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Abstract

We consider phase transitions occurring in four-dimensional heterotic orbifold
models, when the scale of spontaneous breaking ofN = 1 supersymmetry is of the
order of the string scale. The super-Higgs mechanism is implemented by imposing
distinct boundary conditions for bosons and fermions along an internal circle of
radius R. Depending on the orbifold action, the usual scalars becoming tachyonic
when R falls below the Hagedorn radius may or may not be projected out of the
spectrum. In all cases, infinitely many other scalars, which are pure Kaluza-
Klein or pure winding states along other internal directions, become tachyonic in
subregions in moduli space. We derive the off-shell tree level effective potential
that takes into account these potentially tachyonic modes. We show that when
a combination of the usual tachyons survives the orbifold action, it is the only
degree of freedom that actually condenses.
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1 Introduction

At finite temperature T , in a system with an exponential growth of degrees of freedom as a

function of mass, the canonical partition function develops a divergence above the so-called

Hagedorn temperature TH [1–3]. In the context of closed string theory, because modular

invariance exchanges ultraviolet and infrared limits, the asymptotic behavior of the density

of states and the light mass spectrum are connected [4,5].1 In particular, implementing finite

temperature by compactifying Euclidean time on a circle S1(R0) of circumference 2πR0 =

1/T with different boundary conditions for bosons and fermions, one observes that 2 real

scalars, with winding numbers along S1(R0) and generically massive, become tachyonic when

the radius R0 falls below RH = 1/(2πTH) [6, 7]. This is an indication that the breakdown of

the canonical formalism does not result from any pathology of the system, but rather signals

an instability occurring at T = TH. In fact, tachyons play the role of order parameters whose

condensations bring the system in new, stable vacua, as in the Higgs mechanism [8–11].2

At zero temperature, other phase transitions occur in string theory, when a total spon-

taneous breaking of supersymmetry is induced by a stringy version [17–26] of the Scherk-

Schwarz mechanism [27–29]. In the simplest case, space-time bosons and fermions obey dif-

ferent boundary conditions along an internal (rather than temporal) circle S1(R) of radius

R, which induces a supersymmetry breaking at a scale m 3
2

= 1/(2R). In toroidal compact-

ifications, instabilities technically similar to the Hagedorn case occur when R reaches RH.

Bellow this value, 2 real scalars with non-trivial winding numbers along S1(R) are tachyonic

and condense. However, new phenomena may be encountered in orbifold models. This is

the case when the above scalars are projected out by the modding action [30]. One may

think that because tachyons are not allowed in twisted sectors, such models may be tachyon

free everywhere in moduli space. However, this conclusion turns out to be incorrect for the

following reason. Without orbifold action, the scalars tachyonic for R < RH admit infinite

towers of pure Kaluza-Klein (KK) states propagating along internal directions other than

S1(R). Similarly, they admit infinite towers of pure winding modes wrapped along internal

directions other than S1(R). For large (low) enough volume of these directions, a finite
1This is also true in type I string theory, due to the presence of the closed string sector.
2Finite temperature can also be introduced in a “non-democratic” way, namely for all states whose masses

are below the string scale [12]. In that case, a maximal temperature of order of the string scale exists, there
are no tachyonic instabilities, and interesting scenarios can emerge [13–16].
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number of KK (winding) modes are therefore tachyonic. In fact, even when the volume of

the extra directions is of order 1 in string units,3 it turns out that non-trivial KK or winding

modes can be tachyonic. In the descendent orbifold model, because invariant combinations

of such potentially tachyonic states survive, there is always a phase in moduli space where

a condensation takes place.

In the present work, we focus on the simplest case, where a single combination of the

usual tachyonic states considered in the literature – i.e. with non-trivial quantum numbers

along S1(R) only – survives the orbifold action. We take into account other scalars, with

identical charges along S1(R) but non-trivial momenta or winding numbers along another

internal direction. These modes can be tachyonic in more restricted regions in moduli space.

The question we ask is whether there exists a multiphase diagram associated with various

patterns of condensations, and associated with different stable vacua. We find that all of the

condensation is actually supported by the tachyon that has trivial quantum numbers along

the directions transverse to S1(R). In other words, there is a unique Hagedorn-like phase,

which is delimited by the usual boundary R = RH. Note that this assumes that the Scherk-

Schwarz direction is a factorized circle in the internal space. When the internal metric and

antisymmetric tensor are generic, the boundary of the Hagedorn-like phases are much more

involved. Moreover, when the orbifold action forces all potentially tachyonic states to have

non-trivial quantum numbers in the directions transverse to the Scherk-Schwarz circle, the

boundaries of the Hagedorn-like phases as well as the properties of the associated vacua are

drastically different. However, these generalizations will be analyzed in subsequent work.

To figure out phase transitions between string models defined in first quantized formalism,

the suitable framework should be string field theory [31–34]. However, such an analysis being

equivalent to describing the vacuum structure of the theory, the problem may be tackled

within an effective field theory, valid at low energy. Such a description can be determined

from our knowledge of the phase associated with the initial orbifold compactification. The

latter describes a super-Higgs mechanism in Minkowski space, with an arbitrary scale m 3
2

of supersymmetry breaking. Hence, it is a no-scale supergravity [35], which takes into

account all light and potentially tachyonic degrees of freedom. The key point is that the

supergravity action is valid off-shell. Therefore, it captures other vacua characterized by
3Throughout this paper we take α′ = 1.
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non-trivial condensates developed in regions in moduli space where tachyonic instabilities

take place. Notice that our use of the word “vacuum” is cavalier in the sense that the tachyon

condensation lowers the potential of the theory to negative values, which yields a dilaton

tadpole. As a result, the new supergravity phase may describe a non-critical string at low

energy, with linear dilaton background [9,10].

In Sect. 2, we consider as a starting point the heterotic string compactified on T 2×T 2×T 2.

A Scherk-Schwarz mechanism responsible for the N = 4→ N = 0 spontaneous breaking of

supersymmetry in 4 dimensions is implemented along one direction, X4, of the first internal

T 2 ≡ S1(R4)×S1(R5) [17–21]. We determine the regions of the plan (R4, R5), where scalars

with non-trivial momentum and/or winding numbers along X4 and X5 are tachyonic. We

then introduce a Z2×Z2 orbifold action and analyze the conditions for a tachyonic mode with

trivial quantum numbers along S1(R5) to survive. We stress that the latter is accompanied

by an infinite number of potentially tachyonic KK (or winding) modes propagating along (or

wrapped around) S1(R5). In Sect. 3, we derive the tree level effective potential that depends

on all of these scalars. This may be done in the framework of N = 1 supergravity [36, 37].

However, because all degrees of freedom of interest arise in the untwisted sector of the Z2×Z2

orbifold action, we find convenient to derive the potential by applying a suitable truncation of

N = 4 gauged supergravity [38–43]. In this formalism, the gauging is determined by imposing

the mass spectrum in the no-scale supergravity phase to reproduce its string counterpart.

The off-shell tree level bosonic action is found to be invariant under the modified T-duality

R4 → 1/(2R4). This is consistent with the fact that this transformation (accompanied with

a change of chirality for the fermions) is a symmetry of the 1-loop partition function of the

initial string model, and thus a symmetry of the on-shell 1-loop effective potential, in the

no-scale phase. It is straightforward to minimize the tree level potential to find that in the

case under study, the only mode that condenses in the Hagedorn-like phase is the tachyon

that has quantum numbers along the Scherk-Schwarz direction S1(R4) only. Because the

new vacuum lies at the self-dual radius 〈R4〉 = 1/
√

2, the T-duality R4 → 1/(2R4) is not

spontaneously broken. Finally, our conclusions and perspectives can be found in Sect. 4.
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2 Tachyonic phases

In this section, our aim is to characterize regions in moduli space where one or several

generically massive states become tachyonic for sufficiently large supersymmetry breaking

scale. The resulting condensation phenomenon will be discussed in Sect. 3.

2.1 Towers of KK or winding tachyonic states

In the present work, we consider the heterotic string compactified on the orbifold T 6/(Z2 ×
Z2). For simplicity, the analysis is restricted to the case where the internal T 6 is of the form

S1(R4)× S1(R5)× T 2 × T 2, (2.1)

i.e. with first 2-torus factorized into two circles of radii R4 and R5. The spontaneous

breaking of N = 1 supersymmetry is implemented along the compact direction X4, by a

stringy version [20, 21] of the Scherk-Schwarz mechanism [27, 28]. The zero point energy

in the twisted sectors being non-negative, tachyons can only arise in the untwisted sector.

Before Z2×Z2 projection, the associated 1-loop partition function takes the following form,

Z =
R4√
Im τ

∑
n4,m̃4

e−
πR2

4
Im τ
|m̃4+n4τ |2 Γ(1,1)(R5)Γ(2,2)Γ(2,2)Γ(0,16)

τ 2
2 η

8η̄24

1

2

∑
α,β

(−1)α+β+αβ
θ[αβ ]4

η4
C
[
α;n4

β ;m̃4

]
,

where C
[
α;n4

β ;m̃4

]
= (−1)m̃4α+n4β+m̃4n4 . (2.2)

In our notations, τ is the Teichmüller parameter of the genus-1 Riemann surface and our

definitions of the Jacobi modular forms θ[αβ ] and Dedekind function η are as follows,

θ[αβ ](τ) =
∑
N

q
1
2

(N−α
2

)2 e−iπβ(N−α
2

), η(τ) = q
1
24

∏
k≥1

(1− qk), q = e2iπτ , (2.3)

where N ∈ Z. The lattices of bosonic zero-modes associated with S1(R5), the T 2’s and the

extra right-moving coordinates are denoted Γ(p,q), while that associated to S1(R4) is written

in Lagrangian form, where n4, m̃4 ∈ Z. The conformal blocks arising from the left-moving

worldsheet fermions depend on the spin structures α, β ∈ {0, 1}. The latter are coupled to

the S1(R4) lattice of zero modes by the “cocycle” C
[
α;n4

β ;m̃4

]
[21]. To see that this sign breaks

spontaneously supersymmetry, one can switch to a Hamiltonian formulation obtained by
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Poisson summation over m̃4. One obtains

Z =
Γ(2,2) Γ(2,2) Γ(0,16)

τ 2
2 η

8η̄24

∑
n5,m5

Γm5,n5(R5)

{ ∑
n4even,m4

(
Γm4,n4(R4)V8 − Γm4+ 1

2
,n4

(R4)S8

)
−

∑
n4odd,m4

(
Γm4+ 1

2
,n4

(R4)O8 − Γm4,n4(R4)C8

)}
,

(2.4)

where we denote for I ∈ {4, 5} and κ = 0, 1

ΓmI+κ
2
,nI (RI) = q

1
2
p2IL q̄

1
2
p2IR , pIL

R
=

1√
2

(mI + κ
2

RI

± nIRI

)
, mI , nI ∈ Z, (2.5)

while SO(8) affine characters are defined as

O8 =
θ[00]4 + θ[01]4

2η4
, V8 =

θ[00]4 − θ[01]4

2η4
, S8 =

θ[10]4 + θ[11]4

2η4
, C8 =

θ[10]4 − θ[11]4

2η4
. (2.6)

Comparing the lattice dressing of the characters V8 and S8, the supersymmetry breaking

scale (or gravitino mass) in σ-model frame is found to be

m 3
2

=
1

2R4

. (2.7)

If the sign (−1)n4β present in the cocycle reverses the GSO projection in the odd n4 wind-

ing sector, the associated characters O8, C8 yield states heavier than the string scale when

R4 � 1. Due to the T-duality

(R4, S8, C8) −→
( 1

2R4

, C8, S8

)
(2.8)

satisfied by Z, the characters O8 and S8 also lead to very heavy modes when R4 � 1.

However, the leading term of the q, q̄-expansion

O8

η8η̄24
=

1

q
1
2 q̄

(1 +O(q) +O(q̄)) (2.9)

can yield tachyonic scalars, when R4 is of order 1. DenotingmI , nI the momentum and wind-

ing numbers along the internal directions XI , I ∈ {5, . . . , 9}, the level matching condition

at this oscillator level reads

1

2
+
(
m4 +

1

2

)
n4 +

9∑
I=5

mInI = 0. (2.10)

The physical states that can be tachyonic in the parent model realizing the N = 4→ N = 0

spontaneous breaking of supersymmetry turn out to have quantum numbers

2m4 + 1 = −n4 = ε, m5n5 = · · · = m9n9 = 0, (2.11)
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where ε = ±1. They have non-trivial momentum and winding numbers along the Scherk-

Schwarz direction, but are pure KK or winding modes along the remaining internal directions.

For instance, the squared masses in σ-model frame of those having m6 = n6 = · · · = m9 =

n9 = 0 are

M2
(ε,m5,0) =

1

4R2
4

+R2
4 − 3 +

(m5

R5

)2

, M2
(ε,0,n5) =

1

4R2
4

+R2
4 − 3 + (n5R5)2. (2.12)

The largest tachyonic domain in the plane (R4, R5) is obtained for m5 = n5 = 0,
√

2− 1√
2

=
1

2RH

< R4 < RH =

√
2 + 1√

2
, R5 arbitrary, (2.13)

where RH is the Hagedorn radius encountered in heterotic string at finite temperature.

However, subregions where additional states are tachyonic also exist, since

M2
(ε,m5,0) < 0 ⇐⇒ RH−

∣∣
m5
R5

< R4 < RH+

∣∣
m5
R5

,
|m5|
R5

<
√

2,

M2
(ε,0,n5) < 0 ⇐⇒ RH−

∣∣
n5R5

< R4 < RH+

∣∣
n5R5

, |n5|R5 <
√

2,

where RH±|x =
1

2

[
6− 2x2 ±

√
[6− 2x2]2 − 4

] 1
2
.

(2.14)

Fig. 1 shows in blue (red) the boundaries of the domains M2
(ε,0,n5) < 0 (M2

(ε,m5,0) < 0), for

|n5| = 1, 2, 3 (|m5| = 1, 2, 3). More and more modes winding along S1(R5) become tachyonic

Figure 1: Boundary curves of the regions of the plan (R4, R5) where KK or winding modes along S1(R5)
are tachyonic in the parent model, which realizes the N = 4→ N = 0 spontaneous breaking. The remaining
quantum numbers of these states are 2m4 = −n4 = ε and m6 = n6 = · · · = m9 = n9 = 0.

as R5 decreases, while more and more KK modes propagating along S1(R5) become tachyonic
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as R5 increases. By analogy with the finite temperature case [6–10], a Hagedorn-like phase

transition is expected to occur when R4 enters the range (2.13). An instability of the initial

no-scale model vacuum [35] should be signalled by the condensation of, at least, the tachyonic

modes 2m4 = −n4 = ε,m5 = n5 = · · · = m9 = n9 = 0. As seen on Fig. 1, a multi-phase

diagram may however exist, with different vacua characterized by various condensed modes.

2.2 Why supergravity

As soon as R4 enters the range (2.13), implying M2
(ε,0,0) to be negative in the parent model

that realises the N = 4 → N = 0 breaking, the 1-loop effective potential, which is noth-

ing but the partition function (2.2) integrated over the fundamental domain of SL(2,Z),

diverges. The fact that the quantum potential is ill-defined does not signal some fundamen-

tal inconsistency of the theory. Indeed, this means that perturbative quantum corrections

should be computed around a new, true vacuum [8–11]. In the latter, the derivation of the

mass spectrum using the initial string background is not legitimate anymore. Hence, once

the modes 2m4 + 1 = −n4 = ε,m5 = n5 = · · · = m9 = n9 = 0 have already condensed, we

should consider as a possibility, rather than a prediction, the condensation of other KK or

winding modes along, for instance, S1(R5). This is the reason why we will derive in Sect. 3

the off-shell low energy effective potential associated with all of these potentially condens-

ing degrees of freedom, in order to figure out which of them actually develop non-trivial

expectation values.

In presence of the cocycle C [21] in the partition function (2.2), the GSO projection being

reversed in the odd n4 winding sector, the (common) statement that the non-supersymmetric

model arises as a spontaneous breaking of a supersymmetric theory (i.e. with no cocycle)

is not obvious. To see this is the case, let us recall the initial formulation of the stringy

Scherk-Schwarz mechanism as a “coordinate-dependent compactification” [18, 20]. In our

case of interest, this amounts to coupling the lattice Γ(1,1)(R4) to the boundary conditions

of 2 (among 8) real left-moving worldsheet fermions. Before implementation of the orb-

ifold action, the choice of these fermions is arbitrary since they all have identical boundary

conditions. This leads

R4√
Im τ

∑
n4,m̃4

e−
πR2

4
Im τ
|m̃4+n4τ |2 e−iπn4e(m̃4e−β) θ

[
α−2n4e
β−2m̃4e

]
, (2.15)
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where e is the coupling defining a deformation of the supersymmetric model. It can be

chosen in the range −1 < e ≤ 1, due to the symmetry e → e + 2. The precise form of

the deformation is motivated by the fact that the modular transformations of the above

conformal blocks turn out to be independent of e. Using the definition (2.3), a Poisson

summation over m̃4 yields∑
n4,m4,N

e−iπβ(N−α
2

) q
1
2

[p24L+(N−α
2

+n4e)2] q̄
1
2
p24R , (2.16)

where the generalized momenta in this formulation take the following form,

p4L
R

=
1√
2

(m4 − e(N − α
2
)− 1

2
n4e

2

R4

± n4R4

)
. (2.17)

We see that both the GSO projection (the β-dependent phase) and the level-matching con-

dition are independent of e, since

1

2

[
p2

4L +
(
N − α

2
+ n4e

)2

− p2
4R

]
= m4n4 +

1

2

(
N − α

2

)2

. (2.18)

Therefore, there is a one-to-one correspondence between the states of the supersymmetric and

deformed theories. The mass spectrum, however, depends on e. For instance, the masses of

the 4 gravitini (or their surviving combination after Z2×Z2 projection) are m 3
2

= |e|/(2R4).

However, consistency of the heterotic worldsheet theory imposes the supercurrent to be

conserved, which forces the deformation to be quantized [18,20,21].4 Taking e = 1, not only

the gravitino mass (2.7) is recovered, since the properties of the Jacobi modular forms can

be used to rewrite the conformal blocks (2.15) in the following form,

R4√
Im τ

∑
n4,m̃4

e−
πR2

4
Im τ
|m̃4+n4τ |2 θ

[
α
β

]
e−iπe(m̃4α−n4β+em̃4n4), (2.19)

i.e. with the cocycle introduced in Eq. (2.2). Because the consistent quantum field theories

of massive spin 3
2
particles are supergravities realizing the super-Higgs mechanism, the low

energy effective field theory associated with the untwisted sector of the Z2 × Z2 model can

be described by an N = 4 gauged supergravity [38–43], with suitable truncation.
4Similar deformations of the boundary conditions of right-moving worldsheet degrees of freedom in

fermionic language are not quantized. They are interpreted as non-trivial continuous Wilson lines responsible
for a Higgs mechanism [44,45].
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2.3 Z2 × Z2 projection

We would like now to implement the orbifold action whose generators are defined as

G1 : (X4, X5, X6, X7, X8, X9) −→ (X4, X5,−X6,−X7,−X8,−X9),

G2 : (X4, X5, X6, X7, X8, X9) −→ (−X4,−X5, X6, X7,−X8,−X9).
(2.20)

We are going to see that there are conditions for the coordinate-dependent compactification

to be implemented consistently and that the surviving set of potentially tachyonic modes is

model-dependent.

Let us first implement the Z2 action generated by G1, which breaks N = 4 to N = 2.

Because the boundary conditions of the left-moving worldsheet fermions ψ6, ψ7, ψ8, ψ9 are

initially identical, we may deform those of any two of them to implement the coordinate-

dependent compactification. For instance, choosing ψ6, ψ7, the relevant conformal blocks

are

R4√
Im τ

∑
n4,m̃4

e−
πR2

4
Im τ
|m̃4+n4τ |2 e−iπn4e(m̃4e−(β+G1)) θ

[
α
β

]2
θ
[
α+H1−2n4e
β+G1−2m̃4e

]
θ
[
α+H1
β+G1

]
(−1)ξ(m̃4H1−n4G1),

(2.21)

where we have written explicitly the dependence on the quantum number H1 ∈ {0, 1}, which
labels the untwisted and twisted sectors of the Z2 modding, as well as the dependance on

G1 ∈ {0, 1}, which signals the insertion G1
G1 in the supertraces. In the above formula,

ξ = 0 or 1 defines two distinct choices of discrete torsions, which are allowed by modular

invariance. For e = 1, the expression can be rewritten in terms of a modified cocycle

R4√
Im τ

∑
n4,m̃4

e−
πR2

4
Im τ
|m̃4+n4τ |2 θ

[
α
β

]2
θ
[
α+H1
β+G1

]2 C[α;n4

β ;m̃4

]
C ′
[
H1;n4

G1;m̃4

]
,

where C ′
[
H1;n4

G1;m̃4

]
= (−1)(1−ξ)(m̃4H1−n4G1).

(2.22)

With the cocycle prescription C alone, we have seen that the potentially tachyonic modes are

untwisted, H1 = 0, and have odd winding number n4. In such a sector, because C ′ reduces
to (−1)(1−ξ)G1 , the presence of C ′ in the blocs (2.22) modifies the Z2 projector as follows,

1

2

1∑
G1=0

G1
G1 =

1 + G1

2
−→ 1

2

1∑
G1=0

(−1)(1−ξ)G1G1
G1 =

1− (−1)ξG1

2
, (2.23)

which has important consequences.
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To see this explicitly, let us use the notations of Eq. (2.17), where the potentially tachyonic

modes have quantum numbers m4 = −n4 = −Q = ε, where Q ≡ −N + α
2
are the eigenvalues

of the generator of the SO(2) affine algebra associated with the normal-ordered conserved

current :ψ6ψ7 :. In complex notations, the affine generator is defined as

Q =
1

2π

∫ 2π

0

dσ1 :

(
ψ6 + iψ7

√
2

)†
ψ6 + iψ7

√
2

:, (2.24)

where σ1 is the coordinate along the string. The remaining non-trivial quantum numbers

of the potentially tachyonic modes satisfy mInI = 0, I ∈ {5, . . . , 9}. For instance, those

with vanishing winding numbers along S1(R5)× T 2 × T 2 have equal left- and right-moving

momenta pIL = pIR, I ∈ {5, . . . , 9}. Under the Z2 action, they transform as5

ψ6 + iεψ7

√
2

eiεX
4
R eip5LX

5

ei
∑9
I=6 pILX

I |0〉NS ⊗ |0̃〉

−→ −(−1)ξ
ψ6 + iεψ7

√
2

eiεX
4
R eip5LX

5

ei
∑9
I=6(−pIL)XI |0〉NS ⊗ |0̃〉,

(2.25)

where |0〉NS and |0̃〉 are the left-moving NS and right-moving vacua. For the sake of simplicity

in the notations, we have set R4 = 1/
√

2 in the above expressions, which yields p4L = 0,

p4R = ε. We see that there are always invariant linear combinations of states surviving the

Z2 projection. However, the modes with trivial momenta and winding numbers along the

twisted directions X6, X7, X8, X9 (and whose masses are given in Eq. (2.12)) exist in the

orbifold model only if ξ = 1. In that case, we will see in the next section that these states

condense in the range (2.13). On the contrary, these modes are projected out when ξ = 0,

and the properties of the Hagedorn-like phase and its boundary in moduli space must be

drastically different. In fact, all potentially tachyonic modes surviving the Z2 projection

when ξ = 0 are pure KK modes (or pure winding modes) along one or more directions of

T 2 × T 2 (and possibly along S1(R5)).

Let us apply G2 on the potentially tachyonic modes arising in the N = 4 → N = 0

model. For instance, those with vanishing winding numbers along S1(R5) × T 2 × T 2 are

transformed as
ψ6 + iεψ7

√
2

eiεX
4
R eip5LX

5

ei
∑9
I=6 pILX

I |0〉NS ⊗ |0̃〉

−→ ψ6 + iεψ7

√
2

ei(−ε)X
4
R ei(−p5L)X5

ei(p6LX
6+p7LX

7−p8LX8−p9LX9)|0〉NS ⊗ |0̃〉.
(2.26)

5In the following, eipILX
I
L+ipIRXI

R |0〉NS ⊗ |0̃〉 stands for |pL〉NS ⊗ |p̃R〉, and XI = XI
L +XI

R.
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Notice that the images are not potentially tachyonic states, but only some of their non-

degenerate (and massive) bosonic superpartners, which have Q = ε. In other words, G2

is not a symmetry of the parent N = 4 → N = 0 model. In order to construct a consis-

tent Z2 × Z2 orbifold model, it is however possible to implement the coordinate-dependent

compactification with the SO(2) affine generator associated with ψ6, ψ8 instead of ψ6, ψ7.

Remember that from the point of view of the first generator G1, this is nothing but an

equivalent conventional choice, so that Eq. (2.25) becomes

ψ6 + iεψ8

√
2

eiεX
4
R eip5LX

5

ei
∑9
I=6 pILX

I |0〉NS ⊗ |0̃〉

−→ −(−1)ξ
ψ6 + iεψ8

√
2

eiεX
4
R eip5LX

5

ei
∑9
I=6(−pIL)XI |0〉NS ⊗ |0̃〉.

(2.27)

However, applying G2 on the same states, we find

ψ6 + iεψ8

√
2

eiεX
4
R eip5LX

5

ei
∑9
I=6 pILX

I |0〉NS ⊗ |0̃〉

−→ ψ6 + i(−ε)ψ8

√
2

ei(−ε)X
4
R ei(−p5L)X5

ei(p6LX
6+p7LX

7−p8LX8−p9LX9)|0〉NS ⊗ |0̃〉.
(2.28)

The images are now potentially tachyonic in the parent N = 4 → N = 0 model, and the

latter admits a Z2 symmetry generated by G2 [20,21,29]. Hence, a consistent model realiz-

ing the N = 1 → N = 0 spontaneous breaking of supersymmetry is obtained by modding

by Z2 × Z2. Because the affine SO(2) generator involved in the coordinate-dependent com-

pactification rotates the directions 6 and 8,6 moduli of the tori T 2 × T 2 associated with the

directions 6, 7 and 8, 9 are lifted. This has been analyzed in supergravity in Ref. [29], while

in the string theory context of Refs [20, 21], the moduli of T 2 × T 2 take specific values, at

fermionic points.

From now on, we consider the above model with ξ = 1.7 The potentially tachyonic states

are the linear combinations of modes invariant under the mappings (2.27), (2.28), as well

as their counterparts with winding numbers rather than KK momenta along some of the

internal directions X5, . . . , X9.
6For e = 1, the latter is a 2π-rotation. This action is however non-trivial in the Ramond sector α = 1

(space-time fermions) [21].
7In Refs [20,21], the choice of discrete torsion is ξ = 0.
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3 Effective gauged supergravity

Having identified the states potentially tachyonic, our goal is to derive their off-shell tree

level potential and its minima, in order to figure out all different phases.

GaugedN = 4 supergravity in four dimensions is a theory that couples a gravity multiplet

to an arbitrary number k of vector multiplets [38–43]. The scalar content is a complex scalar

S (related to the string theory axion χ and dilaton φdil) and 6k real fields that realize a

non-linear σ-model with target space

SU(1, 1)

U(1)
× SO(6, k)

SO(6)× SO(k)
. (3.1)

Properties of such manifolds are briefly reviewed in the appendix. To describe the potential

of the theory, it is however convenient to consider the group quotient SO(6, k)/SO(k) [38,39].

The latter can be parameterized by real scalars ZS
a , S = 1, . . . , 6+k, a = 1, . . . , 6, satisfying8

∀a, b ∈ {1, . . . , 6}, ηSTZ
S
a Z

T
b = −δab, (3.2)

where η = diag(−1, . . . ,−1, 1, . . . , 1), with 6 entries −1. Hence, the ZS
a ’s describe all physical

field configurations, with an SO(6) redundancy. Given the supermultiplet content, the model

is further characterized by the gauging, which implements the non-Abelian nature of the

vector bosons arising from the vector multiplets and/or the 6 graviphotons. The gauging

amounts to switching on structure constants fRST that are totally antisymmetric in their

indices. By supersymmetry, the following potential in Einstein frame is generated [39,40],

V =
|Φ|2

4
ZRUZSV

(
ηTW +

2

3
ZTW

)
fRSTfUVW , (3.3)

where the ZRU ’s are SO(6)-invariant combinations,

ZRU = ZR
a Z

U
a , (3.4)

and the overall factor is related to S as follows (see appendix),

|Φ|2 =
2i

S − S̄
. (3.5)

8In the appendix, ZS
a is denoted MS

a.
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3.1 Supersymmetric case

Let us first review how the above framework can be used to describe the effective field theory

of an exactly N = 4 supersymmetric heterotic model in Minkowski space [46, 47]. Some of

the quantum numbers characterizing the spectrum are generalized momenta p = (pL, pR),

which take values in a Narain lattice Λ(6,22). The latter is a moduli-dependent, even, self-

dual and Lorentzian lattice of signature (6, 22) [48, 49]. There are 22 generically massless

vector multiplets satisfying p = 0, which realize the U(1)22 Cartan sub-algebra of the gauge

group generated by the right-moving bosonic string. Other vector multiplets satisfying the

level matching condition −p2
L + p2

R = 2 become massless at enhanced symmetry points in

moduli space, where their momenta satisfy p2
L = p2

R − 2 = 0. These states admit towers

of pure KK or winding modes along internal directions (for the level matching condition

−p2
L + p2

R = 2 to remain valid), which may be light (but not massless) far enough from the

core of the moduli space. As a result, the low energy effective supergravity valid everywhere

in moduli space should take all of these vector multiplets into account, implying k to be

infinite [46,47]. In that case, the off-shell action would be invariant under the full T-duality

group O(6, 22,Z) [46, 47, 50,51]. However, in any finite region in moduli space, only a finite

number of vector multiplets satisfying −p2
L +p2

R = 2 are lighter than some given cutoff scale.

In such a domain, the effective supergravity may be restricted to a finite number k of light

vector multiplets, with all others integrated out.

Whether k is finite or not, it is convenient to define the index S to take the values

1, . . . , 6 associated with the Abelian generators of the U(1)6 gauge symmetry generated by

the graviphotons, or 7, . . . , 28 for the U(1)22 Cartan sub-algebra, or finally any “generalized

root p ∈ Λ(6,22) of squared length equal to 2” that yields a light vector multiplet in the

moduli space region under interest. The use of the word “root” is justified by the fact that in

a Cartan-Weyl basis, the components of p = (pL, pR) are the charges of the associated vector

multiplet under U(1)6 × U(1)22 [46, 47]. Therefore, the p’s are the data needed to describe

the gauge interactions i.e. the structure constants fRST . Notice however that to write

the off-shell effective supergravity valid in a given region in moduli space, we may choose

any background value of the moduli fields in this region to compute the momenta p [9].

Consistently, the effective field theory must be independent of this choice. To be specific, up
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to permutations of the indices, the non-vanishing structure constants are [46,47]

fSpp′ = 〈pS+3,L〉 δp+p′,0, S ∈ {1, . . . , 6},

fSpp′ = 〈pS−3,R〉 δp+p′,0, S ∈ {7, . . . , 28},

fpp′p′′ = ε(p, p′) δp+p′+p′′,0, where − p2
L + p2

R = −p′2L + p′2R = −p′′2R + p′′2L = 2,

(3.6)

while ε(p, p′) are suitable signs, and brackets 〈 · · · 〉 stand for background values.

To set these ideas on a simple example, we can consider the N = 4 model obtained by

compactifying on the background (2.1), when no Scherk-Schwarz mechanism is implemented.

The associated partition function is given in Eq. (2.2), with the cocycle C omitted. The states

m4 = −n4 = ε, m5 = n5 = · · · = m9 = n9 = 0, where ε = ±1, are massless at the enhanced

SU(2) symmetry point R4 = 1. However, when the T 2 × T 2 moduli are of order 1 and

generic, the KK or winding modes

p4L
R

=
ε√
2

( 1

R4

∓R4

)
, p5L = p5R =

m5√
2R5

6= 0, p6L
R

= · · · = p9L
R

= 0,

and p4L
R

=
ε√
2

( 1

R4

∓R4

)
, p5L = −p5R =

n5√
2
R5 6= 0, p6L

R
= · · · = p9L

R
= 0,

(3.7)

are respectively light for large enough R5, or low enough R5, when R4 sits in the vicinity

of 1. Therefore, an effective description valid in the region R4 ' 1 for arbitrary R5 can be

constructed by including both towers of vector multiplets. Of course, when R5 � 1, the

degrees of freedom wrapped along S1(R5) are very heavy and must be set to 0, while for

R5 � 1 it is the KK states propagating along S1(R5) that must be frozen at their trivial

background values. For R5 ' 1, the modes m5 = n5 = 0 are the only ones dynamical. In

that case, the non-vanishing structure constants to be considered for an effective description

valid for arbitrary R5 are [9]

f1,p,−p = 〈p4L〉, f2,p,−p = 〈p5L〉, f7,p,−p = 〈p4R〉, f8,p,−p = 〈p5R〉, (3.8)

where we set ε = 1 in the expressions of p4L, p4R. If the effective action is independent of

the choice of background 〈R4〉 around 1, taking 〈R4〉 = 1 (with 〈R5〉 arbitrary) is particular
in the sense that the SU(2) structure constants become explicit, since 〈p4R〉 = ε

√
2 are the

SU(2) roots, and 〈p4L〉 = 0.

In general, when a Z2×Z2 modding reduces N = 4 to N = 1 in a model, the 2 + 6k real

scalars which live on the product manifold (3.1) are reduced to 1+k1+k2+k3 complex scalars
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in the untwisted sector. They parameterize the descendent untwisted moduli space [52]

SU(1, 1)

U(1)
× SO(2, k1)

SO(2)× SO(k1)
× SO(2, k2)

SO(2)× SO(k2)
× SO(2, k3)

SO(2)× SO(k3)
, (3.9)

whose factors are Kähler manifolds. These complex scalars are associated with 1 + k1 +

k2 + k3 chiral multiplets, while the spectrum also contains k − k1 − k2 − k3 N = 1 vector

multiplets. Denoting respectively K(0), K(1), K(2), K(3) the Kähler potentials of the above

scalar manifolds, the gravitino mass and potential in Einstein frame and N = 1 supergravity

language satisfy [36,37]

m2
3
2

E
= eK |W |2, V = eK |W |2

[(
Ki +

Wi

W

)
Kī
(
K̄ +

W̄

W

)
− 3

]
, (3.10)

where K = K(0) + K(1) + K(2) + K(3), W is the superpotential, and subscripts i or ı̄ stand

for holomorphic or antiholomorphic derivatives with respect to the i-th scalar fields. Iden-

tifying m 3
2

E with the mass of the surviving combination of gravitini of the N = 4 parent

supergravity, one shows that W only involves structure constants fRST having one index in

each of the last three cosets in (3.9) [52], namely

fRST , R ∈ {1, 2, 6 + 1, . . . , 6 + k1},

S ∈ {3, 4, 6 + k1 + 1, . . . , 6 + k1 + k2},

T ∈ {5, 6, 6 + k1 + k2 + 1, . . . , 6 + k1 + k2 + k3}.

(3.11)

Note that this result is valid whether the gauging induces or not a super-Higgs mechanism.

In the present case, where N = 4 supersymmetry is exact, the non-trivial structure constants

in Eq. (3.8) have one index R ∈ {1, 2, 7, 8}, i.e. in the second coset of (3.9). Therefore, the

scalar degrees of freedom labelled p and −p must sit, say, in the third and fourth cosets,

respectively. In that case, W and thus V do not vanish identically, which allows the scalars

with quantum numbers given in Eq. (3.7) to have non-trivial masses in the supergravity

description, as R4 and R5 vary [9]. Moreover, because the potential we are interested in

involves scalars arising from the untwisted sector only, it can either be computed by using

the N = 1 formula in Eq. (3.10), or the N = 4 result given in Eq. (3.3).9 Finally, due to the

orbifold action, the complex scalars with quantum numbers p and −p have to be identified.
9Consistently, we have checked that both expressions yield identical results when the states p in Eq. (3.7)

are restricted to m5 = n5 = 0.
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3.2 Non-supersymmetric case

In the background (2.1) modded by Z2×Z2, the spontaneous breaking of N = 1 supersym-

metry we consider is realized by coupling the lattice of zero modes associated with S1(R4) to

the boundary conditions of the worldsheet fermions ψ6, ψ8. For simplicity, we will describe

the potential of the effective supergravity for a minimal set of degrees of freedom. We restrict

to the dilaton φdil, the radii R4, R5, and the potentially tachyonic real scalars described at

the end of Sect. 2.3, which have vanishing momenta and winding numbers along T 2 × T 2.

However, our analysis could be generalized to include more moduli and potentially tachyonic

modes. The relevant σ-model to start with is based on the target space

SU(1, 1)

U(1)
× SO(2, 2)

SO(2)× SO(2)
× SO(2, k+)

SO(2)× SO(k+)
× SO(2, k−)

SO(2)× SO(k−)
, (3.12)

which deserves comments. The coordinates of the second coset are associated with the metric

and antisymmetric tensor moduli fields of the internal 2-torus of coordinates X4, X5, which

we will actually take in factorized form. The third coset is parameterized by the potentially

tachyonic real scalars whose quantum numbers are

|2m4 + 1 = −n4 = +1,m5 = 0, n5 = 0〉,

|2m4 + 1 = −n4 = +1,m5, n5 = 0〉, m5 6= 0,

|2m4 + 1 = −n4 = +1,m5 = 0, n5〉, n5 6= 0,

(3.13)

together with an equal number of real scalar superpartners that will be massive once the

gauging is implemented. Together, they realize the bosonic parts of k+ = +∞ chiral mul-

tiplets. Similarly, the coordinates on the fourth coset are associated with the potentially

tachyonic real degrees of freedom

|2m4 + 1 = −n4 = −1,m5 = 0, n5 = 0〉,

|2m4 + 1 = −n4 = −1,−m5, n5 = 0〉, m5 6= 0,

|2m4 + 1 = −n4 = −1,m5 = 0,−n5〉, n5 6= 0,

(3.14)

together with an equal number of real superpartners that will be massive after gauging.

They realize the bosonic parts of k− = +∞ chiral multiplets. Due to the action of G2 (see

Eq. (2.28)), the states (3.13) and (3.14) for given m5, n5 have to be identified.

As reviewed in the appendix, the coset SO(2,2)
SO(2)×SO(2)

can be parameterized by constrained
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fields φ1, φ2, φ7, φ8 that can be expressed in terms of 2 complex variables T ,U ,

φ1 =
1− T U√

Y(1)

, φ2 =
T + U√
Y(1)

, φ7 =
1 + T U√

Y(1)

, φ8 =
T − U√
Y(1)

,

where Y(1) = −(T − T̄ )(U − Ū) > 0.

(3.15)

In order to define coordinates of the manifolds SO(2,k+)
SO(2)×SO(k+)

and SO(2,k−)
SO(2)×SO(k−)

, it is convenient

to introduce indices A and Ã that label the states (3.13) and (3.14), respectively. Denoting

shortly
A = (+, 0, 0), (+,m5, 0) or (+, 0, n5)

Ã = (−, 0, 0), (−,−m5, 0) or (−, 0,−n5), where m5, n5 6= 0,
(3.16)

the cosets are parameterized by the constrained fields φ3, φ4, φA and φ5, φ6, φÃ that depend

on unconstrained variables ωA and ωÃ to be associated with the modes (3.13) and (3.14).

Using Eq. (A.14), we have

φ3 =
1

2
√
Y(+)

(
1 +

∑
B

ωB

)
, φ5 =

1

2
√
Y(−)

(
1 +

∑
B̃

ωB̃

)
,

φ4 =
i

2
√
Y(+)

(
1−

∑
B

ωB

)
, φ6 =

i

2
√
Y(−)

(
1−

∑
B̃

ωB̃

)
,

φA =
ωA√
Y(+)

, φÃ =
ωÃ√
Y(−)

,

where Y(+) = 1− 2
∑
B

|ωB|2 +
∣∣∣∑

B

ω2
B

∣∣∣2 > 0,

Y(−) = 1− 2
∑
B̃

|ωB̃|
2 +

∣∣∣∑
B̃

ω2
B̃

∣∣∣2 > 0.

(3.17)

The relations (3.6) between the constants fRST of the N = 4 gauging and the quantum

numbers p = (pL, pR) have been derived in the supersymmetric case in Refs [46, 47]. As far

as we know, the generalization of these results in presence of super-Higgs effect responsible

for the N = 4 → N = 0 spontaneous breaking of supersymmetry is not known.10 The

main novelty is that pL, pR do not take anymore universal values among the 8 bosonic and 8

fermionic degrees of freedom of the N = 4 vector multiplets. To be specific, let us denote Q

and Q2, Q3, Q4 the 4 Cartan charges of the SO(8) little group generated by the left-moving

supersymmetric side of the heterotic worldsheet. We have Q = −N + α
2
and, as seen in

10The cases restricted to the untwisted sectors of exact N = 2 and N = 1 models obtained by orbifold
actions on parent N = 4 theories have also been treated in Refs [46,47].
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Eqs (2.16), (2.17), the left- and right-moving quantum charges in presence of deformation

(e = 1) of the ψ6, ψ8 boundary conditions become

p4L =
1√
2

(m4 + eQ− 1
2
n4e

2

R4

+ n4R4

)
, Q′ = Q− n4e, Q′2 = Q2, Q′3 = Q3, Q′4 = Q4,

p4R =
1√
2

(m4 + eQ− 1
2
n4e

2

R4

− n4R4

)
. (3.18)

They mix non-trivially m4, n4 with ~Q = (Q,Q2, Q3, Q4), so that Λ(6,22) should be extended

to a larger Lorentzian lattice, whose vectors (pL, ~Q
′, pR) have norm −p2

L− ~Q′2 +p2
R. However,

in our parent model of interest, the N = 4→ N = 0 spontaneous breaking implies all scalar

superpartners of the states A and Ã to be massive. After implementation of the Z2 × Z2

orbifold action, restricting the dynamics to the potentially tachyonic modes only, the only

relevant Cartan charges pL, pR are therefore those associated with the potentially tachyonic

real scalars A and Ã, which are identified. Hence, we switch on structure constants

f1AÃ = 〈p4LA〉 ≡ 〈p4L〉 =
1√
2

( 1

2〈R4〉
− 〈R4〉

)
, f2AÃ = 〈p5LA〉 = 0,

m5√
2 〈R5〉

or
n5√

2
〈R5〉,

f7AÃ = 〈p4RA〉 ≡ 〈p4R〉 =
1√
2

( 1

2〈R4〉
+ 〈R4〉

)
, f8AÃ = 〈p5RA〉 = 0,

m5√
2 〈R5〉

or − n5√
2
〈R5〉,

where A = (+, 0, 0), (+,m5, 0) or (+, 0, n5). (3.19)

Notice that the level matching condition now reads −〈pL〉2 + 〈pR〉2 = 1. In the notations of

the above formula, it is understood that A and Ã are not independent indices in the sense

that states A and Ã always have opposite momenta and winding numbers. However, the

structure constants (3.19) being formally similar to those encountered in the supersymmetric

case, Eq. (3.8), they cannot induce any super-Higgs mechanism. In particular, the real and

imaginary parts of the ωA’s and ωÃ’s would be treated on equal footing and have degenerate

masses.

In order to break spontaneously N = 4 → N = 0 in the parent supergravity, a non-

Abelian structure among the 6 graviphotons must be implemented. However, the generated

potential should admit a phase compatible with Minkowski space-time. This has to be the

case since the underlying string theory is a no-scale model [35], provided R4 sits outside the

range (2.13). By definition, structure constants satisfying these conditions define the so-

called “flat gaugings” [28]. After Z2×Z2 truncation, in N = 1 supergravity language, for the

superpotential W and thus the potential V to be affected by the non-Abelian interactions of
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the graviphotons in the parent theory, additional structure constant fRST having one index

in each of the last three cosets in (3.9) must be considered [9, 10]. Because our choice of

implementation of the stringy Scherk-Schwarz mechanism involves the left-and right-moving

quantum numbers along S1(R4) only, we switch on

f135 = eL, f735 = eR, f146 = ẽL, f746 = ẽR, (3.20)

where eL, eR and ẽL, ẽR have to be determined for the mass spectrum in the no-scale super-

gravity phase to match that of the underlying string model. Notice that if only eL, eR have

been considered in Refs [9, 10], we will see that ẽL, ẽR play an important role for matching

an enlarged spectrum.

3.3 Effective potential in the non-supersymmetric case

In order to write the potential V that involves only untwisted states of the N = 1→ N = 0

orbifold theory, we find easier to use the N = 4 supergravity expression (3.3) rather than

its N = 1 counterpart, Eq. (3.10). The link between the constrained fields φS in Eqs (3.15)

and (3.17) and the N = 4 variables ZS
a are provided by the relations (see Eq. (A.11))

φS =
1

2

(
ZS

1 + iZS
2

)
, for S = 1, 2, 7, 8,

φS =
1

2

(
ZS

3 + iZS
4

)
, for S = 3, 4, A,

φS =
1

2

(
ZS

5 + iZS
6

)
, for S = 5, 6, Ã,

(3.21)

with all other ZS
a ≡ 0. In that case, Eq. (3.2) reduces consistently to

η̂STZ
S
a Z

T
b = −δab, a, b ∈ {1, 2},

η̌STZ
S
a Z

T
b = −δab, a, b ∈ {3, 4},

η̌STZ
S
a Z

T
b = −δab, a, b ∈ {5, 6},

(3.22)

where η̂ = diag(−1,−1, 1, 1) and η̌ = diag(−1,−1, 1, . . . ). As a result, the non trivial real

scalars ZST appearing in Eq. (3.3) have both indices S, T in either of the last 3 cosets (3.12),

namely

ZST = 2
(
φSφ̄T + φ̄SφT

)
, for S, T = 1, 2, 7, 8 or 3, 4, A or 5, 6, Ã. (3.23)
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It turns out that the computation of V is greatly simplified by the introduction of indices

correlated as follows:

For A = 3, 4 or A, we define Ã = 5, 6 or Ã, respectively. (3.24)

With this convention, the structure constants with one index equal to 1 or 7 can be unified

in a single notation,

f1AÃ = 〈p4LA〉, f7AÃ = 〈p4RA〉, (3.25)

which amounts to writing 〈p4L
R

3〉 ≡ eL
R
and 〈p4L

R
4〉 ≡ ẽL

R
. In total, the potential takes the

form

V =
|Φ|2

2

{∑
A,B

[(
ηAB

(
ZAB + ZÃB̃) + 2ZABZÃB̃

))
v44(T ,U , 〈p4A〉, 〈p4B〉)

+ ZABZÃB̃
(
p4RA p4RB − p4LA p4LB

)]
+
∑
A,B

[(
ηAB

(
ZAB + ZÃB̃

)
+ 2ZABZÃB̃

)
v55(T ,U , 〈p5A〉, 〈p5B〉)

+ ZABZÃB̃
(
p5RA p5RB − p5LA p5LB

)]
+
∑
A,B

(
ηAB

(
ZAB + ZÃB̃

)
+ 2ZABZÃB̃

)
2v45(T ,U , 〈p4A〉, 〈p5B〉)

}
,

(3.26)

where the sums are indicated explicitly for clarity. In the above formula, we have defined

pIA ≡ (pILA, pIRA), I ∈ {4, 5}, and

v44(T ,U , x, y) = Z11xLyL + Z17(xLyR + yLxR) + Z77xRyR,

v55(T ,U , x, y) = Z22xLyL + Z28(xLyR + yLxR) + Z88xRyR,

v45(T ,U , x, y) = Z12xLyL + Z18xLyR + Z72yLxR + Z78xRyR.

(3.27)

In the present work, because we impose the first internal 2-torus to be S1(R4)× S1(R5), we

can restrict the moduli T and U to be purely imaginary. We define

T = iR4R5, U = i
R4

R5

, (3.28)

where the precise relation between the real variablesR4,R5 and the worldsheet moduliR4, R5

will have to be determined. From the relation (3.23) for S, T ∈ {1, 2, 7, 8}, we obtain

v44(T ,U , x, y) ≡ v(R4, x, y), v55(T ,U , x, y) ≡ v(R5, x, y), v45(T ,U , x, y) ≡ 0, (3.29)
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where we have defined

v(R, x, y) =
1

4

[( 1

R
+R

)
xL +

( 1

R
−R

)
xR

][( 1

R
+R

)
yL +

( 1

R
−R

)
yR

]
=

1

4

[(xL + xR)(yL + yR)

R2
+ 2(xLyL − xRyR) +R2(xL − xR)(yL − yR)

]
.

(3.30)

The expressions of the ZAB’s and ZÃB̃’s involve

ΩA =
ωA√
Y(+)

, ΩÃ =
ωÃ√
Y(−)

, (3.31)

in terms of which we have

Z33 = 1 +
∑
A

(ΩA + Ω̄A)2, Z55 = 1 +
∑
Ã

(ΩÃ + Ω̄Ã)2,

Z44 = 1−
∑
A

(ΩA − Ω̄A)2 Z66 = 1−
∑
Ã

(ΩÃ − Ω̄Ã)2,

ZAB = 2(ΩAΩ̄B + Ω̄AΩB), ZÃB̃ = 2(ΩÃΩ̄B̃ + Ω̄ÃΩB̃),

Z34 = −i
∑
A

(Ω2
A − Ω̄2

A), Z56 = −i
∑
Ã

(Ω2
Ã
− Ω̄2

Ã
),

Z3A = −ΩA
1 +

∑
B ω̄

2
B√

Y(+)

+ c.c., Z5Ã = −ΩÃ

1 +
∑

B̃ ω̄
2
B̃√

Y(−)

+ c.c.,

Z4A = iΩA
1−

∑
B ω̄

2
B√

Y(+)

+ c.c., Z6Ã = iΩÃ

1−
∑

B̃ ω̄
2
B̃√

Y(−)

+ c.c..

(3.32)

To proceed, we make some remarks on the expansion in ωA, ωÃ of the potential:

• At zeroth order, i.e. with no tachyon condensation, only Z33, Z55 and Z44, Z66 are non-

trivial. As a result, up to the overall dressing by |Φ|2, V reduces to a constant expressed

in terms of eL, eR and ẽL, ẽR. Since this configuration should describe the no-scale phase

characterized by a vanishing cosmological constant, this constant must vanish.

• At next order, V contains quadratic terms in ReωA,ReωÃ, which depend on eL, eR but

not in ẽL, ẽR. V also contains quadratic terms in ImωA, ImωÃ, which depend on ẽL, ẽR but

not in eL, eR. Hence, it is a matter of convention to choose eL, eR rather than ẽL, ẽR to

reproduce the tachyonic mass terms (in Einstein frame) of the underlying string model. In

that case, ReωA,ReωÃ are the associated degrees of freedom and ImωA, ImωÃ are massive

superpartners to be set to 0. ẽL, ẽR can then be tuned to satisfy the above mentioned

cosmological constant constraint. In fact, for these statements to be true, the kinetic terms
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should also be block-diagonal in ReωA,ReωÃ, and in ImωA, ImωÃ. This turns out to be

the case, since the scalar kinetic terms of the truncated supergravity are determined by the

Kähler metric [52], and take the following form at quadratic order,

−gµν
(
KωAω̄A ∂µωA∂νω̄A +KωÃω̄Ã

∂µωÃ∂νω̄Ã

)
= 2gµν

(
∂µ(ReωA)∂ν(ReωA) + ∂µ(ReωÃ)∂ν(ReωÃ)

+ ∂µ(ImωA)∂ν(ImωA) + ∂µ(ImωÃ)∂ν(ImωÃ) +O(∂µ∂νω
4)
)
.

(3.33)

From now on, we thus take

ωA, ωÃ ∈ R =⇒ ΩA =
ωA

1−
∑

B ω
2
B

, ΩÃ =
ωÃ

1−
∑

B̃ ω
2
B̃

, (3.34)

which yields

Z33 = 1 + 4
∑
A

Ω2
A, Z55 = 1 + 4

∑
Ã

Ω2
Ã
,

Z44 = 1, Z66 = 1,

ZAB = 4ΩAΩB, ZÃB̃ = 4ΩÃΩB̃,

Z34 = 0, Z56 = 0,

Z3A = −2ΩA

(
1 + 4

∑
B

Ω2
B

) 1
2
, Z5Ã = −2ΩÃ

(
1 + 4

∑
B̃

Ω2
B̃

) 1
2
,

Z4A = 0, Z6Ã = 0.

(3.35)

In the present work, we consider a deformation of the boundary conditions of the world-

sheet fermions ψ6, ψ8, which leads to the potentially tachyonic spectrum described at the

end of Sect. 2.3. This amounts to identifying suitably the degrees of freedom ωA and ±ωÃ,
where the choice of sign turns out to be a matter of convention. This follows from the fact

that the transformation ωÃ → −ωÃ is equivalent to Z5Ã → −Z5Ã, and that the latter can

be compensated by a flip (eL, eR)→ −(eL, eR). Making the choice

ωA ≡ ωÃ =⇒ ΩA ≡ ΩÃ, (3.36)

the potential takes the following form,

V =
|Φ|2

2

(
C(0) + C

(2)
A Ω2

A + C
(4)
ABΩ2

AΩ2
B

)
, (3.37)
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with constant coefficients defined as

C(0) = −e2
L + e2

R − ẽ2
L + ẽ2

R,

C
(2)
A = 2

[
1

R2
4

(
〈p4L〉+ 〈p4R〉+ eL + eR

)2
+R2

4

(
〈p4L〉 − 〈p4R〉+ eL − eR

)2

+
1

R2
5

(
〈p5LA〉+ 〈p5RA〉

)2
+R2

5

(
〈p5LA〉 − 〈p5RA〉

)2

+ 2
(
〈p4L〉2 − 〈p4R〉2 − e2

L + e2
R + 〈p5LA〉2 − 〈p5RA〉2

)]
, (3.38)

C
(4)
AB = 8

[
1

R2
4

(
〈p4L〉+ 〈p4R〉+ eL + eR

)2
+R2

4

(
〈p4L〉 − 〈p4R〉+ eL − eR

)2

+
1

R2
5

(
〈p5LA〉+ 〈p5RA〉

)(
〈p5LB〉+ 〈p5RB〉

)
+R2

5

(
〈p5LA〉 − 〈p5RA〉

)(
〈p5LB〉 − 〈p5RB〉

)]
.

As explained before, in order to identify the structure constants responsible for the N = 1→
N = 0 spontaneous breaking, we use our knowledge of the cosmological constant and masses

given in Eq. (2.12), which are valid in the no-scale supergravity phase. To work in Einstein

frame, we combine the string theory axion χ and dilaton field φdil into the axio-dilaton scalar

S = χ+ ie−2φdil . (3.39)

In these notations, the conditions to be imposed take the form

C(0) = 0,
|Φ|2

2
C

(2)
A = 4

2i

S − S̄
M2

A, (3.40)

where the factor 4 arises from the normalization of the kinetic terms of ReωA ≡ ReωÃ in

Eq. (3.33). However, the above masses in Einstein frame depend on the worldsheet CFT

moduli φdil, R4, R5 and the relation between them and our variables |Φ|2 = 2i/(S−S̄),R4,R5

may not be trivial. This is due to the fact that the parameterization of the cosets SU(1,1)
U(1)

and
SO(2,2)

SO(2)×SO(2)
in (3.12) contain some degree of arbitrariness. In particular, the Kähler potential

of these manifolds being K(0) = − ln(−i(S − S̄)) and K(1) = − lnY(1) (see Eq. (3.15)), the

transformations S → γSS and (T ,U) → (γ4γ5T , (γ4/γ5)U) for arbitrary real constants

γS, γ4, γ5 > 0 translate into K(0) → K(0) − ln γS and K(1) → K(1) − ln(γ4γ5) − ln(γ4/γ5),

which are Kähler transformations. Therefore, γSS, γ4γ5T , (γ4/γ5)U are as good variable as

S, T , U . In the matching of supergravity with string data, we thus identify

S = γSS, R4 = γ4R4, R5 = γ5R5, (3.41)
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with coefficients to be determined.

Notice that the constraints on the masses of the modes with non-trivial momentum or

winding number along S1(R5) yield, in particular,

for A = (+,m5, 0) :
1

γ2
5

(
〈p5LA〉+ 〈p5RA〉

)2
= −2m2

5

3

(
〈p4L〉2 − 〈p4R〉2 − e2

L + e2
R

)
,

for A = (+, 0, n5) : γ2
5

(
〈p5LA〉 − 〈p5RA〉

)2
= −2n2

5

3

(
〈p4L〉2 − 〈p4R〉2 − e2

L + e2
R

)
,

(3.42)

which imply
1

γ2
5〈R5〉2

= γ2
5〈R5〉2 = −1

3

(
〈p4L〉2 − 〈p4R〉2 − e2

L + e2
R

)
. (3.43)

This has several consequences. Firstly, γ5 is related to the choice of background, γ5 = 1/〈R5〉.
Secondly, because of the level matching condition, which fixes −〈p4L〉2 + 〈p4R〉2 = 1, we have

−e2
L + e2

R = −2, and then −ẽ2
L + ẽ2

R = 2 for C(0) to vanish. We stress that had we considered

only the pure momentum (or pure winding) states, γ5 would have only been related to

〈p4L〉2 − 〈p4R〉2 − e2
L + e2

R, leaving arbitrary −e2
L + e2

R = ẽ2
L − ẽ2

R. This is the reason why in

Refs [9, 10], ẽL, ẽR are not introduced (or set to 0). It is therefore important to take into

account both momentum and winding states along S1(R5), because this fixes the r.h.s. of

Eq. (3.43) to 1. In the end, the constraints on C(0) and C(2)
A admit 2 solutions,

eL = 〈p4L + σ
√

3p4R〉, eR = 〈p4R + σ
√

3p4L〉, −ẽ2
L + ẽ2

R = 2,

γS =
1

2
, γ4 =

2 + σ
√

3

〈R4〉
, γ5 =

1

〈R5〉
,

(3.44)

where σ = ±1. In fact two more solutions exist,
eL = σ

√
2 〈p4R〉, eR = σ

√
2 〈p4L〉, −ẽ2

L + ẽ2
R = 2,

γS =
1

2
, γ4 =

√
2 + σ

〈R4〉
, γ5 =

1

〈R5〉
,

(3.45)

but it can be shown that when both the real and the imaginary parts of the moduli T ,U are

taken into account, only the solutions (3.44) reproduce correctly the mass spectrum arising

for arbitrary metric and antisymmetric tensor backgrounds in the internal directions X4, X5.

It would be interesting to see whether σ and/or ẽ2
L = 2 + ẽR could be fixed by taking into

account more degrees of freedom in the supergravity action.
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We are ready to display the final expression of the low energy tree level effective potential,

V = e2φdil 4

{( 1

4R2
4

+R2
4 − 3

)∑
A

Ω2
A +

( 1

R2
4

+ 4R2
4

)(∑
A

Ω2
A

)2

+
1

R2
5

∑
m5

m2
5 Ω2

(+,m5,0) +R2
5

∑
n5

n2
5 Ω2

(+,0,n5)

+
4

R2
5

(∑
m5

m5 Ω2
(+,m5,0)

)2

+ 4R2
5

(∑
n5

n5 Ω2
(+,0,n5)

)2
}
.

(3.46)

In this result, we remind that the sum over A runs over (+, 0, 0), (+,m5, 0) and (+, n5, 0),

where m5, n5 6= 0. For notational convenience, we have split the mass terms into R4-

dependent and R5-dependent pieces. One of the greatest interest of supergravity for de-

scribing the low energy physics is that the tree level potential captures all self-interactions

in ωA’s, i.e. all n-points vertices, with arbitrary n. This very fact makes it possible to

determine the allowed condensates and phases. Some remarks are in order:

• The quartic terms in ΩA’s being positive, at fixed φdil, V is bounded from below.

• When R4 sits outside the range (2.13), all quadratic terms in ΩA’s are positive as well.

Hence, all vacua are degenerate, with vanishing cosmological constant:

〈R4〉 ≥ RH or 〈R4〉 ≤ RH, ∀A, 〈ΩA〉 = 0, 〈R5〉, 〈φdil〉 arbitrary. (3.47)

This is the “no-scale” phase, where 〈m 3
2

E〉 ≡ 〈eφdil/(2R4)〉 is arbitrary.

• According to the initial string theory mass spectrum, the quadratic terms in ωA’s are

invariant under the T-duality transformations R4 → 1/(2R4) and R5 → 1/R5. It turns out

that the full potential V and thus the full tree level bosonic action respect this T-duality.11

•When R4 sits in the tachyonic range (2.13), degrees of freedom can condense. From the first

line of Eq. (3.46), we see that extremizing V with respect to R4 and Ω(+,0,0) fixes R4 = 1/
√

2

(the self-dual radius) and the total sum
∑

A Ω2
A = 1/4. To figure out which of the potentially

tachyonic modes A actually condense, it is enough to note that all other terms in the second

and third lines of Eq. (3.46) are non-negative. Hence, V is minimal when all scalars with

non-trivial momentum or winding number along S1(R5) vanish. In other words, all of the
11The kinetic terms are invariant under the T-duality transformations valid in the supersymmetric case,

R4 → 1/R4 and R5 → 1/R5, as well as the Kähler transformation R4 → 2R4. Hence, they are invariant
under R4 → 1/(2R4).
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condensation is supported by the tachyon having m5 = n5 = 0. At fixed φdil, there are 2

branches of minima, which are reached for the backgrounds

〈Ω(+,0,0)〉 = ±1

2
, 〈Ω(+,m5,0)〉 = 〈Ω(+,0,n5)〉 = 0, m5, n5 6= 0,

〈R4〉 =
1√
2
, 〈R5〉, arbitrary.

(3.48)

The ΩA’s and R4 are stabilized, R5 is a flat direction, and the T-duality transformation

R4 → 1/(2R4) is not spontaneously broken. The new mass spectrum can be found by

expanding V in small perturbations around the expectations values,

ΩA = 〈ΩA〉+ δΩA, R4 = 〈R4〉+ δR4, (3.49)

which yields

V = e2φdil
(
− 1 + 8δR2

4 + 16δΩ2
(+,0,0)+

4

R2
5

∑
m5

m2
5 δΩ

2
(+,m5,0)+ 4R2

5

∑
n5

n2
5 δΩ

2
(+,0,n5) +O(δ3)

)
.

(3.50)

Strictly speaking, the word “mass” is a misnomer, since the dilaton has a tadpole. In fact,

in terms of the string frame metric ĝµν = e2φdilgµν , the tree level action involving the Ricci

scalar, dilaton and potential reads

Stree =

∫
d4x
√
−ĝ e−2φdil

(R̂
2

+ 2(∂φdil)
2 + 1 +O(δ)

)
. (3.51)

As proposed in Refs [9,10], this suggests that the condensed phase of the effective supergrav-

ity may describe the low energy physics of a non-critical string theory, with linear dilaton

background.

4 Conclusion

In this work, we have initiated the study of phase transitions occurring in string theory,

when the scale of spontaneous breaking of supersymmetry is of the order of the string scale.

Even if they are physically very different from the Hagedorn instabilities developed at high

temperature, they share technical similarities about internal or temporal cycles along which

bosons and fermions have distinct boundary conditions. Significant differences nevertheless

exist.
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In the Hagedorn case, 2 real scalars (in space-time dimension minus 1) become tachyonic

when the radius R0 of the Euclidean time circle falls below the Hagedorn radius RH. In the

supersymmetry breaking case, even when the Scherk-Schwarz mechanism is implemented

along a single factorized circle S1(R), the analogous 2 real scalars may be projected out

of the spectrum by an orbifold action. When this arises, the “Hagedorn-like region” in

moduli space is not the domain R < RH, but a subregion where tachyons with non-trivial

momenta or winding numbers along other internal directions condense. This possibility yields

interesting new phenomena that will be described elsewhere. Moreover, the instabilities

occurring at high supersymmetry breaking scale can be analyzed when the internal metric

and antisymmetric tensor are generic. In that case, target space duality transformations

imply the Hagedorn-like region to be much more involved, with a fractal structure.

In the present paper, we have considered a Z2×Z2 heterotic orbifold setup that illustrates

the simplest situation. In this example, a real scalar with non-trivial quantum numbers only

along the Scherk-Schwarz circle S1(R4) survives the modding action, and becomes tachyonic

when R4 < RH. It is accompanied by an infinite number of potentially tachyonic scalars,

with momenta or winding numbers along a transverse circle S1(R5). We have derived the

tree level effective potential that depends on these degrees of freedom. It turns out to be

symmetric under the T-duality transformation R4 → 1/(2R4) and to allow only two phases.

The former is associated with the initial no-scale model, where the cosmological constant

vanishes and the supersymmetry breaking scale is arbitrary. In the second phase, the tachyon

with non-trivial quantum numbers only along S1(R4) condenses, which stabilizes R4 at the

self-dual point 1/
√

2, as well as the infinity of other scalars at their origin.

It is a long-standing problem to better understand the nature of the condensed phase,

with negative potential and dilaton tadpole. In Refs [9, 10], it is proposed to be associated

with an underlying non-critical string, with linear dilaton background. It would be inter-

esting to compare the gauge symmetries, masses and interactions arising in supergravity

and string theory to provide further evidence for such a conjecture. In addition, one may

extremize the full effective action instead of the potential, in order to derive a dynamical

transition between the condensed and the no-scale phases. Solving the equations of motion

in Euclidean time may also yield instantonic transitions.

A question tackled in the core of our work is the determination of the structure constants
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of N = 4 gauged supergravity that are appropriate for describing the low energy physics of

a string theory no-scale model. When N = 4 supersymmetry in 4 dimensions is exact, the

constants fRST are related to the charges of all (light) vector multiplets under the U(1)6
L ×

U(1)22
R Cartan subgroup. In other words, they are nothing but the generalized momenta of

the Narain lattice, (pL, pR) ∈ Λ(6,22) [46, 47]. However, (pL, pR) is no longer universal among

the degrees of freedom of a vector multiplet, when N = 4 is spontaneously broken. For this

reason, we have restricted the effective supergravity to a single (and potentially tachyonic)

real scalar in each vector multiplet, in order to avoid any ambiguity in the choice of charge

(pL, pR). The remaining structure constants responsible for the non-Abelian gauging of the

N = 4 graviphotons have been determined for the tachyonic mass spectrum of the underlying

string model to be reproduced. Clearly, it would be very interesting to generalize the analysis

of Refs [46, 47] to the case of a (total) spontaneous breaking of N = 4 supersymmetry, in

order to identify all structure constants fRST from pure string theory quantum numbers.
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Appendix

For the present work to be self-contained, let us collect basic features satisfied by indefinite

special orthogonal or unitary groups, and their cosets.

• We are mostly interested in the group manifolds

SO(p, q)

SO(p)× SO(q)
, p, q ∈ N, (A.1)

which are encountered in the description of closed string moduli spaces. The O(p, q) group

is the set of (p+ q)× (p+ q) real matrices M satisfying

∀X, Y ∈ Rp,q, (MX)tη(MY ) = X tηY, (A.2)

where t denotes the transpose operation and η = diag(−1, . . . ,−1, 1, . . . , 1), with p entries
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−1. The above definition is equivalent to saying that

∀U, V ∈ {1, . . . , p+ q}, ηSTM
S
UM

T
V = ηUV , (A.3)

which implies the matrices M to depend on

dp,q = (p+ q)2 − (p+ q)(p+ q + 1)

2
=

(p+ q)(p+ q − 1)

2
(A.4)

parameters. Because Eq. (A.3) yields detM = ±1, restricting to matrices of determinant 1

imposes only a discrete condition. Hence, the dimension of SO(p, q) is also dp,q, while that

of the quotient group
SO(p, q)

SO(q)
(A.5)

is

dp,q − d0,q =
p

2
(p+ 2q − 1). (A.6)

A parameterization of this manifold is given by the following subset of the equations (A.3),

∀a, b ∈ {1, . . . , p}, ηSTM
S
aM

T
b = −δab. (A.7)

To show this, we first observe that the dimension of the space of solutions of the above

system is dp,q − d0,q. Next, let us view the MS
a’s as the p + q entries of p vectors Ma. It

turns out that the Ma’s can be generated by the action of SO(p, q) modulo SO(p). This can

be seen by first defining p vectors va ∈ Rp,q by vSa = δSa . They are invariant under the action

of SO(q) in the following sense:

∀N ∈ SO(q), va = Hva, where H =

(
Ip 0
0 N

)
∈ SO(p, q), (A.8)

and where Ip is the identity matrix in p dimensions. Then, there existsM ∈ SO(p, q) such

that Ma =MHva, since
M t

aηMb = vtaηvb = −δab, (A.9)

where the first equality follows from Eq. (A.2).

The dimension of the group manifold (A.1) is

dp,q − d0,q − dp,0 = pq. (A.10)

In the following, we specialize to the case p = 2, which is mostly encountered in the core of

the paper. Defining

φ̂S =
1

2

(
MS

1 + iMS
2

)
, S ∈ {1, 2, . . . , 2 + q}, (A.11)
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the defining equations (A.7) of SO(2, q)/SO(q) can be written as

|φ̂1|2 + |φ̂2|2 −
q∑
i=1

|φ̂2+i|2 =
1

2
,

(φ̂1)2 + (φ̂2)2 −
q∑
i=1

(φ̂2+i)2 = 0.

(A.12)

An explicit solution to the above constraints is given in terms of an angle θ and q complex

variables ωi, (
φ̂1

φ̂2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
φ1

φ2

)
, φ̂2+i = φ2+i, i ∈ {1, . . . , q}, (A.13)

with the following definitions [53, 54]

φ1 =
1

2
√
Y

(
1 +

q∑
j=1

ωj

)

φ2 =
i

2
√
Y

(
1−

q∑
j=1

ωj

)
φ2+i =

ωi√
Y
, i ∈ {1, . . . , q},

where Y = 1− 2

q∑
j=1

|ωj|2 +
∣∣∣ q∑
j=1

ω2
j

∣∣∣2 > 0.

(A.14)

Hence, representatives of the classes of equivalence associated with the SO(2) modding are

obtained by setting θ = 0. The q complex variable ωi thus provide a parameterization of

the quotient (A.1) for p = 2. When q = 2, φ1, . . . , φ4 can be expressed in terms of variables

T ,U instead of ω1, ω2, as indicated in Eq. (3.15).

• Let us proceed with the coset manifold

SU(1, 1)

U(1)
. (A.15)

The U(1, 1) group is the set of 2× 2 complex matrices M satisfying

∀X, Y ∈ C1,1, (MX)†η(MY ) = X†ηY, (A.16)

where η = diag(−1, 1). Because this equation amounts to having

∀U, V ∈ {1, 2}, ηSTM̄
S
UM

T
V = ηUV , (A.17)
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the real dimension of U(1, 1) is 4 and the determinant ofM is an arbitrary phase, | detM | = 1.

As a result, the special indefinite unitary group SU(1, 1) of matrices of determinant 1 is of

dimension 4 − 1 = 3. Notice that the MS
1’s, S = {1, 2}, can be viewed as the components

of vectors M1 ∈ C1,1 satisfying Eq. (A.17) for U = V = 1,

−|M1
1|2 + |M2

1|2 = −1. (A.18)

They define a manifold of real dimension 3, which is nothing but SU(1, 1) since the vectors

M1 can be generated by the action of SU(1, 1) on a constant vector v ∈ C1,1 defined by

vS = δS1 . This is because there is always a matrixM∈ SU(1, 1) such that M1 =Mv, since

M †
1ηM1 = v†ηv = −1, (A.19)

where we have used Eq. (A.16). The solutions of Eq. (A.18) can be parameterized by

unconstrained variables, which are an angle θ and a complex scalar S,

MS
1 = ϕS e

iθ, S ∈ {1, 2}, (A.20)

where we have defined

ϕ1 =
1− iS√
−2i(S − S̄)

, ϕ2 = − 1 + iS√
−2i(S − S̄)

, ImS > 0. (A.21)

As a result, representatives of the classes of equivalence associated with the U(1) modding

of SU(1, 1) are obtained by keeping fixed θ, implying S to be a complex coordinates on the

coset (A.15). In the core of the paper, we make use of the definition [38,39]

Φ̄ = ϕ1e
iθ − ϕ2e

iθ =⇒ |Φ|2 =
2i

S − S̄
. (A.22)
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