment of the tensor of remanent plastic strain.

depi=¢

5.2 Fully space-time discrete scheme

Full space-time discretization is achieved by combining the MEMM time-integration scheme
described in the previous section with the DEM space discretization scheme from Section 3.
Foralln =1,..., N, we compute a discrete displacement field u} € V;,p (recall that this space
depends on n if the prescribed Dirichlet condition on the displacement is time-dependent) and

1
a discrete velocity field UZ+2 € Whp where the Dirichlet condition on the velocity stems from
the time-derivative of the prescribed displacement on the Dirichlet boundary 9€2p. Moreover,

we compute a (tensor-free) tensor of remanent plastic strain eg:f and a scalar cumulated plastic

deformation p?* for every mesh cell ¢ € C and every Gauss time-node k € K. We set 52’5 =
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(5}};5)060 and pg’k := (p*)eec. The fully discrete scheme reads as follows: Foralln =1,..., N,

1 1 3
iven u?, v, 2 and v, ' 2, compute {uFy e {e™M) d {pc} h that
g hr Up h p R SkeK> Up 75 1&p e Tkek, ald \PCjkekC SUC a

1

up® =l + (b — ta)vp 2, Wk € K,

1 +3 “3 5 . k. nk -~ _

thw;‘ 2y D) =) wek (lh(tn,kvvh) —ap(eyciuy ,vh)), Yy, € Vi, (39)
kex

(g, pi*) = PLAS_EXP(epy ", =t elbk), Vk €K, VeeC,

where e7F = 5C(R(uzk)) Moreover, my, and I, are, respectively, the discrete mass bilinear
form and the discrete load linear form. For the first Gauss node k& = 1, the first two arguments

in PLAS_EXP come from the previous time step or the initial condition. The initial displace-
1

ment ug and the initial velocity v? are evaluated by using the values of the prescribed initial
displacement ug and the prescribed initial velocity vg at the cell barycenters and the boundary
vertices.

The time step is restricted by the following CFL stability condition:

At < 2,/ Hmin (40)
>\max

where iy is the smallest component of the diagonal mass matrix associated by the discrete
mass bilinear form my(-,-) and Apax is the largest eigenvalue of the stiffness matrix associ-
ated the discrete stiffness bilinear form ay(0;-,-) (i.e., this maximal eigenvalue is computed in
the worst-case scenario when there is no plasticity). The CFL condition (40) guarantees the
stability of the MEMM time-integration scheme in the linear case [18], i.e., when there is no
plasticity. We expect that this condition is still reasonable in the nonlinear case with plasticity
since plasticity does not increase the stiffness of the material.

5.3 Numerical tests

This section contains two three-dimensional test cases: a beam in dynamic flexion and a beam
in dynamic torsion. We use the midpoint quadrature for the integration of the forces in each
time step within the MEMM time-integration scheme. We refer the reader to [15] for a study
of the influence of the quadrature on the scheme accuraccy for various nonlinear problems with
Hamiltonian dynamics.

5.3.1 Beam in dynamic flexion

This test case consists in computing the oscillations of an elastic and linearly isotropic plastic
beam of length L = 1m with a rectangular section of 0.04 x 0.1m?. The simulation time is
T = 2.5s. The beam is clamped at one end, it is loaded by a uniform vertical traction g(¢) at
the other end, and the four remaining lateral faces are stress free (o - n = 0). The load term
g(t) is defined as
1
o(t) = {—em for ? <t< 3T, (41)
0 for :T <t <T.

Figure 10 displays the problem setup. The material parameters are £ = 1MPa for the Young
modulus, ¥ = 0.3 for the Poisson ratio, p = lkg-m™2 for the density, o9 = 25Pa for the
yield stress, and E; = ﬁE for the tangent plastic modulus. The present three-dimensional
implementation used as a starting point [3], where FEM and an implicit time-integration scheme
are considered for a purely elastic material.
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w=ol , ﬁﬂ 9(t)

Figure 10: Beam in dynamic flexion: problem setup.

The proposed DEM is compared to P!'-Lagrange FEM. A first computation is performed
with two coarse meshes, one for the DEM leading to 1281 vector-valued dofs and one for the P-
Lagrange FEM leading to 1266 vector-valued dofs. The time step is Atcoarse = 2.6-107%, which
is stable for the explicit integration for both methods. A second computation is performed on
two finer meshes, leading to 13446 dofs for the DEM and to 14004 dofs for the P'-Lagrange
FEM. The stable time-step for both methods is Atgne = 6.2-1077. As already mentioned, the
MEMM time-integrator hinged on a midpoint quadrature. Higher-order symmetric quadratures
have been found to give overlapping results with respect to the midpoint quadrature. In
all the computations, the time-discretization error is negligeable with respect to the space-
discretization error.

The displacement and velocity at the center of the loaded tip of the beam are compared in
Figure 11 for the coarse and the fine meshes. We notice the discrepancy between DEM and
FEM predictions on the coarse meshes and that this discrepancy decreases significantly on the
fine meshes. (The FEM simulation on the fine mesh has not yet been fully completed at the
time of submission, but the reported results already show the main behavior.)

Displacement at the tip Velocity at the tip

—— DEM coarse

—— FEM coarse

—— DEM fine
—— FEM fine

0.5 A 1.04

N
>

0.5 A

o
w

0.0
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Displacement (m)
o
N

—0.51

o
-

—— DEM coarse
—— FEM coarse
—— DEM fine
—— FEM fine

0.0 1 -1.04

0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 2.5
Time (s) Time (s)

Figure 11: Beam in dynamic flexion: comparison between the proposed scheme (DEM) and a
finite element solution (FEM) on coarse and fine meshes. Left: Displacement at the loaded tip
of the beam. Right: Velocity at the same point.

Figure 12 shows the balance of energies. One can first notice that the total energy for both
DEM and FEM space semi-discretizations is well preserved by the MEMM time-integrator
since the total mechanical energy (kinetic energy, elastic energy and plastic dissipation) and
the work of the external load are perfectly balanced at all times. We also notice that the
amount of plastic dissipation is rather significant at the end of the simulation.

Figure 13 presents some further results of the DEM computations on the fine mesh so as
to visualize at three different times during the simulation the spatial localization of the von
Mises equivalent stress, the cumulated plastic strain, and the trace of the stress tensor. One
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Figure 12: Beam in dynamic flexion: energies during the simulation. Above: coarse mesh.
Below: fine mesh. Left: DEM. Right: FEM.
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Figure 13: Beam in dynamic flexion: DEM on the fine mesh. Von Mises equivalent stress (left
column), p (middle column) and tr(o) (right column) at ¢t = {57 (top line), ¢t = 37" (middle
line) and ¢ = T (bottom line).
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can see that the plastic strain is concentrated close to the clamped tip of the beam, where
the material undergoes the greatest stresses. The method does not exhibit any locking due to
plastic incompressibility as indicated by the smooth behavior of the trace of the stress tensor.

5.3.2 Beam in dynamic torsion

The setting is similar to the quasi-static torsion test case presented in Section 4.3.2. The two
differences are the plastic law which is no longer perfect but linearly hardening as in Section
5.3.1, and the boundary conditions on one side of the beam. Figure 14 shows the problem
setup. On one of its extremities the beam is clamped, and on the other extremity the following
normal stress is imposed:

g(t) = ua(t)%ee, (42)

where 7 and eg are defined in Section 4.3.2. The angle «(¢) is increased from 0 at t = 0 to 5oy,
at t = T = 0.5s, where a, is the yield angle defined in Section 4.3.2. The plastic parameters
are the same as those in Section 5.3.1.

9(t) = pa(t) peo

Figure 14: Beam in dynamic torsion: problem setup.

The coarse meshes lead to 2008 vector-valued displacement dofs for the DEM and to
2170 vector-valued displacement dofs for the P'-Lagrange FEM. The time step is Atcoarse =
1.8:107%s, which is stable for both computations. The fine meshes lead to 6978 vector-valued
dofs for the DEM and to 6584 vector-valued dofs for the P!-Lagrange FEM. The time step
is Atgne = 1.9 - 10755, which is also stable for both computations. Though surprising at first
glance, the identity Atfine > Afcoarse can be seen as a byproduct of the facet reconstruc-
tion algorithm presented in Section 3.3. Indeed the interpolation procedure seems to rely on
more regular neighboring simplices in the case of the fine mesh. The MEMM time-integration
scheme with a midpoint quadrature is used. In all computations, the time-discretization error
is negligeable with respect to the space-discretization error.

The comparison between the two methods is performed by considering the displacement
and the velocity of the point of coordinates (0.9R,0, £L) and over the simulation time 7. The
results are reported in Figure 15. (The FEM simulation on the fine mesh has not yet been
fully completed at the time of submission, but the reported results already show the main
behavior.) We notice that the value for the simulation time is too long for the simulation to
remain physically relevant within the small strain assumption owing to the large value reached
by the angular displacement of the reference point. However this setting allows us to reach
substantial amounts of plastic dissipation and thereby to probe the robustness of the space
semi-discretization methods with respect to incompressibility. Recall that the remanent plastic
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Figure 15: Beam in dynamic torsion: comparison between DEM and FEM. Left: Displacement
at the chosen point. Right: Velocity at the same point.
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Figure 16: Beam in dynamic torsion: FEM (fine mesh). tr(o) at t = 37"
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strain tensor is trace-free, so that the stress tensor is nearly deviatoric in the entire beam at
the end of the simulation. Such a situation is challenging for the P!-Lagrange FEM since this
method is known to lock in the incompressible limit. This explains the strong discrepancy
between FEM and DEM in Figure 15. To highlight the volumetric locking incurred by FEM,
Figure 16 displays at the time ¢t = %T the trace of the stress tensor predicted by FEM.
Significant oscillations are visible in the whole beam (the amplitude of these oscillations is
about ten times the maximal value of the von Mises equivalent stress). Figure 17 reports the
energies on the coarse and the fine meshes for DEM and FEM. As in Figure 15, significant
discrepancies between DEM and FEM are again observed. Moreover we notice as in the previous
test case the prefect balance of the work of external loads with the different components of
the mechanical energy. Finally we observe that the fraction of elastic energy is larger for FEM
than for DEM, whereas FEM underestimates the plastic strain.
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Figure 17: Beam in dynamic torsion: energies during the simulation. Above: coarse mesh.
Below: fine mesh. Left: DEM. Right: FEM.

Figure 18 presents some further results of the DEM computations on the fine mesh so as
to visualize at three different times during the simulation the spatial localization of the von
Mises equivalent stress, the cumulated plastic strain, and the trace of the stress tensor. The
magnitude of the oscillations of the trace of the stress tensor is significantly smaller than the
magnitude of the von Mises equivalent stress.
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Figure 18: Beam in dynamic torsion: DEM on the fine mesh. Von Mises equivalent stress (left
column), p (middle column) and tr(c) (right column) at ¢ = &7 (top line), t = 17" (middle
line) and t = T (bottom line).
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6 Conclusion

We have presented a new Discrete Element Method which is a consistent discretization of a
Cauchy continuum and which only requires continuum macroscopic parameters as the Young
modulus and the Poisson ratio for its implementation. The displacement degrees of freedom
are attached to the barycenters of the mesh cells and to the boundary vertices. The key
idea is to reconstruct displacements on the mesh facets and then to use a discrete Stokes
formula to devise a piecewise constant gradient and linearized strain reconstructions. A simple
geometric pre-processing has been devised to ensure that for almost all the mesh facets, the
reconstruction is based on an interpolation (rather than extrapolation) formula and we have
shown by numerical experiments that this choice can produce highly beneficial effects in terms
of the largest eigenvalue of the stiffness matrix, and thus on the time step restriction within
explicit time-marching schemes. Moreover, in the case of elasto-plastic behavior, the internal
variables for plasticity are piecewise-constant in the mesh cells. The scheme has been tested
on quasi-static and dynamic test cases using a second-order, explicit, energy-conserving time-
marching scheme. Future work can include adapting the present framework to dynamic cracking
and fragmentation as well as to Cosserat continua.
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