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Abstract: A new blind image deconvolution technique is developed for atmospheric turbulence deblurring. The originality of the
proposed approach relies on an actual physical model, known as the Fried kernel, that quantifies the impact of the atmospheric
turbulence on the optical resolution of images. While the original expression of the Fried kernel can seem cumbersome at first
sight, we show that it can be reparameterized in a much simpler form. This simple expression allows us to efficiently embed this
kernel in the proposed Blind Atmospheric TUrbulence Deconvolution (BATUD) algorithm. BATUD is an iterative algorithm that
alternately performs deconvolution and estimates the Fried kernel by jointly relying on a Gaussian Mixture Model prior of natural
image patches and controlling for the square Euclidean norm of the Fried kernel. Numerical experiments show that our proposed
blind deconvolution algorithm behaves well in different simulated turbulence scenarios, as well as on real images. Not only BATUD
outperforms state-of-the-art approaches used in atmospheric turbulence deconvolution in terms of image quality metrics, but is
also faster.

1 Introduction

Restoration of long range images acquired through the atmospheric
turbulence has gain a lot of interest these last two decades. In astron-
omy, a preferred solution is to use adaptive deformable mirrors
which try to compensate distortions created by the atmosphere. If
such systems work reasonably well for astronomical images, they are
very expansive, fragile and of large dimension making them unus-
able for ground-to-ground or air-to-ground applications, and hard
to embed in terrestrial or aerial vehicles. An alternative approach
is to use image processing techniques to mitigate the atmospheric
turbulence. Such methods were widely investigated these last two
decades. If a fluid mechanics point of view seems a natural way to
consider the turbulence, the corresponding equations are too com-
plicated to be used within an image processing framework. Instead,
Frakes et al. [1] proposed to use a general operator point of view of
the problem (usually not based on physics models). If we denote x
the static original scene we want to recover, vi the observed image
at time i, Di some geometric distortions due to the scattering effects
of the turbulent atmosphere at time i andM a blurring kernel, a gen-
eral atmospheric turbulence model impacting the observations can
be written as

vi = Di(M(x)) + noise. (1)

The blur M is commonly considered stationary (i.e it does not
change on a short period of time) compared to the geometric distor-
tions. The authors of [1] then use some adaptive grid interpolation
technique to reconstruct a clean image from the input sequence (see
also [2] for a more efficient approach). In [3], the authors followed
the same idea but replace the interpolation process with a combina-
tion of elastic registration and low-rank filtering. In [4], the author
proposed to use some local filtering process by block partition-
ing the image, however some block artifacts appear in the restored
image. A system point of view is adopted in [5] where a Kalman
filter is used to stabilize the images, followed by a Nonlocal Total
Variation [6] deconvolution step to remove the blur. Several statis-
tical arguments were use in the literature to mitigate atmospheric
turbulence. In [7] and [8], the authors develop a centroid based
approach, while (assuming long exposure video capture), Principal
Component Analysis is used in [9]; an objective function combining
temporal and spatial information is optimized by the SURE (Stein’s

Unbiased Risk Estimator) method in [10]. A method called “lucky-
region/imaging” approach was proposed in [11], it is based on the
assumption that, at specific locations and time, a neighborhood of
good quality will appear with high probability. The method then
aims at fusing the highest quality neighborhoods to recreate a clean
image. If this method is originally motivated by the optical behav-
ior of the atmosphere, its major drawback is the question of how to
measure the quality of a neighborhood. In [12], Yang et al. proposed
to combine some non-rigid registration and the above lucky-region
method. Gilles et al. in [13], seek to estimate the inverse opera-
tors M−1 and D−1

i by using some blind-deconvolution algorithm
after performing a diffeomorphic registration step. Based on the
same strategy, Zhu et al. in [14] used a B-Spline registration within
a Bayesian framework, involving a bilateral total variation regu-
larization, to estimate the inverse operators. A two steps method
using first a multiscale optical flow estimation and then the FRTAAS
algorithm (First Register Then Average And Subtract) was proposed
in [15, 16] to obtained a restored image. The authors of [17] and
[18] respectively use a generalized regression neural network and a
convolutional neural network to learn turbulence induced deforma-
tions. These neural networks are then used to predict and compensate
the turbulence impact. A fusion technique in a dual-tree complex
wavelet domain combined with a non-rigid registration algorithm is
used in [19]. This approach has two main drawbacks: 1) it requires
a human intervention to select informative regions of interest, and 2)
a segmentation step, whose efficacy varies, is required in the fusion
strategy. In [20], the authors designed a multi-step algorithm which
firstly estimates a reference frame via low-rank approximation; sec-
ondly, a variational model is used to enhance the quality of that
reference frame. Next, this enhanced reference is used to estimate
the deformation fields in the sequence which are then compensated
to obtain a registered sequence. Finally a deformation guided fusion
combined with a semi-blind deconvolution provides the restored
image. In [21], Lau et al. proposed to minimize a functional, using
different regularization terms, to perform specific subsampling of
frames without any registration. A procedure based on optimal trans-
port has been proposed in [22]. Several similar methods also use the
strategy of combining a registration step with a deconvolution step,
see for instance [23–27].

Some articles in the literature focus more specifically on either the
geometric distortion compensation or the deblurring. For instance, in
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[28, 29], the authors proposed a variational model combining opti-
cal flow and a Nonlocal Total Variation regularization term while, in
[30], the authors used a rapid control grid optical flow estimation to
get rid of the geometric distortions. A comparison of several regis-
tration techniques applied to turbulence distortions can be found in
[31]. The deblurring aspect has been considered by Hirsch et al. in
[32] where the authors used a spatially variant deconvolution tech-
nique. Li et al. in [33] used a Wiener filtering approach with a blur
model whose parameters are estimated by minimizing the kurtosis of
the restored image. A combination of Sobolev gradients and Lapla-
cian in a unified framework applied on a previously stabilized image
was proposed in [34]. Inspired by the lucky-imaging principle, a
wavelet burst technique was proposed in [35] to deblur a sequence
of stabilized images.

All these techniques have their specific pros and cons where gen-
erally most efficient methods, in terms of restoration quality, are the
most computationally expansive. It is then a tradeoff between quality
and computation which drive the user to choose one method or the
other given the specific constraints for his application. As mentioned
earlier, none of the methods listed above use any knowledge coming
from a physical model. However, in 1966, Fried [36] investigated
the physics involved on how the atmospheric turbulence impacts
the optical resolution of images. His work was revisited by Tof-
sted [37] who provided a modern version of this model. The main
result of this work is an analytical expression of the modulation
transfer function (MTF), i.e the convolution kernel, correspond-
ing to the impact of the atmospheric turbulence. In [38], Gilles et
al. investigated the use of this MTF in a framelet based decon-
volution algorithm. If the deblurring results are superior than the
ones obtained by “generic” deconvolution algorithms, the proposed
method has a major drawback: the expression of this kernel depends
on four physical parameters. If it is reasonable to assume that three
of them can be known/measured, the fourth one, called C2

n and
representing how strong the turbulence is, is less obvious to know.
In [38], the authors proposed some sort of “brute force” approach
to estimate this parameter but it is computationally intensive since
many deconvolutions must be processed. In this paper, we revisit
this deconvolution approach and propose a simplified version of the
Fried kernel depending only into two parameters which can be esti-
mated numerically in an efficient way using the proposed BATUD
(Blind Atmospheric TUrbulence Deconvolution) algorithm.

The rest of this paper is organized as follows. In Section 2, we
recall the original analytical form of the Fried kernel. We proposed
our simplified expression of the Fried kernel as well as the BATUD
algorithm in Section 3. In Section 4, we present numerous experi-
ments on both simulated and real images, and show the superiority of
the proposed approach against several standard blind deconvolution
algorithms. We finally conclude this work in Section 5.

2 Fried kernel

The Fried kernel was first proposed in [36] and then revisited in [37].
In this paper, we use the formalism of the latter article. The Fried
kernel can be viewed as a combination of two terms. The first one,
denoted M0, corresponds to a combination of the system plus atmo-
sphere MTFs when the turbulence is negligible. The second term,
denoted MSA and also called the short-term exposure MTF, mod-
els the impact (in term of blur) of phase-tilt due to the turbulence.
Denoting ω the spatial frequency (in 2D we consider an isotropic
kernel and ω is the frequency modulus),M0(ω) can be expressed by

M0(ω) =

{
2
π

(
arccos(|ω|)− |ω|

√
1− |ω|2

)
|ω| < 1

0 |ω| > 1,
(2)

and MSA(ω) is given by

MSA(ω) = exp
{
−(2.1X|ω|)5/3(1− V (Q,X)|ω|1/3)

}
. (3)

If we denote by

• D: the system entrance pupil diameter (we recall from the geo-
metrical optics thatD = f/N where f is the focal length andN the
optics F-number),
• L: the path length (distance from the sensor to the observed
scene),
• λ: the wavelength,
• C2

n: the refractive index structure representing the turbulence
intensity of the atmosphere [39],

we can define the following quantities: k = 2π
λ , the coherence diam-

eter r0 defined by r0 = 2.1ρ0 where ρ0 = 1.437(k2LC2
n)−3/5 (the

coherence length) and P =
√
λL. Then, the quantities Q, X and

V (Q,X) in eq. (3) can be defined by

Q =
D

P
, X =

D

r0
, (4)

V (Q,X) = A+
B

10
exp

{
− (γ + 1)3

3.5

}
, (5)

where γ = log10(X), q = log2(Q) and

A =


0.840 + 0.116Σqa with qa = 1.35(q + 1.50)

if q > −1.50

0.840 + 0.280Σqc with qc = 0.51(q + 1.50)

if q 6 −1.50

, (6)

and Σq = eq−1
eq+1 . The coefficient B is defined by

B = 0.805 + 0.265Σqb with qb = 1.45(q − 0.15). (7)

Finally, in the Fourier domain, Fried’s MTFMF (ω) is defined by
the product of M0(ω) and MSA(ω):

MF (ω) = M0(ω)MSA(ω). (8)

Practically, this kernel depends on four parameters: D,L, λ and
C2
n. The first three clearly depend on the acquisition system and

the imaging scene and are eventually known. The last param-
eter, C2

n, represents the turbulence intensity and, accordingly
to experimental measurements [39], is generally in the range
[10−16m−2/3, 10−12m−2/3] corresponding respectively to weak
and strong turbulence. It requires some very specific complicated
equipment to measure this parameter and unfortunately such equip-
ment are impossible to use in real practical scenarios.

3 Atmospheric deconvolution

3.1 A simplified formulation of the Fried kernel

In this section, we propose a general kernel model of which the Fried
kernel is a particular case. Our general formulation is given by

Ma(ω) = A(ω) exp

{
N∑
i=1

aifi(ω)

}
, (9)

where N ∈ N, A : R+ → R and fi : R+ → R are fixed and known
while a = (a1, . . . , aN )T is a set of parameters to be estimated. We
can notice that the Fried kernel corresponds to (the notation a � b
mean “a plays the role of b”)

A(ω) = M0(ω), N = 2, (10)

a1 � (2.1X)5/3, a2 � (2.1X)5/3V (Q,X),

f1(.) = −(·)5/3 and f2(.) = (·)2.

Note that this model also encompasses the traditional Gaus-
sian kernel of bandwidth γ by choosing A(ω) = 1, N = 1, a1 =
γ2/2 and f1(·) = −(·)2.
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3.2 A blind deconvolution model

In this paper, we model the spectrum y of a blurry image as

y(ω) = Ma(ω) · x(ω) + ε(ω), (11)

where Ma is the unknown underlying Fried kernel, x the spectrum
of the underlying clean image and ε is the spectrum of an additive
white Gaussian noise component with standard deviation σ > 0. We
consider the blind deconvolution problem of estimating jointly the
image x and the vector of coefficients a solely from y. This blind
deblurring problem is ill-posed such that regularization based on
prior knowledge on the unknowns must be employed. To this end,
we propose estimating x and a by looking for the image x?, the vec-
tor a? and an auxiliary variable λ∗ > 0, minimizing the following
regularized least square problem, defined for α > 0, as

argmin
x,a,λ

1
2σ2 ‖y −Ma · x‖22 +R(x) + λ‖Ma‖22 +

α2

λ
. (12)

The first term in (12) is the standard `22 data fidelity term that typ-
ically results from a Bayesian perspective when assuming that the
noise component is additive white Gaussian with standard deviation
σ. Though this term is convex with respect to Ma and x, it is not
jointly convex with respect to both variables.

The second term R(x) ≥ 0 is a regularization term enforcing x?

to fit some image prior knowledge. In this paper, we consider an
image regularization term based on a zero-mean Gaussian Mixture
Model (GMM) prior of natural image patches, as introduced in [40],
and defined as

R(x) = −
n∑
i=1

log

[
K∑
i=1

wkN (PiF−1x; 0,Σk)

]
, (13)

where wk and Σk are learned weights and covariance matrices, and
Pi is the operator extracting in the spatial domain a discrete 8× 8
zero-mean patch at pixel i. The Fourier transform and its inverse are
denoted byF andF−1, respectively. Numerically, the Fourier trans-
form is computed via the unitary discrete Fourier transform. This
regularization term enforces all spatial patches of x? (with over-
lap) to fit the GMM prior model. In practice, we use the GMM
obtained in [40], composed of K = 200 components, trained by
the Expectation-Maximization algorithm on a collection of 2 million
patches extracted from the Berkeley Segmentation Data Set (BSDS)
[41]. Due to the multi-modality of GMMs, this regularization term
is highly non-convex.

The third and fourth terms in (12) act jointly on the structure
of Ma? . Since R(x) always get smaller as the images become
smoother, it subsequently favors the Fried kernel that over-amplifies
high frequencies. To counter-balance this effect, we prevent the ker-
nel from taking arbitrarily large values by controlling for its total
energy ‖Ma?‖22. The variable λ > 0 plays the role of a regulariza-
tion parameter: the larger λ, the smaller ‖Ma?‖22 is expected to be.
We observed that this parameter cannot be blindly chosen as a fixed
constant for all turbulence scenarios. For this reason, we let this vari-
able be optimized in a way that it cannot get too small as controlled
by the last term in (12) and parameterized by α > 0. Though convex
in λ and Ma, this problem is neither convex in a, nor jointly in λ
and a.

3.3 A blind deconvolution optimization procedure

Due to the non-convexity of the joint optimization problem, we
adopt in this paper a greedy approach that we coin Blind Atmo-
spheric TUrbulence Deconvolution (BATUD). BATUD attempts to

minimize (12) by using the following alternate minimization scheme

xt+1 ∈ argmin
x

1
2σ2 ‖y −Mat · x‖22 +R(x), (14)

λt+1 ∈ argmin
λ

λ‖Mat‖22 +
α2

λ
, (15)

at+1 ∈ argmin
a

1
2σ2

∥∥∥y −Ma · xt+1
∥∥∥2

2
+ λt+1‖Ma‖22, (16)

where t ≥ 0 is the time step and the initialization for a0 will be
discussed in Section 4.1 (note that we do not need to initialize x0

and λ0).
Problem (14) can be seen as a non-blind deconvolution problem

for the fixed convolutional kernelMat . This deconvolution problem,
with R(·) the GMM patch based prior given in (13), can be solved
with the Expected Patch Log-Likelihood (EPLL) algorithm [40].
EPLL is an iterative algorithm that repeats three steps: (i) extract-
ing all image patches, (ii) filtering all patches assuming a GMM
patch prior, and (iii) performing a Wiener-like deconvolution step
that combines all previously estimated patches. In this paper, we
use Fast EPLL (FEPLL), a fast approximation of EPLL introduced
in [42]. The corresponding code, provided by the authors, is freely
available on GitHub∗.

Problem (15) is convex and has a trivial closed form solution
given by

λt+1 =
α

‖Mat‖2
. (17)

Equation (17) shows that if ‖Mat‖2 gets larger with t, λt decreases
until a trade-off is achieved.

Problem (16) can be recast as the minimization of

E(a) =

∫
1
2 |Ma(ω)x(ω)|2 − x(ω)∗Ma(ω)∗y(ω)

+ λσ2|Ma(ω)|2 dω, (18)

where ∗ denotes the complex conjugate, and we removed the depen-
dency of x and λ with t for the sake of notation simplicity. Equation
(18) can be minimized by Newton’s descent consisting in iterating
the following update

 a1
...
aN

←
 a1

...
aN

−


∂2E(a)
∂a1∂a1

. . .
∂2E(a)
∂a1∂aN

...
...

∂2E(a)
∂aN∂a1

. . .
∂2E(a)
∂aN∂aN


−1

∂E(a)
∂a1

...
∂E(a)
∂aN

 ,

(19)

where

∂E(a)

∂ai
=

∫
fi(ω)x(ω)∗Ma(ω)∗[Ma(ω)x(ω)− y(ω)]

+ λσ2fi(ω)|Ma(ω)|2 dω, (20)

and

∂2E(a)

∂ai∂aj
=

∫
fi(ω)fj(ω)x(ω)∗Ma(ω)∗[2Ma(ω)x(ω)− y(ω)]

+ 2λσ2fi(ω)fj(ω)|Ma(ω)|2 dω . (21)

In practice, at every time step t > 1, we use a warm start strategy
to initialize Newton’s descent by using the solution at−1 obtained
at the previous time step. By doing so, we observed a very fast

∗https://goo.gl/xjqKUA
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convergence of this numerical scheme. Though the objective func-
tion might have regions of non-convexity where its Hessian matrix
is not non-negative definite, we always observed a stable behavior
of this algorithm by using such an initialization. Nevertheless, as a
safeguard, if any numerical issues were arising from the resolution
of (19), the optimization of a would be instead carried out by the
simplex search method of Lagarias et al. [43]†.

3.4 Stopping criteria

Regarding the overall optimization scheme, at each time step t ≥ 1
we compute the relative errors between two consecutive estimates
for the three quantities to be optimized as

δtx =
‖xt − xt−1‖2
‖xt−1‖2

, δtλ =
|λt − λt−1|
|λt−1|

, (22)

and δta =
‖Mat −Mat−1‖2
‖Mat−1‖2

. (23)

We consider that the algorithm has converged as soon as these rel-
ative errors are under a threshold τ during at least ∆ consecutive
iterations. In other words, we stop the algorithm at time step t when

max
t−∆≤t′≤t

max(δt
′

x , δ
t′

λ , δ
t′

a ) < τ. (24)

Similarly, for Problem (16), we run Newton’s descent by iteratively
applying eq. (19) until two consecutive estimates for a achieve a
relative error smaller than τ .

4 Experiments

In this section, we conducted several studies and experiments to
understand the behavior and demonstrate the performance of our
proposed blind atmospheric turbulence deconvolution algorithm. For
the sake of reproducible research, our Matlab implementation of
BATUD has been made open-source and is freely available online
at:

https://www.charles-deledalle.fr/batud

4.1 Parameter setting and initialization

In practice, we choose α2 = γn/σ2 with a constant parameter γ =
8.5 · 10−3 that is kept fixed in all our experiments, and n being
the number of pixels. The initial blur parameter a0 has been cho-
sen empirically to correspond to the Fried kernel withX = 2.75 and
V = 1.06. FEPLL [42] was used with default parameters which con-
sists in performing five iterations of patch filtering and aggregation.
On experiments involving real data, we estimate the noise standard
deviation σ using a classical procedure based on the Median Abso-
lute Deviation (MAD) of detail coefficients, as explained in [44].
Otherwise specified, all experiments have been carried out by per-
forming at most 150 iterations of the proposed alternate optimization
scheme with the stopping criterion parameterized by τ = 2 · 10−4

and ∆ = 3.

4.2 Experimental study on the simulated scenarios

We start to assess the proposed approach on simulated blurs applied
to the Kodak dataset∗ composed of 23 images of size 768× 512 (or
512× 768) and encoded on 8-bits and converted to grayscale. We
apply three types of blur, by using the original Fried kernel model
given in Section 2, corresponding to different levels of turbulence:
Weak (X = 2.25, V = 1.29), Medium (X = 3.00, V = 1.00) and

†using the Matlab function fminsearch.
∗http://r0k.us/graphics/kodak/

Table 1 Simulated atmospheric turbulence. PSNR, SSIM and Kernel relative
errors (KRE) averaged on the Kodak dataset

Weak Medium Strong
σ1 σ2 σ3 σ1 σ2 σ3 σ1 σ2 σ3

P
S

N
R Blurry 30.45 30.28 30.05 26.75 26.67 26.57 24.39 24.35 24.29

BATUD 34.53 34.63 34.12 32.37 31.27 30.52 27.44 27.13 26.88
Oracle 41.21 38.97 37.36 33.29 31.99 31.15 27.71 27.38 27.14

S
S

IM

Blurry 0.858 0.834 0.810 0.705 0.686 0.667 0.482 0.469 0.454
BATUD 0.925 0.902 0.879 0.863 0.822 0.789 0.694 0.658 0.629
Oracle 0.932 0.905 0.882 0.868 0.831 0.800 0.709 0.674 0.646

K
R

E BATUD 0.165 0.162 0.164 0.023 0.032 0.040 0.020 0.024 0.028
Oracle 0.064 0.107 0.147 0.003 0.005 0.008 0.000 0.000 0.001

Strong (X = 5.00, V = 0.80). In addition we add white Gaussian
noise with three different levels: σ1 = 1.3, σ2 = 1.9 and σ3 = 2.5.
Note that this choice of levels of turbulence and noise captures
the range of scenarios we observed in practice. Our deconvolution
procedure is then applied to each simulated image. Quantitative
performance measurements are computed by calculating the Peak
Signal to Noise Ratio (PSNR) criterion defined in decibels (dB) by

PSNR(x̂, x) = 10 log10
2552

1
n‖x̂− x‖

2
2

, (25)

where x̂ denotes the restored image and x the reference image (both
images are assumed to be encoded on 8-bits). We also consider
Structural Similarity Index (SSIM) introduced in [45] that provides
a quantitative measure of quality between 0 and 1, and suppos-
edly being more faithful to visual perception than the PSNR is. The
larger these deblurring criteria are, the better the deblurring quality
is considered to be.

We also assess the performance of the algorithm to estimate the
original kernel used in the simulations. To quantitatively measure
this performance, we compute the relative error between the original
and estimated kernels (we will call it the Kernel Relative Error, i.e
KRE) defined by

KRE(â,a) =
‖Mâ −Ma‖22
‖Ma‖22

, (26)

4.2.1 Behavioral study of the proposed algorithm: In order
to assess the quality of BATUD (our blind deconvolution approach),
we computed the oracle images, i.e the deconvolved images using
the real kernel which was used in the simulation (this is basically
equivalent to perform a non-blind deconvolution). In addition, we
also computed oracle kernels, i.e the estimated kernels using the
original clean image used in the simulation. The performance of
these oracle estimators provides in some sense an ideal baseline for
the expected performance of our blind deconvolution algorithm.

Comparisons in terms of PSNR, SSIM and KRE (averaged over
the 23 images) are given in Table 1 for the three levels of turbulence
and the three levels of noise we considered. Visual comparisons
on two images of the dataset are provided in Figs. 1 and 2 for
the three considered levels of turbulence, and the two levels of
noise σ1 and σ3, respectively. Additional results obtained from the
BATUD algorithm on different simulated scenarios are also provided
in Fig. 3.

For Medium and Strong turbulence levels, we can see that the
estimated kernels have, in average, relative errors of no more than
4%. Given that the Fried kernels are well estimated in this case, the
deblurring results are close to the one provided by the non-blind ora-
cle, with a drop of PSNR smaller than 1dB and a drop of SSIM
smaller than 0.03. Visual inspections of the results of blind and
non-blind deconvolution, in Medium and Strong turbulence levels
(second and third column in the figures), show that these drops of
quality measures are indeed visually imperceptible.

In the Weak turbulence level, the estimation of the Fried kernel
is less accurate than in the other two scenarios. The relative errors
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Fig. 1: (a) Blurry image y under medium noise level σ = 0.005.
(b) Oracle deconvolved image with BATUD. (c) Deconvolved image
with BATUD. (d) True and estimated Fried kernel with the pro-
posed approach (the zero frequency is at the center and amplitudes
are displayed in log-scale). (e) Relative errors between consecutive
estimates with respect to the time step t. (a-c) PSNR and SSIM val-
ues are displayed on the bottom-left. (d) KRE is displayed on the
bottom-left.

of BATUD increase around 16%. Even the oracle kernel estimator,
that was providing relative errors smaller than 1% in the other two
scenarios, now provides relative errors around 10%. Inspecting our
estimation of the Fried kernel in Fig. 1 (first column) shows that
our approach tends to slightly under-estimate the high-frequency
responses of the filter (leading to a KRE of about 23% in this

Fig. 2: (a) Blurry image y under strong noise level σ = 0.01. (b)
Oracle deconvolved image with FEPLL. (c) Deconvolved image
with BATUD. (d) True and estimated Fried kernel with the pro-
posed approach (the zero frequency is at the center and amplitudes
are displayed in log-scale). (e) Relative errors between consecutive
estimates with respect to the time step t. (a-c) PSNR and SSIM val-
ues are displayed on the bottom-left. (d) KRE is displayed on the
bottom-left.

case). As a result the deblurring procedure over-amplifies these high
frequencies leading to structures appearing sharper than they are sup-
posed to be. Small Gibbs-like artifacts can also be observed around
high-contrasted objects. These effects can be seen in Fig. 1 (first
column) by comparing the ability of the BATUD and the non-blind
deconvolution at recovering the waves patterns, the folds and the
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numbers on the sail. Though barely visible, Table 1 shows that these
over-sharpening effects and Gibbs artifacts contribute to a loss of
PSNR of about 7dB compared to the non-blind oracle. Nevertheless,
compared to the oracle, these artifacts do not influence much the
SSIM, the drop being smaller than 0.01, hence reflecting our visual
inspections.

As an additional study, Figs. 1 and 2 (last rows) provide the
evolution of the relative errors (in percentage) between two con-
secutive estimates with respect to the iteration index t of BATUD.
These quantities correspond to δtx, δtλ and δtMa

defined in (22). The
curves are computed until the algorithm stops when the stopping
criterion in (24) is satisfied. We first observe that under any tur-
bulence and noise scenario, these relative errors converges to the
required level of tolerance 0.02% in at most 150 iterations. Under
Weak and Medium levels of turbulence, the procedure takes at most
70 iterations and the relative errors for λ and Ma appears to be
monotonically non-increasing. Under a Strong level of turbulence,
BATUD behaves differently. It converges in about 150 iterations
and presents two different phases. The first ∼65 iterations can be
seen as an exploration phase where λ and Ma keep changing (two
consecutive estimates differ more than 25%) until they reach a prob-
ing configuration. Afterwards, the procedure enters an exploitation
phase in which this promising configuration is iteratively refined
until no significant changes arise.

Given that one iteration of BATUD takes about 1.4s to process a
Kodak image∗, the computation time ranges from 56s to 3min 30s
per image depending on the underlying level of turbulence.

4.2.2 Comparisons with state-of-the-art blind deconvolution
algorithms: In this section, we compare our algorithm against sev-
eral standard and state-of-the-art algorithms. The first algorithm,
directly available in Matlab via the deconvblind function, is based
on a Maximum Likelihood estimator to recover both the convolu-
tion kernel and the restored image [46, 47] (we will denote it MLE).
The second algorithm (denoted OBD, available at†) described in [48]
(this algorithm was initially designed to process a set of images but
the authors mentioned that it also works using a single image), min-
imizes a loss function based on `2 assuming a Poisson model on the
data and the positivity of both the data and the kernel. In [49], an esti-
mation method (denoted KOT, whose code is available at‡) based on
a modified version of the Automatic Relevance Determination model
is proposed. The authors include a Student’s t−prior as well as
some Gamma distribution within a variational Bayesian framework
to solve this model. Cai et al., in [50], propose a blind deconvo-
lution algorithm using a variational approach (we will denote this
algorithm CLS and use the code available at§). The authors use a
sparsity assumption in a framelet domain for both the reconstructed
image and the kernel, an `2 constraint is also added to the kernel.
In [51], Shan et al. propose a unified probabilistic model to estimate
both the kernel and the latent image (this algorithm will be denoted
SJA and is available at¶). They use a Gaussian model for the noise,
an exponential prior for the kernel and a combination of a local and
global priors for the image. This algorithm has been used in actual
turbulence mitigation techniques in [14, 20] and [27]. Finally, the last
algorithm (denoted ZWZ and available at‖) we consider combines
probabilistic and variational models (an `2 and `p, with 0 < p < 1,

∗Computation time evaluated on an Intel(R) Xeon(R) CPU E5-2640 v2 @

2.00GHz, using one single core only.
†http://pixel.kyb.tuebingen.mpg.de/obd/
‡http://staff.utia.cas.cz/kotera/projects/model_

discrepencies_17/
§https://blog.nus.edu.sg/matjh/files/2019/01/

BlindDeblurSingleTIP-2jrncsd.zip
¶http://www.cse.cuhk.edu.hk/~leojia/projects/

motion_deblurring/
‖https://drive.google.com/file/d/

0BzoBvkfRHe5bUF9jQ1ZsWXRYSkk/edit?usp=sharing

Table 2 Comparison with state-of-the-art blind deconvolution algorithms.
PSNR and SSIM averaged on the Kodak dataset.

Weak Medium Strong
σ1 σ2 σ3 σ1 σ2 σ3 σ1 σ2 σ3

P
S

N
R

Blurry 30.45 30.28 30.05 26.75 26.67 26.57 24.39 24.35 24.29
BATUD 34.53 34.63 34.12 32.37 31.27 30.52 27.44 27.13 26.88

CLS 26.26 26.15 25.82 30.14 29.12 28.29 26.62 26.43 26.14
KOT 27.70 27.57 27.57 28.18 28.02 27.97 25.89 25.79 25.68
MLE 30.45 30.28 30.05 26.75 26.67 26.57 24.39 24.35 24.29
OBD 30.45 30.28 30.05 26.75 26.67 26.57 24.39 24.35 24.29
SJA 26.52 25.49 23.86 26.47 25.93 24.08 24.89 24.09 22.28
ZWZ 31.26 31.03 30.19 28.51 28.13 27.78 25.83 25.76 25.63

S
S

IM

Blurry 0.943 0.940 0.935 0.863 0.859 0.854 0.734 0.731 0.726
BATUD 0.987 0.984 0.978 0.966 0.949 0.934 0.869 0.853 0.839

CLS 0.864 0.857 0.847 0.949 0.931 0.912 0.851 0.839 0.824
KOT 0.923 0.915 0.907 0.913 0.904 0.896 0.820 0.809 0.798
MLE 0.943 0.940 0.935 0.863 0.859 0.854 0.734 0.731 0.726
OBD 0.943 0.940 0.935 0.863 0.859 0.854 0.734 0.731 0.726
SJA 0.909 0.877 0.840 0.844 0.818 0.724 0.780 0.718 0.562
ZWZ 0.910 0.904 0.894 0.914 0.900 0.887 0.807 0.800 0.790

constraints are used to enforce a sparsity prior). A Maximum A Pos-
teriori approach is then used to numerically solve this model. For all
these algorithms, we used the default parameters recommended by
the respective authors.

We run these algorithms on the Kodak dataset used in Section 4.1
and re-utilize the PSNR and SSIM metrics (unfortunately some of
the available codes do not return the estimated kernels thus we were
not able to use the KRE metric). Table 2 provides the averaged PSNR
and SSIM for each algorithm. It is clear that our method outperforms
the state-of-the-art algorithms.

We observe that CLS and ZWZ locally modify the image dynam-
ics and introduce some ringing artifacts (especially in the case of
weak blur). Moreover, CLS also performs poorly (i.e limited deblur-
ring) on the weak turbulence case, this is probably due to the fact
the algorithm is made to remove motion blur hence it is not capa-
ble of estimating small isotropic type kernels. The SJA algorithm
is very sensitive to the presence of noise that leads to the introduc-
tion of a lot of artifacts in such case. Kotera is not capable to deal
with strong blurs and sometimes it tends to do some image sharp-
ening than actual deblurring. Some of the observed artifacts for the
CLS, KOT, SJA and ZWZ algorithms are illustrated in Fig.4. The
MLE and OBD algorithms are inefficient at estimating the under-
lying kernel and therefore almost do not perform any deblurring at
all. If these algorithms perform reasonably well on some images, in
average, they perform worse than keeping the actual blurry images!
These results clearly show that a deconvolution model based on a
physical model is preferable to a blind algorithm.

Moreover, note that the CLS and ZWZ algorithms take about
8min and 5min to process a Kodak image∗, respectively, while
BATUD takes only about 2min.

4.3 Experiments on real images

In this section, we experiment the BATUD algorithm on real
images coming from several datasets: the OTIS dataset [52], the
NATO-SET152 New Mexico field trials, the U.S. Army RDECOM
CERDEC Night Vision & Electronic Sensors Directorate data and
the test images available from the IPOL demonstration webpage†.
The sequences from these datasets are first stabilized using the Mao-
Gilles algorithm [28, 29] to obtain the input image y. These images
and their deconvolved versions, as well as the estimated kernel are
provided in Fig. 5. We can observe that the algorithm is capable of
removing the blur and retrieve more details in the images (the texts
are easier to read, most textures are recovered and thin structures

∗We provide only approximate values since the CLS and ZWZ implemen-

tations perform the reading and writing of images within their code.
†http://demo.ipol.im/demo/46/
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Fig. 3: BATUD results on different simulated scenarios of blur and noise from the Kodak dataset. PSNR and SSIM values are displayed on the
bottom-left.

are sharpened). As expected, we can also notice that the stronger the
turbulence, the narrower are the estimated kernels.

In Fig. 6, we compare our algorithm against the CLS and ZWZ
blind deconvolution algorithms mentioned in Section 4.2.2 (we
choose only these two algorithms since they are the ones giving the
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Fig. 4: Illustration of artifacts appearing with the CLS, KOT, SJA and ZWZ blind deblurring algorithms.

best results in medium or strong turbulence). On the first image, we
can observe that the CLS algorithm provides a slightly better result
(especially in the textured regions) than ZWZ and BATUD while
for the two other images BATUD gives superior results. In particu-
lar, on the second image, the word “A BEAR” is easier to read from
the BATUD output. The same observation can be made on the third
image where BATUD is capable of better restoring smaller text than
the other algorithms.

5 Conclusion

We introduced BATUD a new algorithm for blind atmospheric tur-
bulence deconvolution. Unlike concurrent algorithms, ours relies on
a physical model of blur induced by atmospheric turbulence, namely
the Fried kernel. Our approach is fast and fully automatic as it esti-
mates jointly the deconvolved image and the Fried kernel while
auto-adjusting the regularization parameter. Experiments on simu-
lated and real data have demonstrated the improved performance of
BATUD in several atmospheric turbulence scenarios against state-of-
the-art approaches. In future works, we plan to develop algorithmic
recipes to make our implementation even faster and to port the
implementation on Graphics Processing Units (GPUs). We also aim
at adapting the approach to low-light vision systems and hyper-
spectral imagery. Extensions of this work to submarine imagery by
using appropriate physical models of underwater turbulence are also
under investigation.
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