Minhquang Pham

Josep Crego

Jean Senellart

Generic and Specialized Word Embeddings for Multi-Domain Machine Translation

Supervised machine translation works well when the train and test data are sampled from the same distribution. When this is not the case, adaptation techniques help ensure that the knowledge learned from out-of-domain texts generalises to in-domain sentences. We study here a related setting, multidomain adaptation, where the number of domains is potentially large and adapting separately to each domain would waste training resources. Our proposal transposes to neural machine translation the feature expansion technique of (Daumé III, 2007): it isolates domain-agnostic from domainspecific lexical representations, while sharing the most of the network across domains. Our experiments use two architectures and two language pairs: they show that our approach, while simple and computationally inexpensive, outperforms several strong baselines and delivers a multi-domain system that successfully translates texts from diverse sources.

Introduction

Owing to the development of flexible and powerful architectures based on neural networks [START_REF] Cho | On the properties of neural machine translation: Encoder-decoder approaches[END_REF][START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF][START_REF] Gehring | Convolutional sequence to sequence learning[END_REF][START_REF] Vaswani | Attention is all you need[END_REF], Machine Translation (MT) has made significant progresses over the past years and constitute to date the standard for most production engines. The development of MT systems, be they neural or statistical, require very large parallel corpora consisting of millions of sentence pairs, a resource that only exist in very few application domains and language pairs. A lot of the recent research effort has thus focused on developing MT systems in restricted data conditions, for instance building multilingual MTs which enable zero-shot translation [START_REF] Firat | Multi-way, multilingual neural machine translation with a shared attention mechanism[END_REF][START_REF] Ha | Toward multilingual neural machine translationwith universal encoder and decoder[END_REF][START_REF] Johnson | Google's multilingual neural machine translation system: Enabling zero-shot translation[END_REF]. Another important scenario for industrial MT is to adapt a neural system trained using parallel data in one domain to the peculiarity of other domains. Domain Adaption (DA) in MT is an old issue [START_REF] Foster | Mixture-model adaptation for SMT[END_REF][START_REF] Axelrod | Domain adaptation via pseudo in-domain data selection[END_REF], which comes in various guises and for which a number of solutions have been studied. See the recent survey of [START_REF] Chu | A survey of domain adaptation for neural machine translation[END_REF] for neural MT. The typical setting is supervised adaptation, where a (small) amount of data in the target domain of interest is used to fine-tune the parameters of a system trained on a large amount of texts in a source domain. We study here a different scenario, multi-domain adaptation [START_REF] Sennrich | A multidomain translation model framework for statistical machine translation[END_REF][START_REF] Farajian | Multi-domain neural machine translation through unsupervised adaptation[END_REF], where we would like to use heterogenous data sources to train a unique system that would work well for all domains. This allows us to be both data efficient (all data is used to train all domains) and computationally efficient (we only train one system). Multi-domain adaptation is conceptually close to multilingual MT, or more generally to multi-task learning [START_REF] Caruana | Multitask learning[END_REF] and can be approached in a number of ways.

We adapt here ideas of [START_REF] Daumé | Frustratingly easy domain adaptation[END_REF] to neural MT. Our main hypothesis is that domains mostly differ at the lexical level, due to cross-domain polysemy, which motivates domain specific embeddings. By contrast, the deeper layers, which arguably model more abstract linguistic phenomena, are made shareable across domains. To this end, we design word embeddings containing a generic and several domain-specific regions. We experiment with four domains, two neural architectures and two language pairs and find that our technique yields effective multi-domain NMTs, outperforming several baselines. Our contributions are thus as follows: we adapt and implement the ideas of [START_REF] Daumé | Frustratingly easy domain adaptation[END_REF] for two NMT architectures; we provide experimental evidence that show the effectiveness of this technique; we evaluate the ability of our networks to dynamically accommodate new domains; and we introduce a new technique to analyze word polysemy using embeddings, which comforts the assumption that their variation across domains actually reflects a variation of senses.

Lexicalized domain representations

Multi-domain machine translation

Multi-domain machine translation is formalized as follows: we assume observations taking the form of domain-tagged sentence pairs [(x, y), i], with x in the source language, y in the target language and i a domain tag in [1 . . . d]. We further assume a two-stage sampling process: first select a domain i according to p(i), then select a sentence pair according to a domain specific distribution D i . Our objective is to find a tuple of parameters {θ

1 . . . θ d } ∈ R D ו • •×R D minimizing: i∈[1..d] p(i)E (x,y)∼Di [-log(p θi (y|x, i))]. (1)
The training data for domain i is denoted C i . A straightforward solution is to process each domain separately, computing the value θ * i that minimizes the empirical loss on C i . This strategy is only effective if we have sufficient training data for each domain; when this is not the case, some estimates θ * i may be far from their optimal value. The alternative we consider here constraints each parameter θ i to be made of two parts:

θ i = [θ s ; θ i]. θ s ∈ R Dg is
shared across all domains, while the second part θ i ∈ R Di is only used in domain i. The parameter set is now much more constrained, yet we expect that tying parameters across domains will yield better estimates for θ s due to a larger training corpus. In this setting, the optimization program defined by equation (1) can no longer be performed separately for each training corpus.

Lexicalized domain embeddings

To actually implement this idea for NMT, we need to define the subset of parameters that will be shared across domains. Our hypothesis is that domain specificities can be confined to the lexical level and we define θ s to contain all the network parameters except for a subpart of the word embeddings. For each word v, the embedding vector e(v) is thus decomposed as e(v) = [e g (v); e 1 (v); . . . ; e d (v)], where e g (v) stores the generic lexical embedding, while e i (v) stores the subpart that is specific to domain i. In our NMT architectures, the actual embedding layer composes these vectors linearly to generate the word embedding for domain k according to:

ẽk (v) =M g e g (v) + i∈[1,..,d] M i × e i (v) × δ(i = k) = M [e g (v); e 1 (v, k) . . . ; e d (v, k)], (2)
where δ() is the indicator function, M is the matrix made of blocks M g , M 1 . . . , M d , and e i (v, k) is the masked embedding: e i (v, k) = e i (v) * δ(i = k). Making sure that the actual embedding do not contain any zero is important for the Transformer model, since the lexical representations are then added to the positional encoding, which would undo the effect of domain masking, and propagate a gradient even to regions that should not be modified. With our design, we make sure that during backprogation, the matrix M receives gradient 0 at regions corresponding to deactivated regions in the word embedding. Those regions are also masked in forward step, thus do not interfere the training on the domains to which they are not assigned (see Figure 1). Our architecture is thus readily compatible with any NMT architecture, where we simply replace standard embedding layers by the embeddings defined in equation [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF]. In our experiments, we consider both the attentional RNN architecture of [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] and the Transformer architecture of [START_REF] Vaswani | Attention is all you need[END_REF].

Experiments

Domains and data

We experiment with two language pairs (English-French, English-German) and data originating from three domains, corresponding to texts from three European institutions: the European Parlement (EPPS) [START_REF] Koehn | Europarl: A parallel corpus for Statistical Machine Translation[END_REF], the European Medicines Agency (EMEA), the European Central Bank (ECB) [START_REF] Tiedemann | News from OPUS -A collection of multilingual parallel corpora with tools and interfaces[END_REF], In addition, for English-French we also use IT-domain corpora obtained from the OPUS web site1 corresponding to KDE, Ubuntu, GNOME and PHP datasets (IT). We randomly split those corpora into training, validation and test sets (see statistics in Table 1). Validation sets are used to chose the best model according to the average BLEU score [START_REF] Papineni | BLEU: a method for automatic evaluation of machine translation[END_REF].

Corpus Train

Valid Test English → French EMEA 1.09M 1,000 1,000 (300) ECB 0.19M 1,000 1,000 EPPS 2.01M 1,000 1,000 IT 0.54M 1,000 1,000 English → German EMEA 1.11M 1,000 1,000 (300) ECB 0.11M 1,000 1,000 EPPS 1.92M 1,000 1,000 Note that the EMEA dataset distributed on the OPUS site contains multiple sentence duplicates. We therefore report below two numbers as S (T) : the first (S) is comparable to what has been published on earlier studies (eg. [START_REF] Zeng | Multi-domain neural machine translation with word-level domain context discrimination[END_REF]), the second one (T) is obtained by making the test entirely disjoint from the training (700 duplicated sentences are discarded).

To reduce the number of lexical units and make our systems open-vocabulary, we apply Byte-Pair Encoding [START_REF] Sennrich | Neural machine translation of rare words with subword units[END_REF] separately for each language with 30,000 merge operations.

Baselines

To validate our findings, we compared lexicalized domain embedding models with standard models using both attentional Recurrent Neural Networks (RNNs) [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] and the Transformer architecture of [START_REF] Vaswani | Attention is all you need[END_REF]. Our baselines consist of:

• generic models trained with a simple concatenation of all corpora (Mixed);

• models tuned separately on each domain for respectively (10000, 15000, 5000) iterations using in-domain data (ft EM EA , ft EP P S , ft ECB);

• models using domain tags as in [START_REF] Kobus | Domain control for neural machine translation[END_REF] (DC);

For all models, we set the embeddings size equal to 512; the size of hidden layers is equal to 1024 for RNNs and 512 for Transformer. Other important configuration details are as follows: Transformer models use multi-head attention with 8 heads in each of the 6 layers; the inner feedforward layer contains 2048 cells; RNN models use 1 layer on both sides: a bidirectional LSTM encoder and a unidirectional LSTM decoder with attention. The domain control systems are exactly as their baseline counterparts (RNN and Transformer), with an additional 2 cells encoding the domain on the input layer. To train NMT systems, we use Adam, with parameters β 1 = 0.9, β 2 = 0.999, α = 0.0005 for RNNs; with parameters β 1 = 0.9, β 2 = 0.98, with Noam decay [START_REF] Vaswani | Attention is all you need[END_REF] for Transformer (warmup steps = 4000). In all cases, we use a batch size of 128 and a dropout rate of 0.1 for all layers. All our systems are implemented in OpenNMT-tf 2 [START_REF] Klein | OpenNMT: Open-source toolkit for neural machine translation[END_REF].

Implementing Lexicalized Domain Representations

In order to implement lexicalised domain representations (henceforth LDR), we split the embedding vector into four regions: 3 are domain specific and 1 is generic, with sizes [START_REF] Foster | Mixture-model adaptation for SMT[END_REF][START_REF] Foster | Mixture-model adaptation for SMT[END_REF][START_REF] Foster | Mixture-model adaptation for SMT[END_REF]488] respectively. If a sentence originates from domain i, the domain specific regions for all domains j = i will be zeroed out while the other regions are activated (cf. Figure 1). We then use a dense layer of size 512 to fuse the region for the active domain and the "generic" region. Training is formalised in algorithm 1. Note that each iteration of algorithm 1 uses 2 batches: a "generic" batch updating only the generic region; and a "domain-specific" batch updating just the domain-specific parameters.

The batch selection procedure (step 2 of algorithm 1) ensures that the number of examples of each domain used in training follows the distribution of the training data. In our experiments, this means that sentences from the Europarl domain will be selected more frequently that the two other domains. We also consider a more balanced sampling procedure, where i is selected according to distribution Randomly pick B sentences from C i .

[√ |Ci| i∈[1,..,d] √ |Ci|].

4:

Activate only generic region to create generic batch, denoted W g .

5:

Compute gradient of θ s , ∂L ∂θs using W g .

6:

Activate domain-specific and generic regions to create domain-specific batch W i 7:

Compute gradient of domain-specific parameters θ i , ∂L ∂θi using W d .

8:

Update parameters θ s using ∂L ∂θs (W g) and θ i using ∂L ∂θi (W i) 9: until convergence

Results

Results are summarized respectively in Table 2 for the Transformer systems and Table 3 for the RNN systems, where we report BLEU [START_REF] Papineni | BLEU: a method for automatic evaluation of machine translation[END_REF] scores computed after detokenization. 3First, we observe that Transformer is consistently better than RNNs and that fine-tuning on a domain-specific corpus, when applicable, is almost the best way to optimize the performance on that domain. 4 Note that fine-tuning however yields a marked (even sometimes catastrophic, eg. for the EMEA-tuned Transformer system) decrease in performance for the other domains.

Our approach (LDR oracle) is consistently better than the Mixed strategy, with gains that range from very large (for EMEA and ECB) to unsignificant (for EPPS in most conditions). This means that our architecture is somehow able to compensate for the data unbalance and to raise the performance of the multi-domain system close to the best (finetuned) system in each domain. We even observe rare cases where the LDR oracle system outperforms fine-tuning (eg. Transformer en:de in the EMEA domain). LDR oracle is also better than Domain Control in three conditions out of four, DC being seemingly a better choice for the RNN than for the Transformer architecture. As expected, ignoring the true domain label yields a light drop in performance: this is reflected in the results of LDR pred , which relies on automatically predicted domain labels. 5 Note that this decrease is however hardly significant, showing that our architecture is quite robust to noisy labels. Even in the worst case scenario where all domain tags are intentionally wrong (LDR wrong), we see that the generic part still ensures a satisfying level of performance. A last contrast is with LDR 0. We also compare our architecture with the multi-domain model of [START_REF] Zeng | Multi-domain neural machine translation with word-level domain context discrimination[END_REF] (WDCMT) for the pair English→French. We use the author's implementation 6 that is composed of one bidirectional Gated recurrent units (GRU) layer on the encoder side; and one unidirectional conditional GRU layer on the decoder side; the dimension of "domain" layers is 300. The direct comparison with our RNN is difficult, as both networks differ in many ways: framework, cell types, etc. Results in Table 4 therefore use a variant of our model that makes it more similar to the WDCMT network. In particular, this variant also uses a single GRU layer in the encoder and a single conditional GRU layer in the decoder (LDR condgru pred). As can be seen in this table, our model is on average comparable to WDCMT, while using a much simpler design.

Complementary experiments 4.1. Balancing generic and domain representations

An important practical question concerns the balance between the generic and the domain-specific part of the embeddings. In the limit where the domain specific part is very small, we should recover the performance of the Mixed sys- tem; conversely, we expect to see a less effective sharing of data across domains by increasing the domain-specific regions. Table 5 reports the result of a series of experiments for the Transformer architecture (English-French) with varying domain-specific sizes allocating between 4 and 64 cells for domain-specific information, and the complement to 512 for the generic part. The differences are overall quite small in our experimental setting, where the training data is relatively limited and does not require to use a large embedding size. We therefore decided to allocate 8 cells for the domain specific part. This suggests that we could easily accommodate more domains with the same architecture and even reserve some regions to handle supplementary data (see below).

Additional Domain Scenario

We As expected, a huge improvement in performance is observed for the IT test set when learning includes in-domain data for both models, with LDR * oracle outperforming Mixed * by a wide margin. It is interesting to see that this additional data has also a positive impact on other test sets: both models similarly increase their performance for the ECB domain, and LDR * oracle additionally improves the results for the EMEA test, which is not the case for Mixed * ; finally, using IT data does not impact the quality of translations for the EPPS domain of any of the models. Overall better results are obtained by our LDR * oracle model trained with data from an additional source, demonstrating the ability of our architecture to seamlessly integrate a new domain.

Analysis of Word Embeddings

One of our main assumptions is that the difference between domains can be confined at the lexical level, warranting our decision to specialise lexical representations for each domain, while the remaining part of the network is shared across domains. Linguistically, this assumption relates to the classical "one sense per collocation" [START_REF] Yarowsky | One sense per collocation[END_REF] and corresponds to the fact that in many cases, polysemy corresponds to variation of use across domain. In its weaker form, it allows us to assume that all occurrences of a given form in a given domain correspond to the same sense and share the same representation; the same form occurring in different domains is allowed to have one distinct embedding per domain, which may help capture polysemy and lexical ambiguity in translation.

To check this hypothesis, we performed the following analysis of embeddings learned with the multi-domain Transformer system for English:French. For each unit8 in our English dictionary, we compute the k nearest neighbours for each domain i ∈ [1 . . . d], where the distance between unit u and v for domain i is the cosine distance in the corresponding embedding space, ie. assuming that the actual embedding of v for domain i is e(v, i) = M g e g (u) + M i e i (v) (cf. equation (2)). This process yields d lists of k nearest neighbours. A small intersection should then be a sign of a variation of use across domains; conversely, an near-identical set of neighbours across domains should reflect the stability of word use. Table 7 list the 10 units with the smaller (respectively larger) intersection (we use k = 10 and d = 3).

Polysemic "words" Monosemic "words" ases (0) obtain (10) impairment [START_REF] Cho | On the properties of neural machine translation: Encoder-decoder approaches[END_REF] virtually (10) convenience [START_REF] Cho | On the properties of neural machine translation: Encoder-decoder approaches[END_REF] represent (10) oring (1) safety (10) ums [START_REF] Cho | On the properties of neural machine translation: Encoder-decoder approaches[END_REF] defence (10) turnover (1) coordinated (10) occurrence [START_REF] Cho | On the properties of neural machine translation: Encoder-decoder approaches[END_REF] handling (10) tent [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] July (10) ture [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] previous (10) mation [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] better [START_REF] Chu | A survey of domain adaptation for neural machine translation[END_REF] Table 7: Analyzing the variation of embeddings across domains. For each word or subword we also report the size of the intersection (between 0 and 10).

Let us first consider the full words in the left column of Table 7. The case of impairment is pretty clear, occuring in EMEA mostly in terms such as "hepatic impairment" or "renal impairment", and translating into French as insuffisance. In ECB, its collocates are quite different and impairment often occurs in terms such as "cost subject to impairments" (French: coût soumis à des réductions de valeur). Likewise, "convenience" seems to have its general meaning ("for convenience") in EMEA, but appears in ECB in the specific context of "convenience credit card" (French carte de crédit à remboursement différé). We finally see the same phenomena with "turnover", which is consistently translated with its economic meaning (French chiffre d'affaire) in ECB and EPPS, but whose collocates in EMEA ("bone turnover", "hepatic turnover") are associated with the idea of the cell renewall process, yielding translations such as remodelage osseux in French. Subword units can be analysed in the same ways: "ums", for instance, appears in words such as "gums", "serums", "vacuums" in EMEA; in ECB, "ums" is mostly the suffix of "maximums", "minimums", or "premiums"; EPPS finally contains a more diverse set of "-ums" ending words ("stadium", "forum", equilibrium", etc).

Let us now consider the list of putative monosemic words (on the right part of Table 7), ie. words for which the nearest neighbors are the same in all domains. This list contains mostly words for which we do not expect much variation in translation: adjectives ("previous", "better"), adverbs ("virtually"), generic verbs ("handling", "coordinated"). Further down this list, we will also find prepositions ("at", "in"), auxiliary ("been") etc.

Related Work

Domain adaptation (DA) is a vexing problem in NLP, which appears in a wide range of practical situations and data scenarios (eg. supervised vs. unsupervised adaptation), and has been thoroughly studied from a number of perspectives, ranging from theoretical analysis to more applied work, and for which many solutions have been proposed. The literature of DA for Machine Translation reflects this diversity and typically distinguishes data-based approaches from modelbased approaches [START_REF] Chu | An empirical comparison of domain adaptation methods for neural machine translation[END_REF][START_REF] Chu | A survey of domain adaptation for neural machine translation[END_REF].

The most common adaptation scenario uses (mostly) out-of-domain data in training, while testing on a lowresource in-domain set of texts. In this setting, data-based approaches aim to bias the distribution of the train (outof-domain) data towards matching that of the target domain, using data selection techniques [START_REF] Moore | Intelligent selection of language model training data[END_REF][START_REF] Axelrod | Domain adaptation via pseudo in-domain data selection[END_REF][START_REF] Duh | Adaptation data selection using neural language models: Experiments in machine translation[END_REF], or generating adapted pseudo-parallel data through back-translation [START_REF] Utiyama | Reliable measures for aligning Japanese-English news articles and sentences[END_REF][START_REF] Wang | Neural network based bilingual language model growing for statistical machine translation[END_REF][START_REF]Connecting phrase based statistical machine translation adaptation[END_REF][START_REF] Sennrich | Improving neural machine translation models with monolingual data[END_REF]. Model-centric approaches build domainadapted models by combining (eg. with mixture weights) multiple data sources or multiple systems [START_REF] Foster | Mixture-model adaptation for SMT[END_REF][START_REF] Wang | Instance weighting for neural machine translation domain adaptation[END_REF], or by biasing the training objective towards the desired domain using in-domain adaptation data [START_REF] Luong | Stanford neural machine translation systems for spoken language domain[END_REF][START_REF] Freitag | Fast domain adaptation for neural machine translation[END_REF][START_REF] Chen | Cost weighting for neural machine translation domain adaptation[END_REF]. Another approach worth mentioning integrates domain information (for instance a domain language model) in the decoding algorithm [START_REF] Gulcehre | On integrating a language model into neural machine translation[END_REF]. Our scenario is a bit different as we aim to train a unique system that will work well for several domains. This corresponds to a practical scenario in the industry, where one would like to maintain one single multi-domain engine, trained on all the available (heteregeneous) sources of data. Our primary source of inspiration is the proposal of [START_REF] Daumé | Frustratingly easy domain adaptation[END_REF] who proposes to use several copies of the same features (one "generic" shared across domains, and one for each domain), letting the training adjust their respective weights. This work has been reanalyzed in a Bayesian framework in [START_REF] Finkel | Hierarchical Bayesian domain adaptation[END_REF], and revisited notably in [START_REF] Chang | The necessity of combining adaptation methods[END_REF]. Following up on [START_REF] Yang | A unified perspective on multi-domain and multi-task learning[END_REF], the recent proposals of [START_REF] Peng | Multi-task domain adaptation for sequence tagging[END_REF] apply the same idea with neural architectures, using domain specific masking to zero out the param-eters modeling domains irrelevant to the current input sentence. Compared to our work, these techniques are used in deep network layers and applied to sequence labelling tasks.

The multi-domain scenario in NMT has been studied in a number of recent works. [START_REF] Farajian | Multi-domain neural machine translation through unsupervised adaptation[END_REF] learn a generic system and propose to dynamically adapt the network weights in an unsupervised manner using a small sample of training data that resembles the test data, an idea already explored in [START_REF] Sennrich | A multidomain translation model framework for statistical machine translation[END_REF]. Their main contribution is to propose a method to relate the amount of adaptation of the network parameters to the similarity between the adaptation sample and the test sentence: the higher the similarity, the more agressive the adaptation. By analogy with the proposal of [START_REF] Johnson | Google's multilingual neural machine translation system: Enabling zero-shot translation[END_REF] for multilingual NMT, [START_REF] Kobus | Domain control for neural machine translation[END_REF] and [START_REF] Chu | Multilingual and multi-domain adaptation for neural machine translation[END_REF] separately propose to extend the representation of the source text with a domain tag. Our model also modifies input representations, but allows each source word to have a domain-specific representation, thereby improving training of the shared parts of the network.

Similarly to our approach, [START_REF] Zeng | Multi-domain neural machine translation with word-level domain context discrimination[END_REF] attempts to separate on the encoder side domain-specific representation from generic representations in two different sub-networks, where generic versus domain-specific representations automatically emerge from two adversarial networks. The decoder side can thus attend separately to these two representations to generate its output. In this approach, the shared and domain-specific parts are kept separated in the deeper layers of the network, whereas we try to localise the differences between domains at the lexical level, based on a much cheaper computational architecture. Another trait of this proposal is the ability to automatically infer domain information for test sentences; as we have shown, our architecture can also effectively accommodate sentences lacking domain information.

Conclusions

In this paper, we have presented a new technique for multi-domain machine translation, adapting the "frustratingly easy" idea of [START_REF] Daumé | Frustratingly easy domain adaptation[END_REF] to two standard NMT architectures. Our experiments have shown that for both architectures and for two language pairs, our multi-domain models improve over several baselines of the literature and that it is robust to noise in domain labels. It is noticeable that these results are obtained without impacting the architecture or training complexity , making our approach an effective baseline for further studies in multi-domain translation. We have also shown that our approach can dynamically handle new domains; and that the domain-specific embeddings often reflect differences of senses. In our future work, we intend to develop these ideas so as to make the architecture more self-configurable and able to adapt the size of the domain-specific regions depending upon the actual variation of use across domains; we also would like to find additional ways to make the architecture able to integrate an arbitrary number of new domains in a dynamic fashion, as this is an important requirement in industrial systems.

Figure 1 :

 1 Figure 1: Lexicalized domain embeddings. When processing a sample from domain 2, we only activate the corresponding parameter region (θ 2) in the input embeddings; the remaining domain-specific parts are zeroed out and do not receive any update. The generic part is always active and is updated irrespective of the input domain.

Table 1 :

 1 Corpora statistics.

 The corresponding results are reported as LDR 0.5 . Multi-domain Training Input: Corpora C i , i ∈ [1, .., d] for d domains, Batch size B 1: repeat

2 https://github.com/OpenNMT/OpenNMT-tf Procedure 1 2: Randomly pick i ∈ [1, .., d] w.r.t the multinomial distribution [|Ci| i∈[1,..,d] |Ci|]. 3:

Table 2 :

 2 5 oracle where we change the distribution of training sentences to decrease the weight of EPPS data and increase the number of ECB samples. As a result, we see a small decrease for EMEA and EPPS, and a large boost for ECB. This shows that our technique can be used in conjunction to other well known strategies for performing domain adaptation. 45.[START_REF] Chu | Multilingual and multi-domain adaptation for neural machine translation[END_REF] 37.31 54.14 53.10 LDR oracle 74.26 49.90 37.67 54.07 55.33 LDR 0.5 oracle 74.95 49.38 37.35 55.91 56.07 LDR pred 74.29 49.84 37.73 54.01 55.34 LDR wrong 72.95 49.78 37.62 53.35 54.64 English→German Mixed 64.57 42.99 26.47 68.67 53.23 FT EM EA 68.35 42.97 17.02 32.87 39.41 FT EP P S 36.19 26.29 40.71 34.39 FT ECB 24.72 18.36 74.05 39.04 DC 63.48 42.98 26.27 66.95 52.23 LDR oracle 70.90 46.12 26.30 68.90 55.36 LDR 0.5 oracle 71.31 45.23 25.98 73.74 57.01 LDR pred 70.89 46.12 26.53 68.63 55.35 LDR wrong 69.51 43.50 26.31 66.86 54.22 BLEU scores for Transformer systems

	Model	EMEA	EPPS ECB	Avg.
	English→French		
	Mixed	67.69 47.60 37.50 53.49 52.89
	FT EM EA 76.77 49.43 17.16 11.99 35.30
	FT EP P S	20.86	37.04 24.53 27.47
	FT ECB	26.93	27.09 56.52 36.84
	DC	67.87		

Table 3 :

 3 BLEU scores for RNN systems

	Model	EMEA	EPPS ECB	Avg.
	English→French		
	M ixed	65.42 45.11 34.70 51.38 50.50
	FT EM EA 72.06 47.33 18.62 16.78 35.82
	FT EP P S	35.47	34.61 39.56 36.55
	FT ECB	21.93	22.60 51.53 32.02
	DC	68.26 43.76 35.13 50.09 51.16
	LDR oracle 71.73 46.30 35.21 50.91 52.62
	LDR 0.5 oracle	71.70 46.41 34.24 52.37 52.77
	LDR pred	72.76 46.35 35.10 50.38 52.75
	LDR wrong 62.10 43.29 34.17 48.79 48.35
	English→German		
	M ixed	57.37 37.94 23.10 63.54 48.00
	FT EM EA 65.64 44.71 12.36 15.93 31.31
	FT EP P S	24.90	22.98 26.26 24.71
	FT ECB	41.80	15.97 71.07 42.95
	DC	62.53 39.25 23.74 65.71 50.66
	LDR oracle 63.43 40.04 22.66 64.40 50.16
	LDR 0.5 oracle	63.27 38.16 21.83 69.55 51.55
	LDR pred	63.17 39.92 22.51 64.00 49.89
	LDR wrong 56.84 37.05 22.06 61.66 46.85
	Model	EMEA	EPPS ECB	Avg.
	English→French		
	LDR pred	72.76 46.35 35.10 50.38 52.75
	LDR condgru pred	71.70 46.21 35.09 51.22 52.67
	WDCMT	68.76 45.29 35.71 52.75 52.40

6

http://github.com/DeepLearnXMU/WDCNMT

Table 4 :

 4 BLEU scores for RNN systems. Comparison between WDCMT and LDR pred built using conditional GRUs.

Table 5 :

 5 BLEU scores for the Transformer architecture for varying domain-specific embedding sizes tions, which needs to process new training data from the IT domain. Assuming that we have reserved extra empty embedding cells 7 for this domain, we resume training with 4 domains during 100,000 additional iterations, yielding an updated model LDR * oracle . Results for the English→French language pair are in Table 6, where for comparison purposes we also report numbers obtained with continued training with the Mixed model, training for the same number of iterations and using the same four datasets (Mixed *). 66.49 45.79 37.59 55.07 51.78 52.73 LDR oracle 74.26 49.90 37.67 54.07 13.40 44.85 LDR * oracle 76.17 49.71 37.48 55.12 55.24 56.00

	LDR oracle	EMEA	EPPS ECB	Avg.
	English→French			
	size=4	74.65 49.61 37.42 54.49 55.52
	size=8	74.26 49.90 37.67 54.07 55.33
	size=16	74.15 49.10 37.78 54.56 55.50
	size=32	75.10 48.61 37.64 54.29 55.68
	size=64	74.50 50.17 37.27 54.50 55.42
	Model	EMEA	EPPS ECB	IT	Avg.
	English→French			
	Mixed	67.69 47.60 37.50 53.49 13.91 43.15
	Mixed				

now evaluate the ability of our model to integrate new domains, a very common scenario for industrial MT. In this setting, we consider that we have a model (LDR oracle) trained as before for EMEA, EPPS and ECB during 200,000 itera-*

Table 6 :

 6 BLEU scores for the Transformer architecture when including IT as additional domain

http://opus.nlpl.eu

As explained above, we report two numbers when testing with EMEA, except for the fine-tuning scenarios when tuning on ECB and EPPS.

This is not so clear for EPPS, where fine-tuning does not seem to help.

Our domain classifier uses a bi-LSTM RNN encoder, followed by a simple softmax layer. Its precision on a development set exceeds 95%.

For this experiment, word embeddings contain 480 cells for the generic region and 32 cells for domain specific regions (8 cells x 4 regions).

In this study, we work with BPE units meaning that in many cases we observe the variation of use of word parts. As we work with a large inventory, many of these units still correspond to actual words and we focus on these in our comments. We also restrict our analysis to words that occur at least 30 times in each domain, to ensure that each domain-specific region is updated during training.