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Abstract

Going from a scaling approach for birth/death processes, we investigate the convergence
of solutions to BSDEs driven a sequence of converging martingales. We apply our results to
non-Markovian stochastic control problems for discrete population models. In particular we
describe how the values and optimal controls of control problems converge when the models
converge towards a continuous population model.

Key words: backward stochastic differential equation (BSDE), stability of BSDEs, martingale
properties, birth and death processes, population models, stochastic control.

1 Introduction

The sustainability of natural resources has become a major subject of interest in the last decades
for public institutions. For instance, in 1983 the European Union has launched its common fisheries
policy to manage European fish stocks. In August 2010, a report of European commission named
Water Scarcity and Drought in the European Union, has emphasized that ”an adequate supply of
good-quality water is a pre-requisite for economic and social progress, so we need to do two things:
we must learn to save water, and also to manage our available resources more efficiently”. A large
part of academic literature has dealt with such issues. For example, Reed in [Ree79] or Clarke
and Kirkwood in [CK86] have studied the exploitation of a natural resource under uncertainty on
its evolution in a multi-period model. May, Beddington, Horwood and Sherpherd in [MBHS78]
have considered the problem by assuming that the intrinsic population growth rate is given by
the difference between recruitment and mortality for general recruitment functions. These mod-
els have been extended to stochastic differential equations driven by a Brownian motion (see for
instance the work of Saphores [Sap03]). Evans, Hening and Shreiber in [EHS15] or more recently
Kharroubi, Lim and Ly Vath in [LKLV18] have modelled the dynamic of the natural resource as
the solution of the logistic stochastic differential equation to solve a control problem under inter-
action between species and delayed renewal of the resource. All the models mentioned above use
a Brownian motion to describe the uncertainty of the system evolution. We refer to this class
of model as continuous models. On the other side of the literature, Getz in [Get75] has studied
control problems related to a birth/death process. This work has been extended more recently by
Claisse in [Cla18] to branching processes. We refer to those models as discrete models.
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1



It is well known that some continuous population models can be seen as scaling limits of discrete
models, see for example the work of Bansaye and Méléard in [BM15]. Hence continuous models can
be considered as good approximations of the macroscopic evolution of a population size. Therefore
it is relevant to consider continuous models for resources management purposes. Moreover those
models are attractive from a tractability viewpoint compared to discrete models. Indeed solving
control problems in Brownian driven model essentially boils down to solve a partial differential
equation. Whereas for discrete models it leads to integral-partial differential equation, which are
often more complex to solve. Yet the remaining question is the relevancy of designing a man-
agement policy based on a continuous modeling while the controlled population (or resource) is
naturally discrete.

To try to give an answer to this question we are going to consider a sequence of discrete popula-
tion models that converges towards a continuous population model. For each of those models we
consider a control problem. Each of them are the natural adaptations of the same control problem
to the different models. Therefore we expect the solutions of the discrete control problems to con-
verge towards the solution of the continuous limit problem. From Γ-convergence results adapted
to stochastic control problems as in for instance the articles of Buttazzo and Del Maso [BDM82]
and Belloni, Buttazzo and Freddi [BBF93], we expect to have convergence of value functions (see
also for instance [DM12, Theorem 10.22]) and a kind of weak convergence of optimal controls (see
for instance [BBF93, Proposition 2.8]). This is emphasized in a toy model (see Section 2) where
besides convergence of the value functions we also get convergence in law of the state process under
the optimal control. In this paper we prove the convergence of the controls as sequence of processes.
This is stronger than Γ−convergence. Since we aim at dealing with non-Markovian stochastic con-
trol problems our problematic is to prove the convergence of solutions to a sequence of Backward
Stochastic Differential Equations (BSDE for short) driven by a sequence of converging martingales.

We know from the seminal paper of Donsker [Don51] that a scaling in time procedure leads to the
weak convergence of a random walk to a Brownian motion. Extending this result to the theory
of BSDE with fixed time horizon T > 0, Briand, Delyon and Mémin in [BDM01] have provided
a time discretization of the Brownian motion to get the convergence of a time discretized BSDE.
More precisely, they consider a sequence of random walks (Wn)n≥0 converging towards a Brownian
motion W . Then they prove the convergence of the solutions of a sequence of BSDEs driven the
(Wn)n≥0 towards the solution of a BSDE driven by W . The main idea is to prove the convergence
of the terms involved in the martingale representation with respect to Wn when n goes to infinity.
For this they use the convergence, in the sense of Coquet, Mémin and Slominski [CMS01], of the
filtrations associated to each of the (Wn)n≥0 towards the natural filtration associated to W . Those
results have been extended in [BDM02] to a more general situation, without assuming that Wn has
a predictable representation property, but assuming that the brackets of the martingales (Wn)n≥0

are uniformly bounded.

In the present paper we aim to extend the results of [BDM01] to a wider class of martingale
convergence. Starting from a scaling result in [BM15] showing that a sequence of scaled birth/death
processes (XK)K≥0 with scaling parameter K > 0 converges in law to the solution X of a stochastic
Feller diffusion, we begin to extend it to more general birth and death intensities. We then consider
a sequence of BSDEs of the form

(B)K : Y Kt = ξK +

∫ T

t

gK(XK
s , Z

K
s ) · φKs dAKs −

∫ T

t

ZKs · dMK
s ,

where ξK is some general terminal random condition, gK the generator of the BSDE, MK a two
dimensional martingale associated to the population model XK and φKdAK denotes the measure
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associated to the angle bracket of MK . We also consider the continuous counterpart of (B)K ,

(B) : Yt = ξ +

∫ T

t

g(Xs, Ys, Zs)dAs −
∫ T

t

ZsdM
X
s ,

where ξ is some terminal condition, g is the generator of the BSDE, MX is a one dimensional mar-
tingale related to the diffusion term of X and A is its angle bracket. The existence and uniqueness
of solutions to such BSDEs driven by general martingales have been studied, for instance, by El
Karoui and Huang in [EKH97], Confortola and Fuhrman in [CF13] or more recently by Papapan-
toleon, Possamäı and Saplaouras in [PPS18] in a general framework. Inspired by [BDM02], we
prove that the solution of (B)K converges to the solution of (B) when (ξK)K≥0 converges toward
ξ and (gK)K≥0 towards g. The difficulty pointed at this step, compared to [BDM02], is that
the brackets of the (MK)K≥0 are not bounded. Therefore we need a stronger assumption on the
convergence of the sequence of terminal conditions. The methods used are related to the so-called
martingale problem as stated by Jacod and Shiryaev in [JS13] and to the double-Picard iterations
craftily used in [BDM02].

The structure of the paper is the following. In Section 2 we study the convergence of a rescaled
birth/death process to the solution of a stochastic Feller type SDE by extending [BM15] to more
general dynamics (see Theorem 1). We also provide fundamental properties of our state processes
such as exponential moments (see Proposition 1 and Corollary 1). Section 3 introduces a toy model
motivating our study and illustrated with numerical simulations. In Section 4 we first provide a
convergence result for a sequence of martingale representations (see Proposition 2). Then in Theo-
rem 2 we extend the convergence result of [BDM02] by showing that the solutions to (B)K converge
to the solution of (B). In Section 5 from our BSDE approach we deduce convergence of the values
and optimal controls to a sequence of control problems. Our results go beyond Γ−convergence
since we obtain a strong form of convergence for the optimal controls. Section 6 gives the main
proofs of our results. Minor proofs are given in the appendix.

The technical spaces considered related to discrete and continuous models are defined in Appendix
A. We provide below the notations for classical spaces used in this paper.

Classical spaces.

• Lp the set of real valued random variable Z such that

‖Z‖pLp = E[|Z|p] < +∞

• Spd is the set of F-predictable Rd valued process X such that

‖X‖pp = E[ sup
t∈[0,T ]

‖Xt‖p] < +∞.

2 From a discrete to a continuous population model

In this section we define a sequence of discrete population models. We show that this sequence
converges in law towards a continuous Feller population model by extending [BM15, Theorem
III-3.2] to more general population dynamic models.

2.1 Definition of the discrete population models

We consider continuous functions f b, fd and σ defined from R into R+ that satisfy the following
standing assumption.
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Assumption 1.

(i) The functions f b, fd and σ are null on R− and there exists non negative constants µ, µ, ν,
η and η such that for any x ∈ R+

f b(x) ≤ νx, µx ≤ fd(x) ≤ µ(1 + x), σ2(x) ≤ η(1 + x)

and ηx ≤ σ2(x) on a neighborhood of 0.

(ii) There exists α ≥ 1 such that

|σ(x)− σ(y)|2 ≤ |x− y|α, x, y ∈ R+,

(iii) f := f b − fd is Lipschitz continuous and f(0) = 0.

We note Ωd the set of piecewise continuous increasing positive functions with jumps equal to 1.
We consider F the natural filtration associated to the canonical process (N b, Nd) of Ω2

d.

For a fixed K ≥ 0 and n ≥ 0 we define a population model on the stochastic basis (Ω2
d,F). The

initial population is Kn and the processes N b and Nd represent respectively the number of birth
and death in the population. This means that when the process N b jumps there is a new individual
in the population and when Nd jumps there is one individual less in the population. Therefore at
time t the population size is Kn + N b

t − Nd
t . As we are interested in the large population limit

(which corresponds to K large) we consider the rescaled population process

XK,n = n+
N b −Nd

K
.

We define the birth intensity in the model with parameter K and initial population n as

λK,n,bt = λK,b(XK,n
t− ) := f b(XK,n

t− )K +
σ2(XK,n

t− )

2
K2

and the intensity of death

λK,n,dt = λK,d(XK,n
t− ) := fd(XK,n

t− )K +
σ2(XK,n

t− )

2
K2.

Remark 1. Note that f b(x) = µx, fd(x) = νx and σ2(x) = σ2x satisfy Assumption 1. Conse-
quently, the model studied in Theorem III-3.2 in [BM15] is included in the scope of this paper.

Following Theorem 3.6 in [Jac75] there exists a unique probability measure PK,n on (Ω2
d,F) such

that the processes

MK,n,i
t = N i

t −
∫ t

0

λK,n,is ds, for i ∈ {b, d}

are local martingales. It means that under the probability PK,n the process N b (resp. Nd) has
intensity λK,n,b (resp. λK,n,d). Note that if m > n ≥ 0 then PK,n is absolutely continuous with
respect to PK,m and we have:

dPK,n

dPK,m
= Ln,mT (1)

where

dLn,mt = Ln,mt−
( ∑
i∈{b,d}

λK,n,it − λK,m,it

λK,m,it

1XK,mt− >0dMK,m,i
t

)
with Ln,m0 = 1.
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We justify this change of measure in Appendix B.

For the rest of this work we fix an initial population x0 and do not write anymore the superscript x0

to lighten the notations. We write E instead of EPK when there is no ambiguity on the probability
used. For any K we consider the processes MK = (MK,b,MK,d), λKt = λK,bt − λK,dt and for
i ∈ {b, d}

Λ
K,i

t =

∫ t

0

λK,is K−2ds, N
K,i

= N iK−2 and M
K,i

= MK,iK−1.

We note M
K

= (M
K,b

,M
K,d

). The rescaled population process is now noted

XK = x0 +
N b −Nd

K
.

We have the following useful proposition ensuring that the joint law of (XK ,
∫ ·

0
XK
s ) admits expo-

nential moments uniformly in K. The proof of this result is postponed in Appendix F.

Proposition 1. There exists some positive constants β0 and T such that for any s ≤ T we have

sup
K≥0

E[exp(β0

∫ s

0

XK
u du+ β0X

K
s )] <∞.

From now we fix a positive constant β strictly smaller than β0. As a consequence of Proposition
1, for any integer q we have for any s ≤ T

sup
K≥0

E[exp(β

∫ s

0

XK
u du+ βXK

s )(1 + |XK
s |q)] < +∞ (2)

and

sup
K≥0

E[

∫ T

0

exp(β

∫ s

0

XK
u du+ βXK

s )(1 + |XK
s |q)ds] < +∞. (3)

2.2 Scaling limit of the sequence (XK)K≥0

Intuitively, and having in mind [BM15, Theorem 3.2], a continuous version of the processes
(XK)K≥0, denoted by X, would be an Ito diffusion with drift equal to f(X) and volatility given
by σ2(X). We formalize this intuition in the following result which extends [BM15, Theorem 3.2].
The proof is given in Section 6.1.

Theorem 1. The sequence
(
XK ,M

K
, N

K,b
, N

K,d
,Λ

K,b
,Λ

K,d)
K≥0

converges in law for the Sko-

rokhod topology towards (X,M,A,A,A,A) such that

(i) there exists a bi-dimensional Brownian motions (Bb, Bd) satisfying

Mt =

∫ t

0

σ(Xs)√
2

d(Bbs, B
d
s ),

(ii) with B = (Bb +Bd)/
√

2, the process X is the unique strong solution of

(S) : Xt = x0 +

∫ t

0

f(Xs)ds+ σ(Xs)dBs,

(iii) A =
∫ ·

0
σ2(Xs)ds.
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Moreover, there exists a probability space (Ω,F,P) and a sequence (NK,d, NK,b)K≥0 such that for
any K ≥ 0, (NK,d, NK,b) has the law of (Nd, N b) under PK . Moreover on this space the sequence

(XK ,M
K
, N

K,b
, N

K,d
,Λ

K,b
,Λ

K,d
)K≥0

converges in S2
1 × S2

2 × S1
1 × S1

1 × S1
1 × S1

1 to (X,M,A,A,A,A) when K goes to +∞.

According to the last point of Theorem 1 from now on we work under the probability space (Ω,F,P)

and we consider that the processes (XK ,M
K
, N

K,b
, N

K,d
,Λ

K,b
,Λ

K,d
)K≥0 and (X,M,A,A,A,A)

are defined on this space. For any K we note FK the natural filtration associated to XK and FX
the natural filtration associated to X.

We deduce from Fatou’s Lemma together with Proposition 1 that X inherits from the exponential
moments of XK as stated in the following corollary.

Corollary 1. There exists some positive constants β0 and T such that for any s ≤ T we have

E[exp(β0

∫ s

0

Xudu+ β0Xs)] <∞.

Before going to the next section, we define some processes that we will extensively use in the rest
of the paper. We note for i ∈ {b, d}

M i
t :=

∫ t

0

σ(Xs)√
2

dBis,

so that M = (Md,M b) and MX := M b +Md that is written

MX
t =

∫ t

0

σ(Xs)dBs.

We also consider the processes

AKt :=

∫ t

0

λK,bs + λK,ds

K2
ds, pK,bt :=

λK,bt

λK,bt + λK,dt

, and pK,dt :=
λK,dt

λK,bt + λK,dt

.

Note that under the probability PK the random measure m associated to the process (N b, Nd) in-
terpreted as a compound jump process with values in E = {b, d} admits as predictable compensator
measure

πK(de, dt) =
(
φK,bt δb(de) + φK,dt δd(de)

)
dAKt

with φKt = (φK,bt , φK,dt ) = (pK,bt , pK,dt )K2 and where δi denotes the Dirac measure at point i ∈
{b, d}. This point of view is introduced in order to draw a parallel with the framework of [CF13]
to which we will refer extensively in Section 4.2.

3 Illustration of the study on a toy model

In this section, we illustrate the Γ−convergence result applied to optimization problems in popu-
lation dynamics. We consider specific parameters fd, f b, σ and a sequence of control problems
for which we are able to make explicit computations. Then, we show that the sequence of optimal
controls converges in law to the optimal control of a continuous problem. In this section, we aim
at providing the general main ideas of the paper rather than being perfectly accurate. Rigorous
statements will be given in Section 5.
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3.1 Discrete populations models

We consider a discrete birth/death model as studied in [BM15] by choosing:

- the initial population x0 ∈ N,

- the birth rate f b(x) = νx for some ν > 0,

- the death rate fd(x) = µx for some µ > 0,

- the volatility σ2(x) = σ2x, for some σ > 0.

Recall from Remark 1 and from [BM15, Theorem 3.2] that (XK
t )t∈[0,T ] converges in law for the

Skorokhod topology towards the continuous diffusion process (Xt)t∈[0,T ] solution of the Feller
stochastic differential equation

dXt = (ν − µ)Xtdt+ σ
√
XsdWt, (4)

for W a Brownian motion.

In this toy model, we assume that a resource manager regulates the population XK through an
FK-predictable control α. A control α is admissible if

• there exists a unique law PK,α under which the death intensity of the population is

λK,d,αt := KXK
t (µ+K

σ2

2
) +KXK

t αt,

and the birth intensity is λK,b. When this probability exists, it is the law of the population
under the control α.

• λK,d,α is a non negative process PK,α almost surely.

We denote by AK the set of admissible controls.

The agent is assumed to be penalized if he fails at reaching a fixed level x̃ > 0 of the resource at time
T determined by a regulator. We model this penalization by the square of the difference between
the effective population size at time T and the target x̃. So that the manager pays γ(XK

T − x̃)2 at
time T where γ is a positive constant. The manager payoff is also assumed to be penalized by the

instantaneous amount
|αtXKt |

2

2 per unit of time when its effort is α. The problem of the resource
manager is thus to solve

(TM)K : V K0 = sup
α∈AK

EK,α[−γ(XK
T − x̃)2 −

∫ T

0

(αsX
K
s )2

2
ds]

where EK,α denotes the expectation taken under the probability PK,α. We assume that σ2 > 2γx̃
and γ < µ.

To solve this problem, as usual in stochastic control theory, we study the corresponding Hamilton-
Jacobi-Bellman (HJB for short) equation and use a verification argument. The HJB equation
associated to the control problem (TM)K is

(HJB)K

{
∂tU

K(t, x) +HK
(
x,DK

+U
K(t, x), DK

−U
K(t, x)

)
= 0, (t, x) ∈ [0, T )× (N∗/K),

UK(T, x) = −γ(x− x̃)2, x ∈ (N∗/K),
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with Hamiltonian HK given by

HK(x, p+, p−) = sup
α

{
Kx(ν +

σ2

2
K)p+ +Kx(µ+ α+

σ2

2
K)p− −

(αx)2

2

}
,

and where

DK
+U

K(t, x) = UK(t, x+ 1/K)− UK(t, x) and DK
−U

K(t, x) = UK(t, x− 1/K)− UK(t, x).

The maximizer of the Hamiltonian is αK,∗ = Kp−
x 1x>0, hence

HK(x, p+, p−) = Kx(ν +
σ2

2
K)p+ +Kx(µ+

σ2

2
K)p− +

(Kp−)2

2
1x>0.

Note that we do not actually care about the value of the control when x = 0 since if the population
reaches 0, it is stuck at this value. The partial differential equation (PDE for short) (HJB)K is
quadratic, so we search for a solution under the form

UK(t, x) = aK(t)x2 + bK(t)x+ cK(t).

Identifying the monomials, we get that UK is solution of (HJB)K if and only if (aK , bK , cK) is
solution of the following systems of ODEs:

(ODE)K :


a′K(t) + 2aK(t)(ν − µ) + 2a2

K(t) = 0, aK(T ) = −γ,
b′K(t)− 2aK(t)

(aK(t)
K − bK(t)

)
+ aK(t)(σ2 + µ+ν

K ) + bK(t)(ν − µ) = 0, bK(T ) = 2γx̃,

c′K(t) + 1
2

(aK(t)
K − bK(t)

)2
= 0, cK(T ) = −γx̃2.

By Cauchy-Lipschitz theorem this system admits a unique solution. Thus the optimal effort of the
agent is

αK,∗t =
1

XK
t

(aK(t)

K
− 2XK

t aK(t)− bK(t)
)
1XKt >0

and the corresponding death intensity is given by

λK,d,α
K,∗

t = KXK
t (µ+K

σ2

2
) +

(
− 2XK

t aK(t) +
aK(t)XK

t

K
− bK(t)

)
1XKt >0.

Note that in view of (ODE)K and since aK(T ) is negative and bK(T ) positive, there exists a T
small enough, independent of K, such that for any K the control αK,∗ is in AK . We refer to
Appendix C for more details on this point. We assume that we are considering such short enough
time horizon here.

3.2 Continuous populations model

We now turn to the continuous version of the control problem. We assume that the manager
controls the drift term in (4) through an FX−predictable process α. We say that α is an admissible
control when the following SDE admits a unique weak solution

dXt = (ν − µ− αt)Xtdt+ σ
√
XtdWt.

When such solution exists we note Pα its law that is the law of the population under the control
α. We denote by A the set of admissible controls.
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The control problem in the continuous framework is written

(TM) : V0 = sup
α∈A

Eα[−γ(XT − x̃)2 −
∫ T

0

(αsXs)
2

2
ds].

The associated HJB equation is given by

(HJB)

{
∂tU(t, x) +H(x,DU(t, x),∆U(t, x)) = 0, (t, x) ∈ [0, T )× R+,

U(T, x) = −γ(x− x̃)2, x ∈ R+,

where the Hamiltonian H is

H(x, p, q) = sup
α

{
(ν − µ− α)xp− |αx|

2

2
+

1

2
xσ2q

}
= (ν − µ)xp+

1

2
xσ2q +

p2

2
1x>0.

The maximizer of the Hamiltonian is

α∗(x, p) =
−p
x

1x>0

As previously, we are looking for a quadratic solution of the form

U(t, x) = a(t)x2 + b(t)x+ c(t).

Identifying the monomials, we get that U is solution of (HJB) if and only if (a, b, c) is solution of
the following system of ODEs.

(ODE) :


a′(t) + 2a(t)(ν − µ) + 2a2(t) = 0, a(T ) = −γ,
b′(t) + 2a(t)b(t) + a(t)σ2 + b(t)(ν − µ) = 0, b(T ) = 2γx̃,

c′(t) + |b(t)|2
2 = 0, c(T ) = −γx̃2.

Hence, the optimal control is given by

α∗t = −DU(t,Xt)

Xt
1Xt>0 = −2a(t)Xt + b(t)

Xt
1Xt>0.

Note that in view of (ODE) and since a(T ) is negative and b(T ) positive, there exists a T small
enough such that the control α∗ is in A, see Appendix C for details. We assume that we are
considering such time horizon here. We also note that aK = a and as consequence of Grönwall
Lemma (bK , cK)K≥0 converges to (b, c) when K goes to +∞. Consequently we get the convergence
of the value of the control problems, lim

K→+∞
V K0 = V0. Moreover a direct adaption of the proof of

Proposition 1 gives the convergence in law of the optimally controlled population:

lim
K→+∞

PK,α
K,∗

= Pα
∗
.

Those convergences are illustrated in Figures 1 and 2 respectively.

4 Convergence of BSDEs

In this section we prove the main results of this paper. We first prove a result on the convergence
of a sequence of martingale representations. Then we extend it to the convergence of a sequence
of BSDEs driven by the sequence of martingales (MK)K≥0.
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Figure 1: Convergence of (V K0 )K≥0 towards V0 with σ2 = 0.3, µ = 0.1, ν = 0.2, T = 0.1, x0 = 50,
x̃ = 20 and γ = 1.

Figure 2: Empirical distribution of the discrete optimal controls at time t = 0.1 for different values
of K (in red) compared to the distribution of the continuous optimal control. The parameters are
the same than in Figure 1

.
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4.1 Convergence of martingale representations

From Theorem 2 in [Dav76] we know any FK−martingale has the representation property with
respect to MK (in the sense of Definition III-4.22 in [JS13]). Moreover we prove in Appendix E
that any FX− martingale has the representation property relative to MX .

For any K ≥ 0 we consider ξK ∈ L2 an FKT -measurable real random variable and ξ ∈ L2 an
FXT -measurable real random variable. We define the closed martingale QK by QKt = E[ξK |FKt ],
P−a.s.. Since QK is an FK-martingale and ξK ∈ L2, we know that there exists a unique process
ZK ∈ L2(MK) such that

QKt = E[ξK |FKt ] = QK0 +

∫ t

0

ZKs · dMK
s .

Similarly considering the FX -martingale Q defined by Qt = E[ξ|Ft], P− a.s. since ξ ∈ L2 we have
existence and uniqueness of Z ∈ L2(MX) such that

Qt = E[ξ|FXt ] = Q0 +

∫ t

0

ZsdM
X
s .

We prove the following fundamental convergence result in Appendix 6.2

Proposition 2 (martingale representations convergence). If the sequence (ξK)K≥0 and ξ
are in L2+ε and (ξK)K≥0 converges towards ξ in L2+ε for ε > 0 then(

QK , 〈QK , QK〉, 〈QK ,MK〉
)
→
(
Q, 〈Q,Q〉, 〈Q,M〉

)
as K → +∞

in S2+ε′

1 × S1+ε′/2
1 × S2+ε′

2 for any ε′ ∈ [0, ε).

Compared to Theorem 5 in [BDM02] we have assumed that the convergence of (ξK)K≥0 takes

place in L2+ε instead in L2. This is in order to extend the convergence of (〈QK ,MK〉)K≥0 beyond

S1
2 . Indeed if we only assume that 〈QK〉 ∈ S1

1 , 〈QK ,MK〉 is not squared integrable a priori. In
[BDM02] the authors do not face this issue since they assume that the brackets of the martingales

they consider are bounded, see Hypothesis (H1). In our framework the sequence (〈MK〉T )K≥0 is
not bounded in general. However, if we instead consider a sequence of models with a bounded

population then (〈MK〉T )K≥0 would be bounded and we could get the same result assuming only
the convergence of (ξK)K≥0 in L2 only.

4.2 Convergence of BSDEs

We now extend the previous result to convergence of a sequence of BSDEs driven by MK .

For any K ≥ 0 we consider an FKT random variable ξK and two continuous functions gKb and gKd
from R3 into R. We write for (x, y, z) ∈ R× R× R2

gK(x, y, z) =
(
gKb (x, y, zb), gKd (x, y, zd)

)
.

Note that in the above equation, we implicitly use the decomposition z = (zb, zd). We will always
assume such convention when we are dealing with a pair of elements such that one element of the
pair is related to the birth in the population and the other is related to the death.

11



We introduce the BSDE with generator gK and terminal value ξK by setting

(B)K : Y Kt = ξK +

∫ T

t

gK(XK
s , Y

K
s , ZKs ) · φKs dAKs −

∫ T

t

ZKs · dMK
s .

Definition 1. A solution to BSDE (B)K is a pair of processes (Y, Z) ∈ SK such that the relation
(B)K holds P− a.s.

As a consequence of Theorem 3.4 in [CF13] we have the following result.

Lemma 1. Assume that

(i) ξK ∈ TK ,

(ii) there exists a positive constant L such that β > L2 + 2L and for any x, y, y′, z, z′ and K ≥ 0
we have for j ∈ {b, d}

K2|gKj (x, y, z/K)− gKj (x, y′, z′/K)| ≤ L
(
|y − y′|+ |z − z′|

)
, (5)

(iii) gj(X
K
t , 0, 0) ∈ HK1 for j ∈ {b, d},

then the BSDE (B)K has a unique solution (Y K , ZK) ∈ SK .

We also introduce a class of BSDE driven by the martingale MX . For an FXT real valued random
variable ξ and a continuous function g from R3 into R we consider the BSDE

(B) : Yt = ξ +

∫ T

t

g(Xs, Ys, Zs)dAs −
∫ T

t

ZsdM
X
s .

Definition 2. A solution to BSDE (B) is a pair of processes (Y,Z) ∈ S such that the relation (B)
holds P− a.s.

We get the following result on existence and uniqueness of solution to (B) which is a consequence
of Theorem 6.1 in [EKH97] or Theorem 2.1 in [CFS08].

Lemma 2. Assume that

(i) ξ ∈ T,

(ii) there exists a positive constant L such that β > L2 + 2L and for any x, y, y′, z, z′ and K ≥ 0
we have:

|g(x, y, z)− g(x, y′, z′)| ≤ L
(
|y − y′|+ |z − z′|

)
,

(iii) g(Xt, 0, 0) ∈ H,

then the BSDE (B) has a unique solution (Y, Z) ∈ S.

We are interested in the convergence of the solutions to (B)K when (ξK)K≥K and (gK)K≥0 con-
verge. Therefore we make the following converging assumptions on the drivers of the BSDEs
(B)K .

Assumption 2.

(i) The sequence (ξK)K≥0 converges towards ξ ∈ T in L2+ε for ε > 0,

(ii) there exists a positive constant C such that for any x, x′, y, z, K ≥ 0 and j ∈ {b, d}

K2|gKj (x, y, z)− gKj (x′, y, z)| ≤ C|x− x′|,

12



(iii) there exists a pair of continuous functions (gb, gd) from R3 and a positive sequence (υK)K≥0

converging towards 0 such that for any K ≥ 0, x, y and z we have for j ∈ {b, d}:

|K2gKj (x, y, z/K)− gj(x, y, z)| ≤ υK(1 + x2 + y2 + ‖z‖2). (6)

Remark 2. Under Assumption 2 (iii) if for any K the pair (gKb , g
K
d ) satisfies assumptions (ii)

and (iii) in Lemma 1 then the function g = (gb + gd)/2 satisfies the assumptions (ii) and (iii) in
Lemma 2.

For any K ≥ 0 we consider (Y K , ZK) ∈ SK the unique solution of (B)K . We have the following
convergence result for the sequence (Y K , ZK)K≥0 whose proof is given in Section 6.3.

Theorem 2. Under Assumption 2 if the assumptions of Lemma 1 are satisfied for any K then the
BSDE driven by MX with generator g := gb+gd

2 and terminal value ξ has a unique solution (Y, Z)
and we have the following convergence:(

Y K ,

∫ ·
0

ZKt · dMK
t , 〈Y K ,M

K〉, 〈Y K〉
)
→
(
Y,

∫ ·
0

ZtdM
X
t , 〈Y,M〉, 〈Y 〉

)
as K → +∞

in S2
1 × S2

1 × S1
2 × S1

1 .

The convergence in Theorem 2 implies the following convergence(∫ ·
0

ZK,bt

K
λK,bt dt,

∫ ·
0

ZK,dt

K
λK,dt dt,

∫ ·
0

|ZKt |2 · φKt dAKt

)
→
(∫ ·

0

ZtdAt/2,

∫ ·
0

ZtdAt/2,

∫ ·
0

Z2
t dAt

)
,

in S1
1 × S1

1 × S1
1 when K → +∞.

5 Application to a control problem

In this section we apply the results of Section 4 to the convergence of a sequence of controls
problems.

5.1 The discrete problem

We first focus on the discrete control problem in the same spirit than Section 3. We consider that
a resource manager monitors his harvesting intensity through a control α, which is assumed to
be bounded with bounds a, a > 0. We assume that his harvesting modifies the death rate of the
natural resource according to a continuous function hK : R+ × [−a, a] 7−→ R which satisfies the
following assumption.

Assumption 3. There exists a positive constant C < 2β such that for any (x, α) ∈ R+ × [−a, a]

|hK(x, α)|2

λK,d(x)
≤ Cx and KfK,d(x) + hK(x, α) ≥ 0

with equality if x = 0.

The set of admissible controls is defined by

AK = {α− FK predictable s.t. α ∈ [−a, a]}.

For any α ∈ AK we define

LK,αt = E
( ∫ ·

0

hK(XK
s , αs)

λK,ds

dMK,d
s

)
t
,

13



where E denotes the Doleans-Dade exponential process. We deduce from Assumption 3, Proposition
1 together with [Sok13, Corollary 2.6] that (LK,αt )t∈[0,T ] is a true martingale. Hence the law of the
population process under the control α is given by PK,α characterized by

dPK,α

dP
= LK,αT .

Under the probability PK,α the death intensity of the population becomes

λK,d,αt = λK,dt + hK(XK
t , αt)

and the birth intensity is unchanged.

We assume that the manager receives at maturity T a lump sum random compensation ξK ∈ TK
for his action. In addition, the manager receives continuous incomes along the time depending on
the size of the population and on his control that is given by a function cK from R+ × [−a, a] into
R. This gain can be negative which corresponds to a cost related to the effort of the manager.
This is what we have considered in Section 3. Therefore, the goal of the manager is to solve the
following maximization problem

(P)K : V K0 = sup
α∈AK

JK,α0 with JK,α0 := EK,α[ξK +

∫ T

0

cK(XK
s , αs)ds],

where EK,α denotes the expectation taken under the probability PK,α. Using the notations of
Section 4.2 the BSDE associated to this control problem is

(BSDE)K : Y Kt = ξK +

∫ T

t

gK(XK
s , Z

K
s ) · φKs dAKs −

∫ T

t

ZKs · dMK
s

with for any (x, z) ∈ R+ × R2

gK(x, z) = (0, gK,d(x, zd)) where gK,d(x, zd) = sup
α∈[−a,a]

(
cK
(
x, α

)
+ zdhK

(
x, α

)) 1

λK,d(x)
.

We need to assume that the functions cK and hK are chosen such that gK satisfies the assumptions
(ii) and (iii) of Lemma 1 and that the maximizer in the above equation is unique. Formally we
make the following assumption.

Assumption 4.

(i) gK,d(XK , 0) ∈ HK1 ,

(ii) there exists a positive L satisfying β > L2 + 2L and such that for any x, z, z′, α and K ≥ 0
we have

|KzhK(x, α)−Kz′hK(x, α)|
λK,d(x)

≤ L|z − z′|.

(iii) For any x, z there exists a unique αK,∗(x, z) such that

gK,d(x, z) =
cK
(
x, αK,∗(x, z)

)
+ zhK(x, αK,∗(x, z))

λK,d(x)
.

We thus have the following characterization of the optimal control (we refer to Appendix 6.4 for
the proof).

Theorem 3 (Verification for (P)K). Let (Y K , ZK) ∈ SK be the unique solution of (BSDE)K .

Then V K0 = Y K0 and αK,?t := αK,?(XK
t , Z

K,d
t ) solves the problem (P)K .

We now define the continuous version of this control problem.
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5.2 The continuous problem

As previously the resource manager monitors his harvesting intensity through a control α, assumed
to be bounded with bounds a, a > 0. We assume that his harvesting modified the death rate of
the natural resource according to a continuous function h : R+ × [−a, a] 7−→ R which is assumed
to satisfy the following assumption.

Assumption 5. There exists a positive constant C < 2β such that for any (x, α) ∈ R+ × [−a, a]

h2(x, α)

σ2(x)
≤ Cx and h(x, α) + fd(x) ≥ 0.

with equality if x = 0.

The set of admissible control is

A = {α− FX predictable s.t. α ∈ [−a, a]}.

Considering the process

Lαt = E
( ∫ ·

0

−h(Xs, αs)

σ2(Xs)
dMX

s

)
t
,

where we recall that X is given by (S). We deduce from Assumption 5 and Corollary 2.6 in [Sok13]
that Lα is a true martingale. Hence, we define the probability Pα by

dPα

dP
= LαT

which is the probability measure corresponding to the control α. Under Pα the process X is a
strong solution of

Xt = x0 +

∫ t

0

(
f(Xs)− h(Xs, αs)

)
ds+

∫ t

0

σ(Xs)dB
α
s ,

where Bα := B +
∫ ·

0
h(Xs,αs)
σ(Xs)

ds is a Pα−Brownian motion.

As in the discrete case we assume that the manager receives at maturity T a lump sum random
compensation ξ ∈ T for his action. In addition, the manager receives continuous incomes term
depending on the size of the population and his control. This term is given by a function c from
R+ × [−a, a] into R. Therefore, the goal of the manager is to solve the following maximization
problem

(P) : V0 = sup
α∈A

Jα0 with Jα0 := Eα[ξ +

∫ T

0

c(Xs, αs)ds],

where Eα denotes the expectation taken under the probability Pα. The BSDE associated to this
control problem is

(BSDE) : Yt = ξ +

∫ T

t

g(Xs, Zs)dAs −
∫ T

t

ZsdM
X
s

with for any (x, z) ∈ R+ × R

g(x, z) = sup
α∈[−a,a])

(
c
(
x, α

)
+ zh

(
x, α

)) 1

σ2(x)/2
.

We need to assume that the functions c and h are chosen such that g satisfies the assumptions (ii)
and (iii) of Lemma 2 and that the maximizer in the above equation is unique. Formally we make
the following assumption.
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Assumption 6.

(i) g(X, 0) ∈ H1,

(ii) there exists a positive L satisfying β > L2 + 2L such that for any x, z, z′ and α we have

|zh(x, α)− z′h(x, α)|
σ2(x)

≤ L|z − z′|.

(iii) For any x, z there exists a unique α∗(x, z) such that

g(x, z) =
c
(
x, α∗(x, z)

)
+ zh(x, α∗(x, z))

σ2(x)

We thus have the following characterization of the optimal control (we refer to Appendix 6.5 for
the proof).

Theorem 4 (Verification for (P)). Let (Y, Z) ∈ S be the unique solution of (BSDE). Then
V0 = Y0 and α?t := α?(Xt, Zt) solves the problem (P).

5.3 Convergence of the value functions and of the optimal controls

In this section, we show that under some natural assumptions the sequences of value functions
(V K0 )K≥0 and of controls (αK,∗)K≥0 converge respectively towards V0 and α∗. More precisely we
consider the following assumptions.

Assumption 7.

(i) (ξK)K≥0 converges to ξ in L2+ε for some ε > 0,

(ii) there exists a positive sequence (ηK)K≥0 that converges towards 0 such that for any x, α, z
and K we have

|K2 c
K(x, α)

λK,d(x)
− c(x, α)

σ2(x)/2
|+ |KhK(x, α)

λK,d(x)
− h(x, α)

σ2(x)/2
| ≤ ηK(1 + |x|)

and

|αK,∗(x, z/K)− α∗(x, z)|+
∣∣∣(KhK(x, α)

λK,d(x)

)2

−
( h(x, α)

σ2(x)/2

)2∣∣∣ ≤ ηK(1 + |x|+ |z|).

(iii) There exists a positive constant C > 0 such that for any x, x′, z and K we have

K2|c
K(x, α)− zK−1hK(x, α)

λK,d(x)
− cK(x′, α)− zK−1hK(x′, α)

λK,d(x′)
| ≤ C|x− x′|

and for any x, x′, z, z′, α, α′ and K we have

|αK,∗(x, z
K

)− αK,∗(x′, z
′

K
)|+

∣∣∣(KhK(x, α)

λK,d(x)

)2

−
(KhK(x′, α′)

λK,d(x′)

)2∣∣∣ ≤ C(|x− x′|+ |α− α′|+ |z − z′|).

Assumption 7 contains the natural assumptions ensuring that the problem (P) is the version of
the problems (P)K in the framework of the continuous population model X.

Using a slight abuse we note PK,∗ the law of XK under the control αK,∗ and P∗ the law of X under
the control α∗. We have the following convergence result which proof is given in Appendix 6.6.
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Theorem 5. (i) We have in S2
1 × S1

1 × S1
1 :

lim
K→+∞

(
Y K ,

∫ ·
0

αK,∗s λK,ds K−2ds,

∫ ·
0

(αK,∗s )2λK,ds K−2ds

)
=
(
Y,

∫ ·
0

αsdAs/2,

∫ ·
0

α2
sdAs/2

)
.

(ii) The sequence (PK,∗)K≥0 converges for the Skorohod topology towards P∗.

Since Y K0 = V K0 and Y0 = V0 a consequence of Theorem 5 (i) is that (V K0 )K≥0 converges towards
V0. The point (i) also implies that the sequence of controls (αK)K≥0 converges towards the control
α. But this convergence is in a weak sense and we do not get the convergence of (αK,∗)K≥0 towards
α∗ in law for the Skorohod topology.

Remark 3. Note that the sequence of control problems considered in Section 3 when α ∈ [−ν, a]
(for a positive) satisfy any of the assumptions of Section 5.
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6 Proofs

6.1 Proof of Theorem 1

We introduce the process

Y Kt =

∫ t

0

f(XK
s )ds.

The proof is divided in four main steps detailed below.

1. We prove that (S) admits a unique strong solution.

2. We show that the sequence (Y K ,M
K
, N

K,b
, N

K,d
,Λ

K,b
,Λ

K,d
)K≥0 is C-tight.

3. We show that for any limit point (Y,M,N b, Nd,Λb,Λd) of the above sequence we have
Λb = N b = Λd = Nd and Y is almost surely differentiable with derivative X weak solution
of (S).

4. Finally, we prove that up to a probability space (Ω,F,P) such that the above convergence

holds in probability, the process (XK ,M
K
, N

K,b
, N

K,d
,Λ

K,b
,Λ

K,d
)K≥0 actually converges

to (X,M,A,A,A,A) when K goes to +∞ in S2
1 × S2

2 × S1
1 × S1

1 × S1
1 × S1

1 .

Step 1: Pathwise uniqueness under existence. The uniqueness result is a direct consequence of
[RY13, IX-Theorem 3.5 (ii)] under Assumption (A)(ii)− (iii).

Step 2: Tightness property.
In order to show tightness we first show that the sequence

(
sup
t∈[0,1]

E[XK
t ]
)
K≥0

is bounded uniformly

with respect to K. We have

E[XK
t ] = n0 +

∫ t

0

E[f b(XK
s )− fd(XK

s )]ds.

Hence, according to (A)− (iii), there exists a positive constant C (independent of K) such that

E[XK
t ] ≤ n0 +

∫ t

0

CE[XK
s ]ds.

By using Grönwall’s inequality we deduce that
(

sup
t∈[0,1]

E[XK
t ]
)
K≥0

is bounded uniformly with re-

spect to K.

We have

E[N
K,b

t ] ≤
∫ t

0

E
[
f b(XK

t )/K +
σ2(XK

t )

2

]
ds,

therefore
(
E[N

K,b

T ]
)
K≥0

is bounded and since N
K,d ≤ N

K,b
then

(
E[N

K,d

1 ]
)
K≥0

is also bounded.

Moreover since f(XK) ≤ CXK the sequence
(
E[Y KT ]

)
K≥0

bounded. Using Theorem VI-3.21 in

[JS13] and that the processes Y K , N
K,i

and Λ
K,i

for i ∈ {b, d} are nondecreasing for any K we

get that the sequences (Y K)K≥0, (N
K,b

)K≥0, (N
K,d

)K≥0, (Λ
K,b

)K≥0 and (Λ
K,d

)K≥0 are tight.

Moreover since |∆NK,i| = 1/K2 for i ∈ {b, d} and the processes Y K , ΛK,b and ΛK,d are continuous

for any K following Proposition VI-3.26 in [JS13] we get that the sequences (Y K)K≥0, (N
K,b

)K≥0,
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(N
K,d

)K≥0, (Λ
K,b

)K≥0 and (Λ
K,d

)K≥0 C-are tight.

The tightness of (M
K,b

,M
K,d

)K≥0 then follows from Theorem VI-4.13 in [JS13] since 〈MK,i〉 =

Λ
K,i

. We then get C-tightness since |∆MK,i| ≤ K−1. Since marginal tightness implies tightness

(Corollary IV-3.33 in [Jac75]) we get that (Y K ,M
K
, N

K,b
, N

K,d
,Λ

K,b
,Λ

K,d
)K≥0 is C-tight.

Step 3: convergence of the processes and existence of a solution to (S)
We first show the following lemma:

Lemma 3. For i ∈ {b, d} the process |NK,i − Λ
K,i| converges uniformly towards 0 in probability.

Proof of Lemma 3. Obviously we have N
K,i

t − Λ
K,i

t = M
K,i

t /K so using the BDG inequality we
have

E
[

sup
t∈[0,T ]

|MK,i

t |2

K2

]
≤ E[N

K,i

T ]

K2
.

that converges towards 0. We conclude using Markov inequality.

In view of the tightness result obtained in Step 1, we denote by (Y,M,N b, Nd,Λb,Λd) a limit point

of (Y K ,M
K
, N

K,b
, N

K,d
,Λ

K,b
,Λ

K,d
)K≥0 with M = (M b,Md). By the Skorohod representation

theorem since the limit of each marginal is continuous we can consider that (Y K ,M
K
, N

K,b
, N

K,d
)K≥0

converges almost surely and uniformly on [0, T ] towards (Y,M,N b, Nd), i.e.

sup
t∈[0,1]

|Y Kt − Yt| →
K→+∞

0,

and for any i ∈ {b, d}

sup
t∈[0,1]

|MK,i

t −M i
t | →
K→+∞

0, sup
t∈[0,1]

|NK,i

t −N i
t | →
K→+∞

0, sup
t∈[0,1]

|ΛK,it − Λit| →
K→+∞

0.

According to Corollary IX-1.19 in [JS13] we have that M is a local martingales. Moreover we have

[M
K,i

] = N
K,i

and [M
K,b

,M
K,d

] = 0 so Corollary VI-6.29 in [JS13] gives [M i] = N i = Λi and
[M b,Md] = 0. Since M i is a continuous martingale we get 〈M i〉 = [M i] = Λi. We also notice that

E[Λ
K,i

T ] is uniformly bounded in K, so according to Fatou’s lemma Λi is integrable, therefore M i

is a true martingale.

We recall that

XK
t = n0 +

∫ t

0

f(XK
s )ds+M

K,b

t −MK,d

t .

Then, XK converges almost surely and uniformly on [0, T ] towards

Xt := n0 + Yt +M b
t −Md

t

and Y K converges almost surely uniformly on [0, T ] towards∫ ·
0

f(Xs)ds.

Since we have

〈M b〉t = 〈Md〉t =

∫ t

0

σ2(Xs)

2
ds and 〈M b,Md〉 = 0
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we get from Theorem V-3.9 in [RY13] that there exists a bi-dimensional Brownian motion (Bb, Bd)
such that

(M b
t ,M

d
t ) =

∫ t

0

σ(Xs)√
2

d(Bbs, B
d
s ).

So finally we have shown that

Xt = n0 +

∫ t

0

f(Xs)ds+

∫ t

0

σ(Xs)d(
Bbs +Bds√

2
).

This concludes the proof of the first part of Theorem 1 since (XK ,M
K
, N

K,b
, N

K,d
,Λ

K,b
,Λ

K,d
)

converges in law for the Skorohod topology to (X,M,A,A,A,A).

Step 4: convergence of a copy (XK ,M
K
, N

K,b
, N

K,d
,Λ

K,b
,Λ

K,d
)K≥0 in S2

1×S2
2×S1

1×S1
1×S1

1×S1
1 .

In view of the conclusion of Step 3, and by the Skorohod representation theorem, there exists a prob-

ability space (Ω,F,P) and a copy in law of the sequence of processes (XK ,M
K
, N

K,b
, N

K,d
,Λ

K,b
,Λ

K,d
)K≥0

that converges in probability toward a copy of (X,M,A,A,A,A) when K goes to +∞. To prove
that the convergence actually holds in S2

1 × S2
2 × S1

1 × S1
1 × S1

1 × S1
1 we show that:

(i) (N
K,b

)K≥0 and (N
K,b

)K≥0 are bounded in S2
1 ,

(ii) (Λ
K,b

)K≥0 and (Λ
K,d

)K≥0 are bounded in S2
1 ,

(iii) (M
K

)K≥0 is bounded in S4,

(iv) (XK)K≥0 is bounded in S4
1 .

Then we will get the convergence using dominated convergence.
Proof of (i). We write

sup
t∈[0,T ]

(N
K,b

s )2 = (N
K,b

T )2 =

∫ T

0

(2
N
K,b

s

K2
+K−4)dNK,b

s .

Therefore we have for a positive constant C independent of K such that

E[ sup
t∈[0,T ]

(N
K,b

s )2] = E[

∫ T

0

(2N
K,b

s +K−2)λK,bs ds] ≤ E[

∫ T

0

(2N
K,b

s +K−2)CXK
s ds].

Hence to conclude it is enough to show that (E[N
K,b

t XK
t ])t∈[0,T ] is bounded. We have

N
K,b

t XK
t =

∫ t

0

(XK
s K

−2 +N
K,b

s K−1 +K−3)dNK,b
s −NK,b

s K−1dNK,d
s

=

∫ t

0

(XK
s K

−2 +K−3)dNK,b
s +

∫ t

0

N
K,b

s K−1d(NK,b
s −NK,d

s ).

So we get

E[N
K,b

t XK
t ] = E[

∫ t

0

(XK
s +K−1)K−2λK,bs ds+

∫ t

0

N
K,b

s K−1(λK,bs − λK,ds )ds]

≤ E[

∫ t

0

(XK
s +K−1)CXK

s ds+

∫ t

0

N
K,b

s CXK
s ds].
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Therefore by Proposition 1 and Grönwall lemma we get point (i) (since the same results follows
for NK,d).

Proof of (ii). We have

sup
t∈[0,T ]

Λ
K,d

t ≤ C
∫ T

0

XK
s ds,

therefore point (ii) follows from Proposition 1. Same proof holds for N
K,d

.

Proof of (iii). Using the Burkholder-Davis-Gundy inequality we get

E[ sup
t∈[0,T ]

|MK,b

t |4] ≤ CE[(N
K,b

T )2].

Therefore because of point (i) we get point (iii). Same proof holds for M
K,d

.
Proof of (iv). We write

XK
t = xK0 +

∫ t

0

(λK,bs − λK,ds )K−1ds+M
K,b

t −MK,d

t

≤ xK0 +

∫ t

0

CXK
s ds+M

K,b

t −MK,d

t .

So we have

|XK
t |4 ≤ C

(
(xK0 )4 +

( ∫ T

0

XK
s ds

)4
+ |MK,b

t |4 + |MK,d

t |4
)

taking the supremum over t ∈ [0, T ] and then the expectation we obtain point (iv) as corollary of
Proposition 1 and point (iii).

6.2 Proof of Proposition 2.

The proof of Proposition 2 is inspired by that of Theorem 5 in [BDM02].

It is easy to check using (1) that for any K the processes XK is a càd-làg Feller process. For de-
tails on this point see Appendix D. Moreover, by Theorem 1.1 in [Küh18] X is a continuous Feller
process. Hence from Proposition 4.B) in [CMS01] we get the weak convergence of FK towards
FX . So by Remark 1.2) in [CMS01] we have the convergence in probability of (QK)K≥0 towards
Q for the Skorohod topology. Since Q is a Brownian martingale, it is a continuous martingale and
therefore (QK)K≥0 converges in probability towards Q for the topology of the uniform convergence.

Since (|MK |2)K≥0 is uniformly integrable it converges in S2
1 towards M . From Proposition 2 in

[BDM02], we obtain that(
〈QK , QK〉, 〈QK ,MK〉

)
→
(
〈Q,Q〉, 〈Q,M〉

)
as K → +∞

in S1
1×S1

2 . We then extend this convergence and the one of (QK)K≥0 using dominated convergence
theorem. For this we show that for any ε′ < ε we have:

(i) (QK)K≥0 is bounded in S2+ε′

1 ,

(ii)
(
〈QK〉

)
K≥0

is bounded in S1+ε′

1 ,

(iii)
(
〈QK ,MK〉

)
K≥0

is bounded in S2+ε′

1 .
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Proof of (i): By Doob’s maximal inequality we have for a positive constant C

E[ sup
t∈[0,T ]

|QKt |2+ε′ ] ≤ CE[|QKT |2+ε′ ] ≤ CE[|ξK |2+ε′ ].

Therefore we get (i) since (ξK)K≥0 is bounded in L2+ε.

Proof of (ii): By Equation (100.2) p.183 in [DM80] and using BDG inequality we have

E[〈QK〉1+ε′/2
T ] ≤ CE[ sup

t∈[0,T ]

|QKt |2+ε′ ],

thus we get (ii).

Proof of (iii): Using Kunita-Watanabe inequality we have

‖〈QK ,MK〉T ‖2 ≤ 〈QK〉T 〈AK〉T .

Therefore by Hölder inequality we get for any p > 1 such that p(1 + ε′/2) < (1 + ε/2):

E[ sup
t∈[0,T ]

‖〈QK ,MK〉T ‖2+ε′

1 ] ≤
(
E[〈QK〉p(1+ε′/2)

T ]
)1/p(

E[〈AK〉p∗(1+ε/2)
T ]

)1/p∗

where p∗ = (1− p−1)−1 so (iii) follows from (ii) and Proposition 1.

6.3 Proof of Theorem 2.

The proof of Theorem 2 is inspired from the proof of Theorem 12 in [BDM02].

We proceed in 3 steps:

(i) We show that there exists α ∈ (0, 1) and some α−contracting functions (FK)K≥0 and F such
that for any K, the unique solution of (B)K is the fixed point of FK and the fixed point of
F is solution to (B).

(ii) We introduce a double indexed sequence and prove a convergence result by induction.

(iii) We conclude.

6.3.1 Step (i)

For any K we define the function

FK : SK −→ SK
(Y,Z) 7−→ (Y ′, Z ′)

where (Y ′, Z ′) is the unique solution of the BSDE:

Y ′t = ξK +

∫ T

t

gK(XK
s , Ys, Zs) · φKs dAKs −

∫ T

t

Z ′s · dMK
s .

Since (Y,Z) ∈ SK and because of assumptions (ii) and (iii) in Lemma 1 we have gK(XK , Y, Z) ∈
HK2 . So we can properly define

Y ′t = E[ξK +

∫ T

t

gK(XK
s , Ys, Zs) · φKs dAKs |FKt ]
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and Z ′ is the unique process in HK2 satisfying

E[ξK +

∫ T

0

gK(XK
s , Ys, Zs) · φKs dAKs |FKt ] = Y ′0

K
+

∫ t

0

Z ′s · dMK
s .

Consider two pairs (Y 1, Z1), (Y 2, Z2) ∈ SK and noting (Y
1
, Z

1
) = FK(Y 1, Z1) (resp. (Y

2
, Z

2
) =

FK(Y 2, Z2)). Using Ito’s formula on eβA
K
t |Y 1

t − Y
2

t |2 between 0 and T we get

−|Y 1

0 − Y
2

0|2 =

∫ T

0

eβA
K
t

(
β|Y 1

t − Y
2

t |2 − 2(Y
1

t − Y
2

t )
(
gK(XK

t , Y
1
t , Z

1
t )− gK(XK

t , Y
2
t , Z

2
t )
)
· φKt

)
dAKt

+

∫ T

0

eβA
K
t 2(Y

1

t − Y
2

t )(Z
1

t − Z
2

t ) · dMK
t

+

∫ T

0

eβA
K
t |Z1,b

t − Z
2,b

t |2dN b
t +

∫ T

0

eβA
K
t |Z1,d

t − Z
2,d

t |2dNd
t .

Taking the expectation we get

|Y 1

0 − Y
2

0|2 + E[

∫ T

0

eβA
K
t β|Y 1

t − Y
2

t |2dAKt ] + E[

∫ T

0

eβA
K
t |Z1

t − Z
2

t |2 · φKt dAKt ]

≤ E[

∫ T

0

eβA
K
t 2|Y 1

t − Y
2

t |
∣∣gK(XK

t , Y
1
t , Z

1
t )− gK(XK

t , Y
2
t , Z

2
t )
∣∣ · φKt dAKt ].

Therefore using the assumptions of Lemma 1 together with Young’s inequality we get for any
positive α and γ that

β‖Y 1 − Y 2‖2HK1 + ‖Z1 − Z2‖2HK2 ≤ (
L

γ
+
L

α
)‖Y 1 − Y 2‖2HK1 + Lγ‖Z1 − Z2‖2HK2 + Lα‖Y 1 − Y 2‖2HK1

or equivalently

(β − L

α
− L

γ
)‖Y 1 − Y 2‖2HK1 + ‖Z1 − Z2‖2HK2 ≤ Lγ‖Z

1 − Z2‖2HK2 + Lα‖Y 1 − Y 2‖2HK1 .

Inspired by the proof of Theorem 3.4 in [CF13] we choose γ = α/L and α ∈ (0, 1) such that

β − L2 + L

α
> L.

We can make such choice since β − L2 − L > L. Therefore we obtain

L‖Y 1 − Y 2‖2HK1 + ‖Z1 − Z2‖2HK2 ≤ α
(
L‖Y 1 − Y 2‖2HK1 + ‖Z1 − Z2‖2HK2

)
.

Therefore for any K the function FK is an α−contraction on SK for the norm equivalent to ‖ · ‖SK
and defined by

‖(Y, Z)‖′SK =
(
L‖Y ‖2HK1 + ‖Z‖2HK2

)1/2

In the continuous case we consider

F : S −→ S
(Y,Z) 7−→ (Y ′, Z ′)

where (Y ′, Z ′) is the unique solution of the BSDE:

Y ′t = ξ +

∫ T

t

g(Xs, Ys, Zs)dAs−
∫ T

t

Z ′s · dMX
s .
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Since (Y,Z) ∈ S and because of Remark 2 we have g(X,Y, Z) ∈ H2. So we can properly define

Y ′t = E[ξ +

∫ T

t

g(Xs, Ys, Zs) · φsdAs|Ft]

and Z ′ is the unique process in H2 satisfying

E[ξ +

∫ T

t

g(Xs, Ys, Zs) · φKs dAs|Ft] =

∫ t

0

Z ′s · dMs.

Similarly we obtain that F is an α−contraction for the equivalent norm on S:

‖(Y,Z)‖′S =
(
L‖Y ‖2H + ‖Z‖2H

)1/2

.

6.3.2 Step (ii)

For any K ≥ 0 we define the sequence (Y K,p, ZK,p)p≥0 satisfying

(Y K,0, ZK,0) = 0 and (Y K,p+1, ZK,p+1) = FK(Y K,p, ZK,p).

We similarly consider the sequence (Y p, Zp)p≥0 defined by

(Y 0, Z0) = 0 and (Y p+1, Zp+1) = F (Y p, Zp).

Since for any K ≥ 0, FK is a contraction. For any K ≥ 0 the sequence (Y K,p, ZK,p)p≥0 converges
towards (Y K , ZK) in SK . In the same way (Y p, Zp)p≥0 converges towards (Y,Z) in S.

We use the following notation:

QK,p+1
t =

∫ t

0

ZK,p+1
s · dMK

s , χK,pt :=

∫ t

0

gK(XK
s , Y

K,p
s , ZK,ps ) · φKs dAKs ,

Qp+1
t =

∫ t

0

Zp+1
s dMX

s and χpt :=

∫ t

0

g(Xs, Y
p
s , Z

p
s )dAs.

So that we can write:

Y K,p+1
t = ξK + χK,pT − χK,pt −QK,p+1

T +QK,p+1
t (7)

and
Y p+1
t = ξ + χpT − χ

p
t −Q

p+1
T +Qp+1

t . (8)

We prove by induction that the following convergence holds for any p:(
Y K,p, QK,p, 〈QK,p,MK〉, 〈QK,p〉

)
→
(
Y p, Qp, 〈Qp,M〉, 〈Qp〉

)
as K → +∞

in S2+εp
1 × S2+εp

1 × S2+εp
2 × S1+εp/2

1 where εp = ε/2p.

Obviously the result holds for p = 0. We assume that the converge holds for p and show that it
implies the convergence for p+ 1.

We write

E[ξK + χK,pT |F
K
t ] = Y K,p+1

0 +QK,p+1
t and E[ξ + χpT |F

X
t ] = Y p+1

0 +Qp+1
t .
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We prove in Appendix 6.3.4 that the induction hypothesis implies that (χK,p)K≥0 converges to-

wards χp in S2+ε̃p
1 where ε̃p = (εp+εp+1)/2. Therefore (ξK +χp,KT )K≥0 converges towards (ξ+χp)

in L2+ε̃p . Since ε̃p > εp+1 using Proposition 2 we get(
QK,p+1, 〈QK,p+1,M

K〉, 〈QK,p+1〉
)
→
(
Qp+1, 〈Qp+1,M〉, 〈Qp+1〉

)
in S2+εp+1

1 ×S2+εp+1

2 ×S1+εp+1/2
1 . From equations (7) and (8) we immediatly get that (Y K,p+1)K≥0

converges towards Y p in S2+εp+1

1 . Therefore we get the convergence for p+ 1.

6.3.3 Step (iii)

Note that a consequence of Step (i) is that for a certain positive constant C we have

‖(Y K,p, ZK,p)− (Y K , ZK)‖SK + ‖(Y p, Zp)− (Y, Z)‖S ≤ Cαp. (9)

We write
‖QK −Q‖2 ≤ ‖Qp −Q‖2 + ‖QK −QK,p‖2 + ‖QK,p −Qp‖2.

Notice that according to the BDG inequality there exists a positive constant C such that for any
K

‖QK,p −QK‖22 + ‖Qp −Q‖22 ≤ C
(
‖ZK,p − ZK‖2HK + ‖Zp − Z‖2H

)
which converges towards 0 uniformly in K when p → +∞ by Equation (9). Hence (QK)K≥0

converges in S2
1 towards Q.

Similarly we write

‖Y K − Y ‖2 ≤ ‖Y p − Y ‖2 + ‖Y K,p − Y K‖2 + ‖Y K,p − Y p‖2.

We proved in the previous section that the last term goes to 0 when K → +∞. Remark that we
have

Y Kt − Y
K,p
t = E[

∫ T

t

(
gK(XK

s , Y
K
s , ZKs )− gK(XK

s , Y
K,p−1
s , ZK,p−1

s )
)
· φKs dAKs |FKt ]

so using Jensen and Doob’s inequality we get

E[ sup
t∈[0,T ]

eβA
K
t |Y Kt − Y

K,p−1
t |2] ≤ L2E[

∫ T

0

eβA
K
s |Y Ks − Y K,p−1

s |2dAKs +

∫ T

0

eβA
K
s |ZKs − ZK,p−1

s |2 · φKs dAKs ]

≤ L‖(Y K,p−1, ZK,p−1)− (Y K , ZK)‖2SK .

Therefore ‖Y K −Y K,p‖KK goes to 0 when p→ +∞. In the same way we get that ‖Y −Y p‖K goes
to 0 when p→ +∞. So ‖Y K − Y ‖2 converges towards 0.

Finally notice that,

〈Y K ,MK〉 = 〈QK ,MK〉, 〈Y K〉 = 〈QK〉, 〈Y, M〉 = 〈Q,M〉 and 〈Y 〉 = 〈Q〉.

So the convergence (
〈Y K ,MK〉, 〈Y K〉

)
→
(
〈Y,M〉, 〈Y 〉

)
as K → +∞

in S1
2 × S1

1 follows from Proposition 2 in [BDM02] and from the convergence of (QK ,M
K

)K≥0 in
S2

1 × S2
2 towards (Q,M).
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6.3.4 Convergence of (χp,K)K≥0 towards χp

To prove the convergence we first prove that (χp,K)K≥0 converges towards χp in probability
for the uniform topology. Then we show that (|χp,K | + |χp|)K≥0 is bounded in S2+ε̂p where
ε̂p = (εp + ε̃p)/2 > ε̃p. We conclude by dominated convergence.

For any n we note Zp,n = Zp1|Zp|<n. We write

sup
t∈[0,T ]

|φKt − φt| ≤
∑
i=b,d

Tn,K,pi,1 + Tn,K,pi,2 + Tn,K,pi,3 + Tn,pi,4 /2

where for i ∈ b, d, we recall that g = (gb + gd)/2,

Tn,K,pi,1 = sup
t∈[0,T ]

|
∫ t

0

gKi (XK
s , Y

K,p
s , ZK,ps )φK,is dAKs −

∫ t

0

gKi (XK
s , Y

K,p
s , Zp,ns /K)φK,is dAKs |

Tn,K,pi,2 = sup
t∈[0,T ]

|
∫ t

0

gKi (XK
s , Y

K,p
s , Zp,ns /K)φK,is dAKs −

∫ t

0

gi(Xs, Y
p
s , Z

p,n
s )K−2φK,is dAKs |

Tn,K,pi,3 = sup
t∈[0,T ]

|
∫ t

0

gi(Xs, Y
p
s , Z

p,n
s )K−2φK,is dAKs −

∫ t

0

gi(Xs, Y
p
s , Z

p,n
s )/2dAs|

Tn,pi,4 = sup
t∈[0,T ]

|
∫ t

0

gi(Xs, Y
p
s , Z

p,n
s )− gi(Xs, Y

p
s , Z

p
s )dAs|.

For i ∈ {b, d} the sequence (Tn,pi,4 )n≥0 obviously converges to 0 in probability by almost sure con-
vergence as n goes to infinity.

The sequence (
∫ ·

0
K−2φK,is dAKs )K≥0 converges towards A/2 in probability for the Skorohod topol-

ogy and satisfy the P-UT condition by Proposition VI-6.12 in [JS13]. So for any n, (Tn,K,pi,3 )K≥0

converges towards 0 in probability (for the Skorohod topology) as a consequence of Theorem VI-
6.22 in [JS13].

For the second term we write

|K2gKb (XK , Y K,p, Zp,n/K)− gb(X,Y p, Zp,n)|
≤ |K2gKb (XK , Y K,p, Zp,n/K)−K2gKb (X,Y p, Zp,n/K)|

+ |K2gKb (X,Y p, Zp,n/K)− gb(X,Y p, Zp,n)|.

So by assumptions of Lemma 1 and Assumption 2 we get:

|K2gKb (XK , Y K,p, Zp,n/K)− gb(X,Y p, Zp,n)|
≤C|XK −X|+ L|Y K,p − Y p|+ υK(|X|2 + |Y p|2 + n2).

Thus there exits C̃ > 0

|Tn,K,pb,2 |+ |Tn,K,pd,2 | ≤C̃AKT
(

sup
t∈[0,T ]

|XK
t −Xt|+ sup

t∈[0,T ]

|Y K,pt − Y pt |

+ υK( sup
t∈[0,T ]

|Xt|2 + sup
t∈[0,T ]

|Y pt |2 + n2)
)

which obviously goes to 0 in probability when K → +∞ according to Slutsky’s theorem, in view
of the induction hypothesis and since (υK)K≥0 goes to 0.
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Finally we write:

|K2gKb (XK
s , Y

K,p
s , ZK,ps )−K2gKb (XK

s , Y
K,p
s , Zp,ns /K)|2 ≤ L2|KZK,p,bs − Zp,ns |2.

So we have

|Tn,K,pb,1 |+ |Tn,K,pd,1 | ≤ sup
t∈[0,T ]

L2

∫ t

0

(
(KZK,ps )2 + (Zp,ns )2 − 2Zp,ns KZK,ps

)
·K−2φKs dAKs

Taking the average and going to the upper limit in K we get by induction hypothesis and from
Theorem VI-6.22 in [JS13] that

lim sup
K→+∞

E[|Tn,K,pb,1 |+ |Tn,K,pd,1 |] ≤L2E
[

sup
t∈[0,T ]

∫ t

0

(
(Zps )2 + (Zp,ns )2 − 2Zp,ns Zps

)
dAs

]
≤L2E

[
sup
t∈[0,T ]

∫ t

0

(Zps − Zp,ns )2dAs
]
.

The RHS converges to 0 when n → +∞ by dominated convergence. Hence we have shown that
(χK,p)K≥0 converges to χp in probability for the uniform convergence.

To conclude we show that (|χK,p|+ |χp|)K≥0 is bounded in S2+ε̂p . We write

sup
t∈[0,T ]

|χK,pt | ≤CAKT
(

1 + sup
t∈[0,T ]

|XK
t |+ sup

t∈[0,T ]

|Y Kt |
)

+ C

∫ T

0

|KZKs | ·
φKs
K2

dAKs .

Using Kunita-Watanabe it is easy to see that the last term is bounded in L2+ε̂p . The other terms
are bounded in L2+ε̂p by induction assumption and Proposition 1. So (χK,p)K≥0 is bounded in

S2+ε̂p
1 . In the same way we show that χp ∈ S2+ε̂p

1 . Therefore we obtain the convergence of

(χK,p)K≥0 towards χp in S2+ε̃p
1 by dominated convergence.

6.4 Proof of Theorem 3

From Assumption 4 (i)-(ii) we get that the generator gK satisfies the conditions of Lemma 1. There-

fore (BSDE)K admits a unique solution (Y K , ZK) ∈ SK . We consider αK,∗t = αK,∗(XK
t , Z

K
t ),

and show that αK,∗ solve the optimal control problem (C)K . Since αK,∗ is admissible according

to Assumption 4 (iii) we have JK,α
K,∗

0 = Y K0 .

We now take any α ∈ AK and show that

JK,α
K∗

0 ≥ JK,α0 .

We write:

JK,α
K∗

0 = ξK +

∫ T

0

(
cK(XK

t , α
K∗
t ) + ZK,dt hK(XK

t , α
K∗
t )− cK(XK

t , αt)− Z
K,d
t hK(XK

t , αt)
)
ds

+

∫ T

0

(
cK(XK

t , αt) + ZK,dt h(XK
t , αt)

)
ds−

∫ T

0

ZKs · dMK
s .

By definition the first integrand term is almost surely non negative and therefore we have

JK,α
K∗

0 ≥ ξK +

∫ T

0

(
cK(XK

t , αt) + ZK,dt hK(XK
t , αt)

)
ds−

∫ T

0

ZKs · dMK
s ,
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or equivalently

JK,α
K∗

0 ≥ ξK +

∫ T

0

cK(XK
t , αt)ds−

∫ T

0

ZKs · dMK,α
s .

Taking the expectation with respect to PK,α we get the result.

6.5 Proof of Theorem 4

From Assumption 6 (i)-(ii) we get that the generator g satisfies the conditions of Lemma 2. There-
fore (BSDE) admits a unique solution (Y,Z) ∈ S. We consider α∗t = α∗(Xt, Zt), and show that
α∗ solve the optimal control problem (C). Since α∗ is admissible according to Assumption 6 (iii)
we have Jα

∗

0 = Y0.

We now take any α ∈ A and show that

Jα
∗

0 ≥ Jα0 .

We write:

Jα
∗

0 = ξ +

∫ T

0

(
c(Xt, α

∗
t ) + Zth(Xt, α

∗
t )− c(Xt, αt)− Zth(Xt, αt)

)
ds

+

∫ T

0

(
c(Xt, αt) + Zth(Xt, αt)

)
ds−

∫ T

0

ZdMX
s .

By definition the first integrand term is almost surely non negative and therefore we have

Jα
∗

0 ≥ ξ +

∫ T

0

(
c(Xt, αt) + Zdt h(Xt, αt)

)
ds−

∫ T

0

Zs · dMX
s ,

or equivalently

Jα
∗

0 ≥ ξ +

∫ T

0

c(Xt, αt)ds−
∫ T

0

ZsdM
α
s .

Taking the expectation with respect to Pα we get the result.

6.6 Proof of Theorem 5

According to Assumption 7 the sequences (ξK)K≥0 and (gK)K≥0 satisfy the assumptions of Lemma
4 for any K and Assumption 2. So from Theorem 2 we have in S2

1 × S1
1 × S1

1(
Y K ,

∫ ·
0

ZK,ds λk,ds K−1ds,

∫ ·
0

|KZK,ds |2λk,ds K−2ds
)

→
(
Y,

∫ ·
0

Zsσ
2(Xs)/2ds,

∫ ·
0

Z2
sσ

2(Xs)/2ds
)

as K → +∞. (10)

6.6.1 Proof of point (i)

We write∣∣∣ ∫ T

0

αK,∗t λK,ds K−2ds−
∫ T

0

α∗tdAs/2
∣∣∣ ≤∫ T

0

|αK,∗t − αK,∗(Xt, Zt/K)|λK,ds K−2ds

+
∣∣∣ ∫ T

0

αK,∗(Xt, Zt/K)λK,ds K−2ds−
∫ T

0

αK,∗(Xt, Zt/K)dAs/2
∣∣∣

+

∫ T

0

∣∣αK,∗(Xt, Zt/K)− α∗t
∣∣dAt/2.
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The second term converges towards 0 by Theorem 1. The last one terms goes to 0 from Assumption
7 (ii). Using Assumption 7 (iii) we can dominate the first term by∫ T

0

|αK,∗t − αK,∗(Xt, Zt/K)|λK,ds K−2ds ≤ AKT
∫ T

0

|αK,∗t − αK,∗(Xt, Zt/K)|2λK,ds K−2ds

≤ AKT
∫ T

0

(
|XK

t −Xt|2 + |KZKt − Zt|2
)
λK,ds K−2ds.

that goes to 0 according to Theorem 1 and to the convergence (10).

In the same way, using that the control is bounded, we get that in probability∫ T

0

|αK,∗t |2λK,ds K−2ds→
∫ T

0

|α∗t |2dAs/2 as K → +∞.

We then extend the convergences to S1
2 by uniform integrability since the control is bounded. Thus

we get the first statement of Theorem 5.

6.6.2 Proof of point (ii)

We consider (ti)1≤i≤n ∈ [0, T ]n and a bounded continuous function f defined from Rn into R. We
show that

EK,∗[f(XK
t1 , . . . , X

K
tn)]→ E∗[f(Xt1 , . . . , Xtn)] as K → +∞

where EK,∗ (resp. E∗) denotes the expectation under the control αK,∗ (resp. α∗). We write

EK,∗[f(XK
t1 , . . . , X

K
tn)] = E[f(XK

t1 , . . . , X
K
tn)LK,α

K,∗

T ]

and
E∗[f(XK

t1 , . . . , X
K
tn)] = E[f(Xt1 , . . . , Xtn)Lα

∗

T ].

Suppose we have shown that (LK,α
K,∗

T )K≥0 converges in probability surely towards L∗T . Then
writing

|Lα
∗

T − L
k,αK,∗

T | = 2(Lα
∗

T − L
k,αK,∗

T )+ − (Lα
∗

T − L
k,αK,∗

T )

we get that (Lk,α
K,∗

T )K≥0 converges towards Lα
∗

T in L1 by dominated converges and since

E[Lα
∗

T ] = E[LK,α
K,∗

T ] = 1.

Then we conclude noticing that:

|f(Xt1 , . . . , Xtn)Lα
∗

T −f(XK
t1 , . . . , X

K
tn)LK,α

K,∗

T | ≤ |f(Xt1 , . . . , Xtn)−f(XK
t1 , . . . , X

K
tn)|Lα

∗

T +‖f‖∞|Lα
∗

T −L
k,αK,∗

T |

We finally prove the convergence of (LK,α
K,∗

T )K≥0 towards L∗T in probability. We introduce the
following sequences

εK1 =

∫ T

0

log
(
1 +

hK(XK
s , Z

K
s )

λK,ds

)
dNK,d

s −
∫ T

0

hK(XK
s , α

K,∗
s )

λK,ds

− 1

2

(hK(XK
s , α

K,∗
s )

λK,ds

)2

dNK,d
s ,

εK2 =

∫ T

0

(hK(XK
s , α

K,∗
s )

λK,ds

)2

dNK,d
s −

∫ T

0

(hK(XK
s , α

K,∗
s )

λK,ds

)2
λK,ds ds,

εK3 =

∫ T

0

(hK(XK
s , α

K,∗
s )

λK,ds

)2
λK,ds ds−

∫ T

0

(h(Xs, α
∗
s)

σ2(Xs)/2

)2
dAs/2,

εK4 =

∫ T

0

hK(XK
s , α

K,∗
s )

λK,ds

dMK,d
s −

∫ T

0

h(Xs, α
∗
s)

σ2(Xs)/2
dMd

s
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and show that they all converges to 0 in probability.

For some C > 0 independent of K we have

nb|εK1 | ≤ C
∫ T

0

(hK(XK
s , α

K,∗
s )

λK,ds

)3

dNK,d
s

which converges towards 0 in probability according to Markov inequality. Remark that

εK2 =

∫ T

0

(hK(XK
s , α

K,∗
s )

λK,ds

)2

dMK,d
s

Consequently using Assumption 7 (iii) and Tchebychev inequality we get that (εK2 )K≥0 converges
towards 0 in probability. Notice that we have

εK3 =

∫ T

0

[(KhK(XK
s , α

K,∗
s )

λK,ds

)2

−
(KhK(Xs, α

K,∗(Xs, Zs/K))

λK,d(Xs)

)2]
K−2λK,ds ds

+

∫ T

0

(KhK(Xs, α
K,∗(Xs, Zs/K))

λK,d(Xs)

)2

K−2λK,ds ds−
∫ T

0

(KhK(Xs, α
K,∗(Xs, Zs/K))

λK,d(Xs)

)2

dAs/2

+

∫ T

0

(KhK(Xs, α
K,∗(Xs, Zs/K))

λK,d(Xs)

)2

−
(h(Xs, α

∗
s)

σ2(Xs)/2

)2

dAs/2.

The second and last terms go to 0 in probability by Theorem 1, Assumption 7 (ii) and from Propo-
sition VI-6.12 and Theorem VI-6.22 in [JS13]. As we did in the proof of Theorem 5 (i), the first
term goes to 0 from Cauchy Schwarz inequality Assumption 7 (iii) together with the convergence
(10).

Finally we write

εK4 ≤
∣∣∣ ∫ T

0

KhK(XK
s , α

K,∗
s )

λK,d(XK
s )

− KhK(Xs, α
∗
s)

λK,d(Xs)
dMK,d

s

∣∣∣
+
∣∣∣ ∫ T

0

KhK(Xs, α
∗
s)

λK,d(Xs)
dM

K

s −
∫ T

0

KhK(Xs, α
∗
s)

λK,d(Xs)
dMs

∣∣∣
+
∣∣∣ ∫ T

0

h(Xs, α
∗
s)

σ2(Xs)/2
− KhK(Xs, α

∗
s)

λK,d(Xs)
dMs

∣∣∣
The second and last terms converge towards 0 by Assumption 7 (ii), Theorem 1, Proposition VI-
6.12, Theorem VI-6.22 in [JS13] and Theorem 5. Using Ito’s isometry, Cauch-Schwarz inequality,
Assumption 7 (iii) together with Theorem 1 and Theorem 5 (i) we get that the first term goes to
0 in probability. Therefore (εK4 )K≥0 converges towards 0 in probability.

Thus we conclude that (LK,α
K,∗

T )K≥0 converges toward Lα
∗

T in probability.
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A Spaces and notations

• For any K ≥ 0 we consider the sets.

– L2(MK) is the set of FK predictable process R2 valued Z such that

‖Z‖2L2(MK) = E[

∫ T

0

|Zs|2 · φKs dAKs ] < +∞.

– TK is the set of FKT measurable R valued random variable ξ such that

‖ξ‖2TK = E[eβA
K
T |ξ|2] < +∞.

– KK is the set of FK-optional R valued process Y such that

‖Y ‖2KK = E[eβA
K
T sup
t∈[0,T ]

|Yt|2] < +∞.

– HK2 is the set of FK-predictable R2 valued process Z such that

‖Z‖2HK = E[

∫ T

0

eβA
K
t Z2

s · φKt dAKt ] < +∞ with Z2 = (Z2
1 , Z

2
2 ).

– HK1 is the set of FK-predictable R valued process Y such that

‖Y ‖2HK1 = E[

∫ T

0

eβA
K
t |Y ts |2dAKt ] < +∞.

– SK is the set of pair (Y,Z) ∈ HK1 ×HK2 , we note ‖(Y,Z)‖2SK = ‖Y ‖2HK1 + ‖Z‖2HK2 .

• We also consider the sets related to the continuous model.

– L2(MX) is the set of FX predictable process R valued Z such that

‖Z‖2L2(MX) = E[

∫ T

0

|Zs|2dAs] < +∞.

– T is the set of FXT measurable R valued random variable ξ such that

‖ξ‖2T = E[eβAT |ξ|2] < +∞.

– K is the set of FX -optional R valued process Y such that

‖Y ‖2K = E[eβAT sup
t∈[0,T ]

|Yt|2] < +∞.

– H is the set of FX -predictable R valued process Z such that

‖Z‖2H = E[

∫ T

0

eβAtZ2
sdAt] < +∞.

– S is the set of pair (Y,Z) ∈ K×H, we note ‖(Y,Z)‖2S = ‖Y ‖2K + ‖Z‖2H.

• Finally we consider the sets:

– Lp the set of real valued random variable Z such that

‖Z‖pLp = E[|Z|p] < +∞

– Spd is the set of F-predictable Rd valued process X such that

‖X‖pp = E[ sup
t∈[0,T ]

‖Xt‖p] < +∞.
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B Change of measure for initial population

We consider m ∈ R∗+ and n ∈ [0,m) and define the process

QK,n,mt =

∫ t

0

∑
i∈{b,d}

λn,K,is − λm,K,is

λm,K,is

1Xm,ks >0dMK,i
s .

We have |∆QK,n,m| ≤ 1 and therefore ∆QK,n,m ≥ 1. Moreover we have

〈QK,n,m〉t =

∫ t

0

∑
i∈{b,d}

|λn,K,is − λm,K,is |2

λm,K,is

1Xm,Ks >0ds

≤
∫ t

0

∑
i∈{b,d}

C(K2 +K)|n−m|2

K2ηXm,K
s

1Xm,Ks >0ds

≤
∫ t

0

∑
i∈{b,d}

C(K2 +K)|n−m|2

K2ηXm,K
min

ds,

where Xm,K
min > 0 is the lowest positive value that the process Xm,K can take. Therefore by Theo-

rem 2.4 in [Sok13] the process Ln,m is a uniformly integrable martingale.

Moreover according to Theorem III-3.11 in [JS13] under the probability PK,m for i ∈ {b, d} the
process

MK,m,i − 〈QK,n,m,MK,m,i〉

are local martingales. Finally we conclude since

MK,m,i
t − 〈QK,n,m,MK,m,i〉t = N i

t −
∫ t

0

λm,K,is − (λn,K,is − λm,K,is )1Xm,Ks >0ds

= N i
t −

∫ t

0

λn,K,is 1Xm,Ks >0 + λm,K,is 1Xm,Ks =0ds

= N i
t −

∫ t

0

λn,K,is ds

= MK,n,i
t .

C Admissibility of the controls in the toy model

C.1 Discrete models

We show that the control αK,∗ is admissible. We have

λK,d,α
K,∗

t = KXK
t−(µ+Kσ2) +KXK

t−
(
− 2aK(t) +

aK(t)

XK
t−K

− bK(t)

XK
t−

)
1XKt−>0.

By [Jac75] the probability PK,αK,∗ exists. We recall that we have chosen T small enough such that
aK is negative and bK positive on [0, T ]. Hence we have

λK,d,α
K,∗

t ≥ KXK
t−(µ+Kσ2) +K

(
− 2aK(t)XK

t− +
aK(t)

K
− bK(t)

)
1XKt−>0

≥ XK
t−K

(
µ− aK(t)1XKt−>0 +Kσ2 −KbK(t)

)
.
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We can always assume that T is small enough so that we can assume that for any t ∈ [0, T ],

σ2 − bK(t) > 0. So λK,d,α
K,∗

is PK,αK,∗ almost surely non negative and the control αK,∗ is
admissible.

C.2 Continuous models

We have
Xtα

∗
t =

(
− 2a(t)Xt − b(t)

)
1Xt>0.

So the SDE
dXt = Xt(ν − µ− α∗t )dt+ σXtdWt

writes
dXt =

(
Xt(ν − µ)−

(
− 2a(t)Xt − b(t)

)
1Xt>0

)
dt+ σXtdWt, X0 = x0.

Obviously this SDE admits a unique strong solution given by Yt1 inf
s∈[0,t]

Ys>0 where Y is the unique

strong solution of

dYt =
(
Yt(ν − µ) + 2a(t)Yt + b(t)

)
dt+ σYtdWt, Y0 = x0.

D Feller property of the model

We consider a non negative real x. We obviously have that when t→ 0 the XK,x
t converges almost

surely towards x. Now we consider a non negative sequence (xn)n≥0 that converges towards x and

show that for any t > 0, (XK,xn
t )n≥0 converges in law towards XK,x

t . We fix x0 larger than x and
any of the xn and f a bounded continuous function on R+.

We write

EK,xn [f(XK,xn
t )] = EK,x0 [f(XK,xn

t )LK,xn,x0

t ] and EK,x[f(XK,x
t )] = EK,x0 [f(XK,x

t )LK,x,x0

t ],

and

|f(XK,xn
t )LK,xn,x0

t −f(XK,x
t )LK,x,x0

t | ≤ |f(XK,xn
t )−f(XK,x

t )|LK,x,x0

t +|f(XK,xn
t )||LK,xn,x0

t −LK,x,x0

t |.

The first term of the right hand side (RHS for short) goes to 0 by dominated convergence. We can
dominate the second on by

‖f‖∞|LK,xn,x0

t − LK,x,x0

t |

that converges towards 0 according to Scheffé’s lemma. Therefore our model has the Feller property.

E Martingale representation with respect to MX

We show in this section that any (FX ,P)−martingale has the representation property relative to
MX .

We set H = FX0 and P0 = εX0=x0
, i.e. the probability measure on H such that that P0(X0 =

x0) = 1. For X̃ a càdlàg process adapted to the filtration FX and B and C two FX -predictable
processes with finite variation such that B0 = C0 = 0 we recall the definition of the martingale
problem associated with (H, X̃) and (P0, B, C).

Definition 3 (Definition III-2.6 in [JS13]). A solution to the martingale problem associated with

(H, X̃) and (P0, B̃, C) is a probability measure Q on (Ω,FX) such that
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• the restriction of Q to H equals P0,

• X̃ is a semi-martingale on (Ω,FX ,Q) with characteristics (B,C).

We denote by s(H, X̃|P0;B,C) the set of solutions to this martingale problem.

From this definition we see that the projection of P on FK is a solution of s(H, X|P0;D,A) where

Dt =

∫ t

0

f(Xs)ds and At =

∫ t

0

σ2(Xs)ds.

We have MX = Xt −Dt so that MX is a FX -adapted process and it makes sense to consider the
set s(H,MX |P0; 0, A). We show that

s(H,M |P0; 0, A) = s(H, X|P0;D,A) (11)

and that s(H, X|P0;D,A) is reduced to a singleton. This will be enough to conclude according to
Theorem III-4.29 in [JS13].

Consider Q ∈ s(H,M |P0; 0, C). We have X = MX +A and since D and C are continuous process
with finite variation, we deduce that under Q the characteristics of X are (A,C). Conversely, if
Q ∈ s(H, X|P0;D,A) then by recalling that MX = X−D we obtain Q ∈ s(H,M |P0; 0, A). Hence,
(11) holds.

Since (S) admits a unique strong solution it admits a unique solution in law (see Theorem IX-
1.7 [RY13]). Therefore from Theorem III-2.26 in [JS13] the set s(H, X|P0;D,C) is reduced to
a singleton. As a consequence of (11), the set s(H,MX |P0; 0, C) is also reduced to a singleton.
Therefore, we deduce from Theorem III-4.29 that all (FX ,P)-martingales have the representation
property relative to MX .

F Proof of Proposition 1

For two non negative reals ν and µ we say that N is a linear branching process with birth rate ν
and intensity µ if it can be written as N = N b−Nd where N b and Nd are two counting processes
with respective intensity νN and µN . This corresponds to a branching process as defined in Sec-
tion III-3.3.1 in [Mél16] with parameters a = ν + µ, p0 = µ

ν+µ and p2 = ν
ν+µ .

To prove Proposition 1 we proceed in two steps:

• Step 1: We prove a result similar to Proposition 1 for linear branching process.

• Step 2: We show that for any K we can consider that XK is almost surely dominated by a
linear branching process and use the previous step to conclude.

F.1 Step 1: exponential moments for linear branching processes

We consider N a linear branching process with birth and death rate given by ν and µ.

We define the function F from N× (R∗+)2 × R+ into R+ by

F (n, β, t) = En[eβ1

∫ t
0
Nsds+β1Nt ]

where En is the expectation taker under the probability law that corresponds to initial condition
population of size n. We have the following lemma:
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Lemma 4. For any positive real t and β < ν + µ satisfying

t < t∗ν,µ,β and (ν + µ− β)2 > 4νµ

we have

F (n, β, t) =
(√φν,µ,β

νν,µ,β

( 2

1− exp(αν,µ,β + 2
√
νφν,µ,βt)

− 1
)

+ γν,µ,β

)n
where

γν,µ,β =
ν + µ− β1

2ν
< 1, φν,µ,β = γ2

ν,µ,β − µ > 0,

αν,µ,β = log
(∆ν,µ,β − 1

∆ν,µ,β + 1

)
< 0 where ∆ν,µ,β =

√
ν

φν,µ,β
(eβ2 − γν,µ,β),

and

t∗ν,µ,β =
−αν,µ,β

2
√
νφν,µ,β

.

Proof of Lemma 4. Consider a population starting with one individual. We call τ the lifetime of
this particle and C the size his offspring. Since all particles are independent and follow the same
law we can consider that:

eβ1

∫ t
0
Nsds+β2Nt = 1τ>te

β1t+β2 + 1τ≤te
β1τ

C∏
i=1

eβ1

∫ t
τ
N

(i)
s−τds+β2N

(i)
t−τ (12)

where (N (i))1≤i≤2 are independent copies of N .

Consider the stopping times

Tn = inf{s > 0 s.t. Ns = n} and T in = inf{s > 0 s.t. N (i)
s = n} for i = 1, 2.

From Equation (12) we get

eβ1

∫ t
0
NTns ds+β2N

Tn
t ≤ 1τ>te

β1t+β2 + 1τ≤te
β1τ

C∏
i=1

eβ1

∫ t
τ
N

(i)T
(i)
n

s−τ ds+β2N
(i)T

(i)
n

t−s

and taking the average we have

Fn(β, t) ≤ e−(ν+µ)teβ1t+β2 +

∫ t

0

(ν + µ)e−(ν+µ)seβ1s
( ν

ν + µ
F 2
n(β, t− s) +

µ

ν + µ

)
ds.

where Fn(β, t) = E1[eβ1

∫ t
0
NTns ds+β2N

Tn
t ]. We therefore consider the following ODE:

(R)ν,µ,β : f ′ = νf2 − (ν + µ− β)f + µ, f(0) = eβ2 .

We show that (R)ν,µ,β has a unique maximal solution defined on t ∈ [0, t∗ν,µ,β) by

fµ,ν,β(t) =

√
φν,µ,β
νν,µ,β

( 2

1− exp(αν,µ,β + 2
√
νφν,µ,βt)

− 1
)

+ γν,µ,β .

Using the change of variable g = f − γν,µ,β , the ODE (R)ν,µ,β is equivalent to

(R)′ν,µ,β : g′ = φν,µ,β(
ν

β
g2 − 1).
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By Cauchy-Lispchitz theorem this ODE admits a maximal solution g. By hypothesis on β1 we
have

ν

β
g2(0)− 1 =

ν

β
(eβ2 − γν,µ,β)− 1 >

ν

β
(1− γν,µ,β) > 0.

So for all t such that ν
β g

2(0)− 1 > 0 we can write

g′(t)
ν
β g

2(0)− 1
= φν,µ,β . (13)

We recognize the derivative of

x→ 1

2

√
φν,µ,β
ν

log
(√ ν

βx− 1√
ν
βx+ 1

)
so integrating on both sides of (13) we have

log
(√ ν

φν,µ,β
x− 1√

ν
φν,µ,β

x+ 1

)
= α+ 2

√
νφν,µ,βt.

It is then easy to show that

g(t) + γν,µ,β =

√
φν,µ,β
νν,µ,β

( 2

1− exp(αν,µ,β + 2
√
νφν,µ,βt)

− 1
)

+ γν,µ,β .

Reciprocally it is easy to show that this function is a maximal solution of (R)ν,µ,β defined on
[0, t∗ν,µ,β).
The function Fn(β, ·) being continuous a direct application of the Grönwall lemma gives that for
any t ∈ [0, t∗µ,ν,β), Fn(β, t) ≤ fµ,ν,β(t). By monotone convergence we obtain that F (1, β, t) is finite
and taking the average in Equation (12) we obtain that F (1, β, ·) is solution of (R)µ,ν,β therefore
we have F (1, β, t) = fµ,ν,β(t).

Finally if we consider a population N starting with n individual we can consider that

NN =

n∑
i=1

N (i)

where (N (i))1≤i≤n are independent copies of the branching process starting with one individuals.
Therefore for t < t∗ν,µ,β we get F (n, β, t) = F (1, β, t)n which concludes the proof.

We now consider a sequence of branching process (NK)K≥0 with initial condition Kn and param-
eters

µK = µ+ aK and νK = ν + bK.

We consider βK = (β1/K, β2/K). For convenience we now replace any under script of the form
XνK ,µK ,βK by XK .

One can easily show the following convergence or equivalence:

lim
K→+∞

α = α0 = log(
η − 1

η + 1
) with η =

µ+ ν

β0
,
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lim
K→+∞

tK = t0 = − α0

2β0
, with β0 =

√
(ν − µ)2 − 2β1(a+ b),

1− γK ∼
µ+ ν

a+ b

1

K
and

βK
νK
∼ 1

K2

β2
0

(a+ b)2
.

So it is easy to check that for any t < t0:

lim
K→+∞

F (nK, βK , t) = enΨ(β,t)

where

Ψ(β, t) =
µ+ ν

a+ b
+

2β0

a+ b

( 2

1− exp(α0 + 2β0t)
− 1
)
.

Therefore we deduce that there exists C, t and β1 and β2 positive constants such that for any
s ∈ [0, t) and K sufficiently large we have

EnK [e
β1
K

∫ t
0
NKs ds+

β2
K NKt ] ≤ C. (14)

F.2 Step 2: domination of XK by linear process

We begin by showing the following lemma.

Lemma 5. Consider two functions gd and gb from R+ into R+ such that

gb(x) ≤ νx, gd(x) ≥ µx, gd(0) = 0.

We consider two counting processes Nd and N b with respective intensity gd(N) and gb(N) where
N = N b − Nd. Then up to an extension of the probability space there exists a linear branching
process Ñ with birth rate ν and death rate µ.

Proof of Lemma 5. We proceed by thinning. We consider a multivariate point process X with
values in E = {b1, b2, d1, d2} and let p be its corresponding random measure. For any e ∈ E we
define:

Ne =

∫ t

0

∫
E

1x=ep(dx, dt).

For i = 1 and 2 we note N i = N bi −Ndi and

λb1 = µN1, λd1 = νN1, λb2 = gb(N
2) and λd2 = gd(N

2).

We set p(dx, dt) = mt(x)λtdt where λt = λb2t + λd1t . The measure mt is defined by:

mt(b1) = ε1
t δb1 , mt(b2) = ε1

t ε
2
t δb2 , mt(d2) = (1− ε1

t )δd2 , mt(d1) = (1− ε1
t )ε

3
t δd1

where (εit)1≤i≤3 are Bernoulli random variable with parameters

p1
t =

λb1t
λt
, p2

t =
λb2t

λb1t
and p3

t =
λd1t

λd2t
.

For existence of the process X see [Jac75]. Basically we get that the when there is an event either
N b1 Nd2 jump. If N b1 has jumped, then N b2 may jump or not and If Nd2 has jumped, then Nd1

may jump or not. So almost surely we have N1 ≥ N2. According to Proposition 1. in [Oga81] for
any e ∈ E the process Ne is a counting process with intensity λe. This concludes the proof of the
Lemma.
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As consequence of Lemma 5 for any K up to an extension of the probability space we can consider
that there exists a branching process with birth and death rate given by

νK = ν + aK and µK = µ+ bK

that dominates XK almost surely. So by (14), there exists some positive constants C, β1, β2 and
t such that for any s ≤ t and K sufficiently large we have

E[exp(β1

∫ t

0

XK
s ds+ β2X

K
t )] < C.

This conclude the proof of the proposition.
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