
HAL Id: hal-02342998
https://hal.science/hal-02342998v1

Submitted on 1 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Casimir effect in string theory
Alexandros Kehagias, Hervé Partouche

To cite this version:
Alexandros Kehagias, Hervé Partouche. The Casimir effect in string theory. International Journal of
Modern Physics A, 2019, 34 (09), pp.1950049. �10.1142/S0217751X19500490�. �hal-02342998�

https://hal.science/hal-02342998v1
https://hal.archives-ouvertes.fr


CPHT-RR119.122018, December 2018

The Casimir Effect in String Theory

Alexandros Kehagias1 and Hervé Partouche2
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Abstract

We discuss the Casimir effect in heterotic string theory. This is done by con-
sidering a Z2 twist acting on one external compact direction and three internal
coordinates. The hyperplanes fixed by the orbifold generator G realize the two
infinite parallel plates. For the latter to behave as “conducting material”, we
implement in a modular invariant way the projection (1−G)/2 on the spectrum
running in the vacuum-to-vacuum amplitude at one-loop. Hence, the relevant
projector to account for the Casimir effect is orthogonal to that commonly used
in string orbifold models, which is (1 + G)/2. We find that this setup yields
the same net force acting on the plates in the context of quantum field theory
and string theory. However, when supersymmetry is not present from the on-
set, finiteness of the resultant force in field theory is reached by adding formally
infinite forces acting on either side of each plate, while in string theory both
contributions are finite. On the contrary, when supersymmetry is spontaneously
broken à la Scherk-Schwarz, finiteness of each contribution is fulfilled in field and
string theory.
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1 Introduction

The prototypical form of the Casimir force is the attraction felt by two flat, closely spaced,

parallel mirrors originating from the vacuum energy of the electromagnetic field between the

plates [1, 2]. Precise measurements of the Casimir force become technically possible only

about twenty years ago thanks to the pioneering experimental work of Lamoreaux [3]. It is

also interesting to notice that it took almost half a century for the first prediction of this

force to be measured at the level of per cent accuracy. The force F exerted between two

parallel conducting plates of area A and at a distance L turns out to satisfy

F ≡ F

A
= − ~cπ2

240L4
. (1.1)

This force arises due to the structure of the electromagnetic modes (with zero-point energy

~ω/2 each) between the two plates, as compared to free space without the plates. The reason

is that in quantum field theory, in the absence of gravity, only differences in energy have a

physical meaning. Therefore, one should compare the energy of the two-plates configuration

with some reference background, which is flat empty Minkowski space here. Of course,

things are quite different when gravity is turned on. In this case, vacuum energy contributes

to the energy-momentum tensor as a cosmological constant and therefore to the spacetime

curvature through Einstein equations. In other words, vacuum energy gravitates as all forms

of energy. However, the cosmological constant turns out to be infinite in quantum field theory

and some regularization is needed, which shifts the cosmological constant to the cutoff scale.

In string theory, on the other hand, there are no infinities in the calculation of the vacuum

energy and therefore no need for regularization. The cosmological constant is of the order

of the supersymmetry breaking scale, however in conflict with observations.

Nevertheless, the Casimir effect is a remarkable result as it was the first indication of

the vacuum energy, although it can be formulated and computed with no reference to any

zero-point energy. In the latter approach, the Casimir force is regarded as the retarded

relativistic van der Waals force between the metal plates [4]. In other words, this point of

view suggests that the Casimir effect does not really support the existence of vacuum energy

of quantum fields more than any other one-loop effect in quantum field theory. In that case,

the Casimir force should vanish as the fine structure constant goes to zero, as all one-loop

effects in quantum electrodynamics [4]. However, here we will follow the traditional route
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and calculate the Casimir force by summing up zero-point energies in field and string theory

in spacetime dimension d.

To describe a universe comprised between two hyperplanes, we consider spacetime to

be R1,d−1 × S1(Rd−1)/Z2, where the Z2 generator G acts as a twist xd−1 → −xd−1 on the

circle of radius Rd−1. As a result, infinite parallel plates are located at the fixed points

xd−1 = 0 and xd−1 = πRd−1. However, this setup is not quite what we are interested in for

describing the Casimir effect. The reason is that the plates should be “conducting”, which

means that all modes propagating between the hyperplanes should have nodes at xd−1 = 0

and xd−1 = πRd−1. However, all degrees of freedom in the background above are even

rather than odd under the twist. If the orbifold projector (1 + G)/2 is common (at least in

string theory) to project the spectrum on even modes, it turns out that the correct orbifold

projector for restricting to odd modes is the orthogonal one, (1−G)/2.

The above result is shown in quantum field theory in Sect. 2. Actually, the force acting

on the plates is equal, whether even or odd modes are selected, as the vacuum amplitude

with G inserted projects on modes non-propagating along xd−1 and thus not contributing

to the transverse force. We analyse the case where supersymmetry is not present from the

onset and recover the fact that the Casimir force can eventually be interpreted as the finite

resultant of two formally infinite forces exerted on either side of each plate: One derived from

the vacuum between the hyperplanes, and one derived from the vacuum in an infinite half

space. However, we show that when supersymmetry is present in a spontaneously broken

phase, these forces are individually finite.

In Sect. 3, we generalize the orbifold prescription to the heterotic string theory. For

consistency arising from modular invariance, G also acts on three internal directions we take

toroidal. Moreover, a twisted sector arises, which has no counterpart in field theory. However,

the twisted spectrum being localized on the fixed hyperplanes, it does not contribute to

the transverse force. Therefore, string theory reproduces in great details the field theory

derivation of the forces acting of either side of each plate, which are individually finite when

supersymmetry is spontaneously broken. The outcomes in both frameworks match up to

contributions arising from heavy string modes, which turn out to be irrelevant as they are

exponentially suppressed.

In Sect 4, we consider the SO(16) × SO(16) heterotic string [5], which is known to be
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explicitly non-supersymmetric. In this case, finiteness of each individual force remains valid,

due to the natural regularization of the vacuum amplitude arising from the infinite spectrum

with unbounded masses. In other words, when supersymmetry is broken in a hard way,

not only the heavy states contribute significantly, since they are even rendering the vacuum

energy finite in every case, whether the plates are at finite or infinite distance. This is the

great advantage of string theory over field theory where differences of energies can only be

considered, for the infinite sums over zero-point energies to cancel out. However, considering

the energy gap between the configurations where the plates are either at finite distance, or

infinite distance, the field theory and string theory outcomes are in perfect agreement, up

to exponentially suppressed corrections arising from heavy string states.

Our conclusion can be found in Sect. 5, and we mention that throughout this work, we

use string units, α′ = 1, and the notations of Ref. [6].

2 Casimir effect in quantum field theory

In this section, our aim is to review and then develop different approaches for computing the

Casimir force in field theory, when supersymmetry is not present from the onset, or when

it is realized in a spontaneously broken phase. In particular, we will introduce an orbifold

point of view suitable for later generalization in the framework of string theory. The field

theory analysis will be presented in d dimensions for a real scalar field, or for a single degree

of freedom, fermionic or bosonic.

2.1 Second quantized formalism

Our basic consideration is the path integral computation of the partition function of a real

bosonic free field. In dimension d and for a mass MB, the partition function is

ZB =

∫
Dφ e−i

∫
ddx 1

2
(∂µφ∂µφ+M2

Bφ
2)

=

∫
Dφ e−

∫
ddxE

1
2
φ(−∂µ∂µ+M2

B)φ.

(2.1)

The former expression uses Lorentzian metric (−1, 1, . . . , 1), while the latter is obtained by

Wick rotation x0
E = −ix0. We use a compact version Ed of the Euclidean spacetime, with
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finite volume V0,...,d−1,

Ed =
d−1∏
µ=0

S1(Rµ), V0,...,d−1 =
d−1∏
µ=0

2πRµ, (2.2)

where all directions are circles of radii Rµ. Imposing the field to have periodic boundary

conditions, its mode expansion in orthonormal modes satisfies

φ(xE) =
1√

V0,...,d−1

∑
m∈Zd

φm e
i
mµ
Rµ

xµE , φ−m = φ∗m. (2.3)

By using the above expression, the path integral can be written as

ZB =

∫
Dφ e−

1
2

∑
m∈Zd

[
(mµ
Rµ

)2 +M2
B)
]
|φm|2

=

∫
dφ0√

2π
e−

1
2
M2

Bφ
2
0

∏
m∈Zd+

∫
dReφm√

π

dImφm√
π

e
−
[
(mµ
Rµ

)2 +M2
B

]
[(Reφm)2+(Imφm)2]

,
(2.4)

where Zd+ is the set of non-vanishing d-tuples whose first nonzero entry is positive. The

integration over the real and imaginary parts of the modes φm being Gaussian, we find the

well know result

lnZB = −1

2

∑
m∈Zd

ln
[(mµ

Rµ

)2

+M2
B

]
. (2.5)

Splitting even and odd modes: In Minkowski spacetime, Casimir effect arises between

two parallel, infinite hyperplanes, we choose to be located at xd−1 = 0 and xd−1 = πRd−1.

A field between the hyperplanes has nodes on the “conducting” boundary plates. To make

contact with the unconstrained field φ periodic along xd−1, we define

∀x̂E ∈ Rd−1, ∀xd−1 ∈ R, φe(x̂E, x
d−1) =

1

2

(
φ(x̂E, x

d−1) + φ(x̂E,−xd−1)
)
,

φo(x̂E, x
d−1) =

1

2

(
φ(x̂E, x

d−1)− φ(x̂E,−xd−1)
)
,

(2.6)

so that φ = φe + φo, where φe, φo are respectively even and odd under xd−1 → −xd−1 and

2πRd−1-periodic. Actually, φe contains all modes cos(md−1x
d−1/Rd−1), md−1 ≥ 0, while φo

contains all modes sin(md−1x
d−1/Rd−1), md−1 ≥ 1.

We can now define path integrals Ze
B, Z

o
B for only even and odd fields, respectively as

Ze
B =

∫
Dφe e−

∫
ddxE

1
2
φe(−∂µ∂µ+M2

B)φe , Zo
B =

∫
Dφo e−

∫
ddxE

1
2
φo(−∂µ∂µ+M2

B)φo , (2.7)
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where the integrals in the actions cover the whole circle,1 −πRd−1 ≤ xd−1 ≤ πRd−1. In these

notations, the partition function in Eq.(2.4) can be written as

ZB =

∫
DφeDφo e−

∫
ddxE

1
2

(φe+φo)(−∂µ∂µ+M2
B)(φe+φo) = Ze

BZ
o
B, (2.8)

where the contributions of the cross products in the action vanish due to the distinct parities

of the fields. In fact, it is straightforward to verify that

lnZe
B = −1

2

∑
m∈Zd−1

∑
md−1≥0

ln
[(mµ

Rµ

)2

+M2
B

]
,

lnZo
B = −1

2

∑
m∈Zd−1

∑
md−1≥1

ln
[(mµ

Rµ

)2

+M2
B

]
.

(2.9)

Several problems can then be analyzed:

• We can keep the whole set of modes m ∈ Zd, in order to describe a universe circular

along xd−1.

• We can also restrict to the cosine modes md−1 ≥ 0, to describe a universe with an

orbifolded direction S1(Rd−1)/Z2, where the Z2 generator G acts as xd−1 → −xd−1 and

where all fields are even.

• Finally, we can restrict to the sine modes md−1 ≥ 1, in order to describe a “Casimir-like

universe”, i.e. with orbifolded direction but with all fields odd under the generator G, i.e.

with nodes on the hyperplanes.

To express these remarks in a more formal way, we can associate to the modes used in

the expansion (2.3) the orthonormal basis of “bra” |m〉 ≡ |m0, . . . ,md−1〉, m ∈ Zd, which

satisfy

G|m0, . . . ,md−1〉 = |m0, . . . ,−md−1〉. (2.10)

In these notations, it is convenient to define a second orthonormal basis, where m ∈ Zd but

with md−1 ≥ 1:

|m0, . . . ,md−2, 0〉,

|m0, . . . ,md−2,md−1;±〉 ≡ 1√
2

(
|m0, . . . ,md−2,md−1〉 ± |m0, . . . ,md−2,−md−1〉

)
.

(2.11)

1We may choose to integrate only over 0 ≤ xd−1 ≤ πRd−1. This is a matter of convention, since this may
be compensated by a rescaling of the fields and path integral measure.
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Because this new basis diagonalizes G,

G|m0, . . . ,md−2, 0〉 = |m0, . . . ,md−2, 0〉,

G|m0, . . . ,md−2,md−1;±〉 = ±|m0, . . . ,md−2,md−1;±〉,
(2.12)

we may translate Eq. (2.9) into

lnZB = lnZe
B + lnZo

B,

where lnZe
B = −1

2
Tr

1 + G

2
ln
[(mµ

Rµ

)2

+M2
B

]
,

lnZo
B = −1

2
Tr

1−G

2
ln
[(mµ

Rµ

)2

+M2
B

]
,

(2.13)

which will turn out to be a suitable form for comparison with the string theory analysis to

be presented in Sects 3 and 4.

Statistical physics interpretation: To present shortly a usual derivation of the Casimir

effect, we can interpret the above results from a statistical physics viewpoint. We are inter-

ested in the large volume limit along the directions x1, . . . , xd−2, where the discrete modes

become continuous. In this case, the path integral expression (2.5) reads

lnZB = −1

2

∑
m0

V1,...,d−2

(2π)d−2

∫
dd−2k

∑
md−1

ln
[(m0

R0

)2

+ ω2
k

]

where ωk =

√√√√d−2∑
µ=1

k2
µ +

(md−1

Rd−1

)2

+M2
B .

(2.14)

To make contact with thermodynamics, we write∑
m0

ln
[(m0

R0

)2

+ ω2
k

]
= 2 ln

[
2 sinh(πR0ωk)

]
+ 2 ln

[ 1

2πR0

∏
m0≥1

(m0

R0

)2]
, (2.15)

by employing the identity

sinh(x) = x
∏
m0≥1

(
1 +

x2

π2m2
0

)
. (2.16)

Using the ζ-regularisation formulas∏
m0≥1

1

R2
0

=
1

R
2ζ(0)
0

= R0,
∏
m0≥1

m0 = e−ζ
′(0) =

√
2π, (2.17)
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the second logarithm in the r.h.s. of Eq. (2.15) vanishes and we obtain

− lnZB

2πR0

=
V1,...,d−2

(2π)d−2

∫
dd−2k

∑
md−1

ωk

2

+
1

2πR0

V1,...,d−2

(2π)d−2

∫
dd−2k

∑
md−1

ln
[
1− e−2πR0ωk

]
.

(2.18)

This result is nothing but the Helmholtz free energy of a perfect gas at finite temperature

T = 1/(2πR0). Note that the corresponding expression for a fermionic degree of freedom

could have been obtained similarly if we had imposed an antiperiodic boundary condition

along S1(R0). Thus, the zero-temperature limit we are interested in is attained by taking

R0 →∞. In this limit, the second line vanishes and we are left with the vacuum energy E,

whose density reads

V =
E

V1,...,d−1

≡ − lnZB

V0,...,d−1

=
1

2πRd−1

∫
dd−2k

(2π)d−2

∑
md−1

ωk

2
. (2.19)

For the orbifold cases, we may restrict to the cosine or sine modes and consider the

length of the direction xd−1 to be πRd−1. Defining V half
1,...,d−1 = V1,...,d−1/2, the respective

energy densities are

Ve =
Ee

V half
1,...,d−1

≡ − lnZe
B

V half
0,...,d−1

=
1

πRd−1

∫
dd−2k

(2π)d−2

∑
md−1≥0

ωk

2
,

Vo =
Eo

V half
1,...,d−1

≡ − lnZo
B

V half
0,...,d−1

=
1

πRd−1

∫
dd−2k

(2π)d−2

∑
md−1≥1

ωk

2
,

(2.20)

which obviously satisfy 2V = Ve +Vo. Moreover, using the expression of lnZe
B in Eq. (2.13),

we have

Ve = V + Vtw, where Vtw =
1

2

TrG ln
[(mµ

Rµ

)2
+MB

]
V0,...,d−1

. (2.21)

However, evaluating the trace in the original orthonormal basis |m〉, m ∈ Zd, all contributions

with md−1 6= 0 cancel out of Vtw, implying Vtw to be inversely proportional to Rd−1. In total,

we obtain the final result

Ve = V +
λtw

Rd−1

, Vo = V − λtw

Rd−1

, λtw =
1

2

Tr ln
[∑d−2

µ=0

(mµ
Rµ

)2
+MB

]
2π V0,...,d−2

. (2.22)
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Alternative form: The result (2.19) is clearly infinite if no cutoff is introduced. To

extract the divergent part and simplify the computation of the Casimir force, we can present

an alternative formulation of the energy density. Our starting point is Eq. (2.14) where we

exchange the roles of the Euclidean time x0
E and coordinate xd−1,

lnZB = −1

2

∑
md−1

V1,...,d−2

(2π)d−2

∫
dd−2k

∑
m0

ln
[(md−1

Rd−1

)2

+ Ω2
kE

]

where ΩkE =

√√√√d−2∑
µ=1

k2
µ +

(m0

R0

)2

+M2
B .

(2.23)

Following identical steps, we obtain the counterpart of Eq. (2.18),

− lnZB

2πRd−1

=
V1,...,d−2

(2π)d−2

∫
dd−2k

∑
m0

ΩkE

2

+
1

2πRd−1

V1,...,d−2

(2π)d−2

∫
dd−2k

∑
m0

ln
[
1− e−2πRd−1ΩkE

]
.

(2.24)

In the continuous limit i.e. R0 → +∞, the density (2.19) takes the new form

V ≡ − lnZB

V0,...,d−1

=

∫
dd−1kE

(2π)d−1

ΩkE

2
+

1

2πRd−1

∫
dd−1kE

(2π)d−1
ln
[
1− e−2πRd−1ΩkE

]
,

where ΩkE =
√
k2

E +M2
B, kE ≡ (kE0, . . . , kd−2).

(2.25)

Notice that the second integral, which encodes the dependence onRd−1, is convergent. Hence,

the ill-defined part of V is the first integral, which is somehow an “infinite constant”. As an

example, we find for a vanishing mass,

MB = 0 : V =

∫
dd−1kE

(2π)d−1

||kE||
2
− vd
Rd
d−1

, where vd =
ζ(d)

(2π)d
Γ
(
d
2

)
π
d
2

. (2.26)

Casimir force: Let us now consider the odd modes between the hyperplanes and compute

the Casimir force in a usual way [7]. This can be done by considering the energy density

between the plates when Rd−1 is finite, and when Rd−1 is very large (continuous limit). Using

Eq. (2.20), they are respectively

Vo =
1

πRd−1

∫
dd−2k

(2π)d−2

∑
md−1≥1

1

2

√√√√d−2∑
µ=1

k2
µ +

(md−1

Rd−1

)2

+M2
B,

Vo
∞ =

1

πRd−1

∫
dd−2k

(2π)d−2
Rd−1

∫ +∞

0

dkd−1
1

2

√√√√d−2∑
µ=1

k2
µ + k2

d−1 +M2
B.

(2.27)
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Clearly, both are ill-defined due to the discrete sum and integrations over infinitely large

momenta. However, we may consider their difference,

πRd−1Vo − (πRd−1Vo)∞ =
1

2

∫
dd−2k

(2π)d−2

×

 ∑
md−1≥1

√√√√d−2∑
µ=1

k2
µ +

(md−1

Rd−1

)2

+M2
B −Rd−1

∫ +∞

0

dkd−1

√√√√d−2∑
µ=1

k2
µ + k2

d−1 +M2
B

,
(2.28)

which can be evaluated by introducing a UV cutoff, and then sending the latter to infinity,

which yields a finite result [7].

However, the final answer can be obtained more easily by using our previous results.

From Eq. (2.22), we may write either

Vo −Vo
∞ = V − λtw

Rd−1

−V∞ or πRd−1Vo − (πRd−1Vo)∞ = πRd−1V − (πRd−1V)∞, (2.29)

depending on which quantity, Vo or πRd−1Vo, we choose to take the Rd−1 → +∞ limit.

However, the second expression is more suitable, since λtw is actually infinite. Hence, we

obtain for vanishing mass from Eq. (2.26),

MB = 0 : πRd−1Vo − (πRd−1Vo)∞ = − πvd

Rd−1
d−1

, (2.30)

which yields the force per unit area of the plates, i.e. a pressure,

F ≡ −
∂
(
Rd−1Vo − (Rd−1Vo)∞

)
∂Rd−1

= −(d− 1)
vd
Rd
d−1

. (2.31)

This outcome is the Casimir force per unit area acting on each plate. In particular, it

reproduces Eq. (1.1) after it is multiplied by 2 to account for the 2 degrees of freedom of the

electromagnetic field in d = 4, and for L = πRd−1. To understand why, let us note that on

the hyperplane located at xd−1 = πRd−1, there is a force arising from the vacuum comprised

in the range 0 < xd−1 < πRd−1, to which we must add a force induced by the vacuum in the

infinite half space xd−1 > πRd−1. Altogether, the resulting force per unit area acting on the

plate is therefore

Fint + Fext = −∂(Rd−1Vo)

∂Rd−1

+
∂(Rd−1Vo

∞)

∂Rd−1

≡ F . (2.32)

Hence, the Casimir force in field theory is the resultant of two formally infinite forces

acting on each side of the plate, leaving a finite result. As we have just seen, this is equivalent
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to saying that the total force acting on a plate follows from the difference between the

vacuum energies of two configurations, one in the presence of the plates at finite distance,

and one with the second plate sent to infinity. This has the effect of removing the infinities

encountered in the calculation of each configuration individually and is totally meaningful,

as only differences in energies have a physical meaning when gravity is turned off. However,

in presence of gravity, the situation is different, as the vacuum energy is nothing but the

cosmological constant, and the latter cannot be infinite in a UV-complete theory.

2.2 First quantized formalism with spontaneous or explicit super-
symmetry breaking

To get closer to the string derivations to be given in the next sections, we may translate the

above results in first quantized formalism. From Eq. (2.5), and inspired by the following

equality

−1

2
lnC =

∫ +∞

0

dτ2

2τ2

(e−πτ2C − e−πτ2), ∀C > 0, (2.33)

we may define the regularized quantity

lnZreg
B =

∫ +∞

ε

dτ2

2τ2

∑
m∈Zd

e
−πτ2

[(
mµ
Rµ

)2
+M2

B

]
. (2.34)

In the above definition, the C-independent term of the integrand in Eq (2.33) is not included,

because empty of any information about the physical system. The dummy variable τ2 is the

Schwinger parameter, which is the proper time of the particle along its trajectory, whose

topology is that of a circle. In order to regulate the UV region τ2 → 0, a cutoff ε > 0 is

introduced, and should be sent to 0 only at the end of any sensible computation. Notice

that in this formulation, the discrete sum appearing in lnZreg
B can be taken over infinitely

large momenta. Of course, the counterpart of ε in second quantized formalism, Eq. (2.5),

is a cutoff Λ2
co >

∑d−1
µ=0(mµ/Rµ)2. As mentioned in the computation of the Casimir force

in Eq. (2.28), the latter should also be sent to infinity at the final step of a derivation.

Hence, whether the first or second quantized formalism is used, only differences between two

regulated energies associated with different configurations should be considered, in order to

get finite (and equal) answers once the limits ε→ 0 or Λco → +∞ are taken.

However, compared to what we have discussed so far in field theory, the string theory case

discussed shortly will be different in two respects: It involves bosonic and fermionic degrees
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of freedom, and full towers of KK modes arising from a Scherk-Schwarz mechanism [8–14].

For these reasons, we will not make use of the definition (2.34) and will follow another route,

in our presentation of the first quantized formalism in quantum field theory.

Scherk-Schwarz breaking of supersymmetry: By considering the framework used in

Sect. 2.1 with one more circle denoted S1(R9), and along which the quantum field has

periodic or antiperiodic boundary conditions [8, 9],

∀xE ∈ Rd, ∀x9 ∈ R, φ(xE, x9) = (−1)ξφ(xE, x
9 + 2πR9), where ξ = 0 or 1, (2.35)

the partition function Eq. (2.5) in the massless case is generalized to

lnZB = −1

2

∑
m∈Zd

∑
m9

ln
[(mµ

Rµ

)2

+
(m9 + ξ

2

R9

)2]
. (2.36)

In fact, we can also see the above formula as resulting from an infinite tower of KK modes

with masses MB =
|m9+ ξ

2
|

R9
. To achieve the Scherk-Schwarz mechanism along S1(R9), we can

consider a massless fermionic free field with reversed boundary conditions along S1(R9). The

logarithm of the associated path integral is dressed with an overall minus sign,

lnZF = +
1

2

∑
m∈Zd

∑
m9

ln
[(mµ

Rµ

)2

+
(m9 + 1−ξ

2

R9

)2]
. (2.37)

Note that the masses of the fermionic KK states are MF =
|m9+ 1−ξ

2
|

R9
so that the mass splitting

between bosons and fermions at each level m9 is identified to be

M =
1

2R9

, (2.38)

which can be interpreted as a scale of supersymmetry breaking.

Using Eq. (2.33) for the couple of such bosonic and fermionic fields, we obtain

lnZB+F =
V0,...,d−2

(2π)d−1

∫
dd−1kE

∑
md−1

∫ +∞

0

dτ2

2τ2

∑
m9(

e
−πτ2

[
k2E+
(
md−1
Rd−1

)2
+
(
m9+

ξ
2

R9

)2]
− e−πτ2

[
k2E+
(
md−1
Rd−1

)2
+
(
m9+

1−ξ
2

R9

)2])
,

(2.39)

where we have considered the continuous limit in the Euclidean directions x0
E, . . . , x

d−2. Note

that the C-independent term in the integrand of Eq. (2.33) drops by itself. Integrating over

11



the continuous momenta, and applying Poisson resummations over the momenta md−1, m9,

we obtain

lnZB+F =
V0,...,d−2

(2π)d−1
Rd−1R9

∑
m̃d−1

∫ +∞

0

dτ2

2τ
1+ d+1

2
2

∑
m̃9

e
− π
τ2

[
R2
d−1m̃

2
d−1+R2

9m̃
2
9

]
(−1)ξm̃9

[
1− (−1)m̃9

]
,

(2.40)

where the last bracket imposes m̃9 to be odd, in order to contribute. As a result, the integral

over τ2 is convergent, even in presence of the dangerous UV regime τ2 → 0, because of the

exponential factor in the integrand. There is no need to introduce a cutoff of any kind, and

the result can be written as

VB+F = − lnZB+F

V0,...,d−1

= −(−1)ξf
(
Rd−1
R9

) 1

Rd
9

, (2.41)

where we have defined the function2

f(u) =
Γ
(
d+1

2

)
(2π)d π

d+1
2

∑
m̃d−1, k̃9

1[
(2k̃9 + 1)2 + m̃2

d−1u
2
] d+1

2

. (2.42)

Of course the fact that we find a finite result without having to subtract anything to the

energy is a consequence of the fact that we have considered the spontaneous breaking of

a supersymmetric theory. In the decompactification limit R9 → +∞, supersymmetry is

restored in d+ 1 dimensions.

Notice that by integrating over the continuous momenta, Eq. (2.39) can be formally

written as

lnZB+F = R0 . . . Rd−2

∑
md−1

∫ +∞

0

dτ2

2τ
1+ d−1

2
2

Str e
−πτ2

[(
md−1
Rd−1

)2
+M2

]
, (2.43)

where the supertrace is over the bosonic and fermionic KK towers of states propagating

along S1(R9), andM is the associated KK mass operator. In this form, it is straightforward

to split the set of modes md−1 ∈ Z relevant for a circular universe into those surviving the

orbifold projection S1(Rd−1)/Z2, and those involved in a Casimir-like universe, as explained

2Such functions have already appeared in the literature in the expression of the effective potential at
finite temperature derived in string theory models [15]. The latter describe cosmological evolutions which
are attractors of the dynamics [17–20].
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below Eq. (2.9). In terms of projector and orthogonal projector, we obtain respectively

lnZe
B+F = R0 . . . Rd−2

∑
md−1

∫ +∞

0

dτ2

2τ
1+ d−1

2
2

Str
1 + G

2
e
−πτ2

[(
md−1
Rd−1

)2
+M2

]
,

lnZo
B+F = R0 . . . Rd−2

∑
md−1

∫ +∞

0

dτ2

2τ
1+ d−1

2
2

Str
1−G

2
e
−πτ2

[(
md−1
Rd−1

)2
+M2

]
,

(2.44)

which are the analog of what will be computed in string theory. Proceeding as in the

derivation of Eq. (2.22) in second quantized formalism, we obtain

Ve
B+F = VB+F +

λtw,B+F

Rd−1

, Vo
B+F = VB+F −

λtw,B+F

Rd−1

,

where λtw,B+F =
1

(2π)d

∫ +∞

0

dτ2

2τ
1+ d−1

2
2

Str e−πτ2M
2

.
(2.45)

These quantities are all finite, and so are the forces per unit area Fint and Fext exerted on

either side of the plate located at xd−1 = πRd−1,

Fint = −
∂(Rd−1Vo

B+F)

∂Rd−1

, Fext = −
∂(Rd−1Vo

B+F)∞
∂Rd−1

, (2.46)

those resultant F = Fint + Fext characterizes the Casimir effect. We will come back to its

explicit expression when we discuss the string theory point of view.

Hard breaking of supersymmetry: In order to construct a model realizing a “hard

breaking” of supersymmetry, we are going to take the limit R9 → 0, which sends M → +∞.

This is an arbitrary approach from the field theory point of view, which is efficient in the

context of string theory, for further comparison. Starting from Eq. (2.39), we integrate as

before over the continuous momenta and Poisson resum over md−1. However, we Poisson

resum over m9 only when m̃d−1 = 0, and keep the sum over m9 as it is when m̃d−1 6= 0. As

a result, the contribution m̃d−1 = 0 is as in Eqs (2.41), (2.42) and we obtain

VB+F = −(−1)ξ
ξd
Rd

9

− 1

(2π)d

∑
m̃d−1 6=0

∫ +∞

0

dτ2

2τ
1+ d

2
2

e
− π
τ2
R2
d−1m̃

2
d−1

∑
m9

(
e
−πτ2

(
m9+

ξ
2

R9

)2
− e−πτ2

(
m9+

1−ξ
2

R9

)2)
,

(2.47)

where

ξd =
Γ
(
d+1

2

)
(2π)d π

d+1
2

∑
k̃9

1

|2k̃9 + 1|d+1
. (2.48)
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Clearly, the first term in Eq. (2.47), which is independent of Rd−1, is singular in the limit

R9 → 0. On the contrary, in the Rd−1-dependent part, the only contribution surviving the

limit is that associated to the KK mode m9 + ξ
2

= 0 or m9 + 1−ξ
2

= 0, and it is finite. Hence,

we may write, by abuse of notations,

VB+F = −(−1)ξ
ξd
Rd

9

− (−1)ξ
vd
Rd
d−1

, where vd =
1

2(2π)d
Γ
(
d
2

)
π
d
2

∑
m̃d−1 6=0

1

|m̃d−1|d
, (2.49)

and where it is understood that R9 is formally vanishing, making VB+F and −(−1)ξξd/R
d
9

individually infinite. Alternatively, we can write both diverging quantities in the l.h.s. for

their difference to be finite in the R9 → 0 limit,

VB+F − VB+F,∞ ≡ VB+F + (−1)ξ
ξd
Rd

9

= −(−1)ξ
vd
Rd
d−1

. (2.50)

Note that vd encodes the contributions of the KK excitations along xd−1. Since the dis-

crete sum appearing in vd is 2ζ(d), the result (2.49) matches with Eq. (2.26), where the

interpretation of vd was obscure.

In fact, in the limit R9 → 0, all massive KK modes propagating along S1(R9) decouple

and we are left with a single massless boson (for ξ = 0) or fermion (for ξ = 1), with associated

KK excitations along xd−1, contributing to the energy density, however in an infinite way in

VB+F. There is no left notion of superpartner, thus realizing a hard, or explicit breaking of

supersymmetry. Thus, the index B + F is no more justified and should be replaced by either

B of F. Notice that the l.h.s. of Eq. (2.50) amounts precisely to subtract the energy density

at infinite Rd−1 to the result at finite Rd−1, to obtain a finite answer. Moreover, notice that

for a bosonic tower of KK modes, the “infinite constant” in Eq. (2.26) is positive, while in

Eq. (2.49) it is negative (ξ = 0). This is another occasion to stress that these equations are

understood to make sense only when they are applied to evaluate the energy gap between two

configurations. Under no circumstances, any of these equations should be used to evaluate

some absolute energy, even in presence of a cutoff. As we will see in Sect. 4, this is where

string theory is useful.

Having discussed the case of a hard breaking of supersymmetry in a universe circular

along xd−1, we can deduce the result once the circular direction is modded by Z2, and the

modes are imposed to have nodes on the hyperplanes. From Eq. (2.45), we can evaluate
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λtw,B+F in the limit R9 → 0, which yields an infinite result (as in Eq. (2.22) for λtw),

λtw,B+F =
(−1)ξ

(2π)d

∫ +∞

0

dτ2

2τ
1+ d−1

2
2

. (2.51)

Therefore, applying to Vo
B+F the second of the prescriptions given in Eq. (2.29), we obtain

πRd−1Vo
B+F − (πRd−1Vo

B+F)∞ = −(−1)ξ
πvd

Rd−1
d−1

, (2.52)

which yields the force per unit area

F ≡ −
∂
(
Rd−1Vo

B+F − (Rd−1Vo
B+F)∞

)
∂Rd−1

= −(−1)ξ(d− 1)
vd
Rd
d−1

, (2.53)

in agreement with Eq (2.31), for ξ = 0

3 Casimir effect in string theory

The discussion of the Casimir effect in string theory we will present below, follows the logic

we have developed in field theory, in first quantized formalism. In this section, we consider

the case of a theory where supersymmetry is spontaneously broken à la Scherk-Schwarz,

while the analysis where supersymmetry is explicitly broken will be presented in Sect. 4.

3.1 Orbifold realization and Scherk-Schwarz mechanism

An appropriate framework for describing the case of a universe with one orbifolded direction

S1(Rd−1)/Z2, where the modding acts as xd−1 → −xd−1, while all degrees of freedom are

imposed to the even under the transformation, is provided by the following background in

heterotic string,

R1,d−2 × S1(Rd−1)× T 3

Z2

× T 6−d × S1(R9). (3.1)

In order for the vacuum energy not to be trivial, we implement a coordinate-dependent

compactification along S1(R9), which is nothing but a stringy version [10–14] of the Scherk-

Schwarz mechanism [8, 9] responsible for the total spontaneous breaking of supersymmetry.

In string theory, the Z2 orbifold generator G acts as a twist on S1(Rd−1)× T 3, namely

G :
(
Xd−1, Xd, Xd+1, Xd+2

)
−→ −

(
Xd−1, Xd, Xd+1, Xd+2

)
, (3.2)
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where the X’s are the worldsheet bosonic fields realizing spatial directions. Unless specified,

all formulas to come are valid for arbitrary radii Rd−1, R9, and arbitrary T 3 × T 6−d torii

moduli, provided

R9 > RH =

√
2 + 1√

2
or R9 <

√
2− 1√

2
=

1

2RH

, (3.3)

for Hagedorn-like tachyonic instabilities not to occur. In practice, the directions of T 3 ×
T 6−d × S1(R9) should be seen as internal, while R1,d−2 × S1(Rd−1) should be interpreted as

spacetime. However, due to the Z2-twist, the 10-dimensional background cannot be seen

as a Cartesian product of internal and external spaces. The (d − 1)-dimensional external

space is anisotropic, being restricted to sit between the hyperplanes invariant under G, i.e.

located at Xd−1 = 0 and Xd−1 = πRd−1.

Putting the non-compact directions of R1,d−2 in a “box”, the regularized volume of space-

time is

V half
0,...,d−1 = (2πR0) · · · (2πRd−2)× πRd−1. (3.4)

Following the prescription as shown in the first line of Eq. (2.44), the one-loop effective

potential Ve can be expressed in terms of the partition function in light-cone gauge, integrated

over the fundamental domain F of the modular group,

−V half
0,...,d−1Ve =

∫
F

dτ1dτ2

2τ2

R0R1

τ2

R2 · · ·Rd−2

(
√
τ2ηη̄)d−3

1

2

∑
H,G

Z(4,4)

[
H
G

]Γ(6−d,6−d)

(ηη̄)6−d
R9√
τ2ηη̄

∑
n9,m̃9

e
−πR

2
9

τ2
|m̃9+n9τ |2

1

2

∑
a,b

(−1)a+b+ab θ[
a
b ]

2 θ
[
a+H
b+G

]
θ
[
a−H
b−G

]
η4

1

2

∑
γ,δ

θ̄[γδ ]
6 θ̄
[
γ+H
δ+G

]
θ̄
[
γ−H
δ−G

]
η̄8

1

2

∑
γ′,δ′

θ̄
[
γ′

δ′

]8
η̄8

(−1)m̃9a+n9b+m̃9n9 (−1)ξ(m̃9γ+n9δ+m̃9n9) (−1)ξ
′(m̃9γ′+n9δ′+m̃9n9). (3.5)

Our notations are as follows [6]:

• τ = τ1 + iτ2 is the Teichmüller parameter of the genus-1 Riemann surface, while η(τ)

and θ[αβ ](τ) are the Dedekind and Jacobi modular forms.

• The spin structures a, b on the worldsheet, as well as the indices γ, δ and γ′, δ′ take

values 0 or 1.

• The lattice of zero modes associated to S1(R9) is presented in Lagrangian form, with

n9, m̃9 ∈ Z, while that for a torus T n is denoted Γ(n,n).
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• The conformal block associated to the twisted coordinates of (S1(Rd−1)× T 3)/Z2 is

Z4,4

[
H
G

]
=


Rd−1√
τ2

∑
nd−1,m̃d−1

e
−
πR2

d−1
τ2
|m̃d−1+nd−1τ | Γ3,3

η4η̄4
if (H,G) = (0, 0),

24 η2η̄2

θ
[

1−H
1−G
]2
θ̄
[

1−H
1−G
]2 if (H,G) 6= (0, 0),

(3.6)

where H,G take values 0 or 1. In particular, string theory contains a twisted sector H = 1

which has no counterpart in field theory. In the sector (H,G) = (0, 0), the lattice of zero

modes associated to S1(Rd−1) is presented in Lagrangian form, with nd−1, m̃d−1 ∈ Z.

• In the last line of Eq. (3.5), the first sign depends on the spin structures a, b and induces

the super-Higgs mechanism [14]. The mass M of the gravitini is as given in Eq. (2.38),

which is the scale of spontaneous supersymmetry breaking. In the second and third signs,

we have introduced discrete parameters ξ and ξ′ equal to 0 or 1, which implement a Higgs

mechanism of the E8×E8 gauge symmetry when they are not both vanishing. Choosing ξ = 1

(ξ′ = 1) enforces the E8 → SO(16) spontaneous breaking of the first (second) E8 gauge group

factor. Together, super-Higgs and Higgs mechanisms combine to yield 4 different patterns

of breakings: For ξ = ξ′ = 0, all initially massless fermions of the parent supersymmetric

model (obtained when the sign (−1)m̃9a+n9b+m̃9n9 is omitted) acquire a mass 1/(2R9), while

their bosonic superpartners remain massless. However, a non-trivial ξ and/or ξ′ results in

reversing the roles of bosons and fermions in supermultiplets, thus giving a mass to some

bosons while maintaining their fermionic partners massless [15,21,22].

By noticing that in Ve, the sectors (H,G) 6= (0, 0) are inversely proportional to Rd−1, we

may split the potential energy density as

Ve = V(Rd−1) +
λtw

Rd−1

. (3.7)

The first contribution,

V =− R9

2(2π)d

∫
F

dτ1dτ2

τ
1+ d+1

2
2

∑
nd−1,m̃d−1

e
−
πR2

d−1
τ2
|m̃d−1+nd−1τ |

∑
n9,m̃9

e
−πR

2
9

τ2
|m̃9+n9τ |2 1

2

∑
a,b

(−1)a+b+abθ[ab ]
4(−1)m̃9a+n9b+m̃9n9 (3.8)

1

2

∑
γ,δ

θ̄
[
γ
δ

]8
(−1)ξ(m̃9γ+n9δ+m̃9n9) 1

2

∑
γ′,δ′

θ̄
[
γ′

δ′

]8
(−1)ξ

′(m̃9γ′+n9δ′+m̃9n9) Γ(3,3)Γ(6−d,6−d)

η12η̄24
,

17



is actually the effective potential arising in the model when no orbifold twist is implemented.

Its expression is that found in the d-dimensional background periodic along xd−1,

R1,d−2 × S1(Rd−1)× T 3 × T 6−d × S1(R9), (3.9)

with Scherk-Schwarz mechanism implemented along S1(R9). The second term in Eq. (3.7)

is given by

λtw =− R9

2(2π)d

∫
F

dτ1dτ2

τ
1+ d

2
2

1

2

∑
a,b

(−1)a+b+ab
∑
n9,m̃9

e
−πR

2
9

τ2
|m̃9+n9τ |2(−1)m̃9a+n9b+m̃9n9

1

2

∑
γ,δ

(−1)ξ(m̃9γ+n9δ+m̃9n9) 1

2

∑
γ′,δ′

(−1)ξ
′(m̃9γ′+n9δ′+m̃9n9) Γ(6−d,6−d)

∑
(H,G) 6=(0,0)

ω
[
H,a,γ,γ′

G, b, δ, δ′

]
,

(3.10)

where we have defined

ω
[
H,a,γ,γ′

G, b, δ, δ′

]
=

1

η8η̄20

24 η2η̄2

θ
[

1−H
1−G
]2
θ̄
[

1−H
1−G
]2 θ[ab ]2 θ[a+H

b+G

]
θ
[
a−H
b−G

]
θ̄[γδ ]

6 θ̄
[
γ+H
δ+G

]
θ̄
[
γ−H
δ−G

]
θ̄
[
γ′

δ′

]8
. (3.11)

To describe the case of a universe with one orbifolded direction S1(Rd−1)/Z2, while all

degrees of freedom are imposed to the odd under the Z2 transformation, we may consider the

string theory orbifold model based on the orthogonal projector, as compared to the above

described case,
1−G

2
= 1− 1 + G

2
, (3.12)

exactly as developed in the quantum field theory framework, Eq. (2.44). To write the

associated effective potential Vo, notice that the flipped sign in front of G implies the sector

(H,G) = (0, 1) to appear with an opposite sign, as compared to the case discussed so far.

Given that the sectors (H,G) 6= (0, 0) realize a modular orbit of SL(2,Z), we conclude that

all of them show up with an opposite sign. As a result, we obtain

Vo = V(Rd−1)− λtw

Rd−1

, (3.13)

which can also be seen as a direct consequence of the equality in Eq. (3.12).

The remaining contribution (H,G) = (0, 0) being modular invariant by itself, we may

“unfold” in the expression of V the domain of integration F into the “upper-half strip”, by

using the following result [23,24]: For any set of functions v(n,m̃)(τ, τ̄) satisfying

∀M =

(
a b
c d

)
∈ SL(2,Z), v(n,m̃)

(aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
= v(n,m̃)M(τ, τ̄), (3.14)
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the sum
∑

n,m̃ v(n,m̃) is modular invariant and, provided the discrete series are absolutely

convergent, for the exchange of the discrete sum and integration to be legitimate, we have∫
F

dτ1dτ2

τ 2
2

∑
n,m̃

v(n,m̃)(τ, τ̄) =

∫
F

d2τ

τ 2
2

v(0,0)(τ, τ̄) +

∫ 1
2

− 1
2

dτ1

∫ +∞

0

dτ2

τ 2
2

∑
m̃6=0

v(0,m̃)(τ, τ̄). (3.15)

In our case at hand, this equality turns out to be valid for the series of functions labeled

by (nd−1, m̃d−1) when Rd−1 > 1, which we know is satisfied since xd−1 is an external space

direction. As result, we obtain

Vo = V0 + V∗(Rd−1)− λtw

Rd−1

, (3.16)

where the first contribution is independent of Rd−1,

V0 =− R9

2(2π)d

∫
F

dτ1dτ2

τ
1+ d+1

2
2

∑
n9,m̃9

e
−πR

2
9

τ2
|m̃9+n9τ |2 1

2

∑
a,b

(−1)a+b+abθ[ab ]
4(−1)m̃9a+n9b+m̃9n9

1

2

∑
γ,δ

θ̄
[
γ
δ

]8
(−1)ξ(m̃9γ+n9δ+m̃9n9) 1

2

∑
γ′,δ′

θ̄
[
γ′

δ′

]8
(−1)ξ

′(m̃9γ′+n9δ′+m̃9n9) Γ(3,3)Γ(6−d,6−d)

η12η̄24
,

(3.17)

whereas the second depends non-trivially on Rd−1,

V∗ =− R9

2(2π)d

∫ 1
2

− 1
2

dτ1

∫ +∞

0

dτ2

τ
1+ d+1

2
2

∑
m̃d−1 6=0

e
−
πR2

d−1
τ2

m̃2
d−1

∑
n9,m̃9

e
−πR

2
9

τ2
|m̃9+n9τ |2 1

2

∑
a,b

(−1)a+b+abθ[ab ]
4(−1)m̃9a+n9b+m̃9n9 (3.18)

1

2

∑
γ,δ

θ̄
[
γ
δ

]8
(−1)ξ(m̃9γ+n9δ+m̃9n9) 1

2

∑
γ′,δ′

θ̄
[
γ′

δ′

]8
(−1)ξ

′(m̃9γ′+n9δ′+m̃9n9) Γ(3,3)Γ(6−d,6−d)

η12η̄24
.

Due to the integration over τ1, V∗ involves only the level-matched spectrum of the string.

Notice that it is also finite, due to the presence of the factor exp(−πR2
d−1m̃

2
d−1/τ2), which

allows the integration even in the dangerous UV region τ2 → 0.

As a result, the force per unit area arising from the vacuum comprised in the range

0 < xd−1 < πRd−1 and acting on the boundary hyperplane located at xd−1 = πRd−1 is

Fint = −∂(Rd−1Vo)

∂Rd−1

= −V0 −
∂(Rd−1V∗)
∂Rd−1

. (3.19)

This is the end of the story if we want to truly interpret the hyperplanes as the boundaries

of the universe. However, applying the result to describe the Casimir effect, we need to add
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the force per unit area arising from the infinite half space xd−1 > πRd−1. Up to a sign, it

is equal to Fint evaluated in the limit Rd−1 → +∞, as the second plate is sent to infinity.

Since V∗ vanishes in this limit, we have

Fext = V0, (3.20)

and the Casimir force per unit area is

F ≡ Fint + Fext = −∂(Rd−1V∗)
∂Rd−1

. (3.21)

It is independent of the twisted sector, H = 1, of the string spectrum. This is not a surprise

since the latter is restricted to live on the hyperplanes fixed by the orbifold projection.

Having no modes propagating in the transverse direction xd−1, they cannot contribute to

the force.

Comparing the result with that found for a single degree of freedom in field theory,

Eqs (2.32) or (2.53), we see that in the string theory framework, the Casimir force is not

derived by subtracting two infinite quantities to end up with a finite result. Actually, both

V∗ and V0 are finite, where V0 is the analogue of what was denoted Vo
∞ (or Vo

B+F,∞) in field

theory. However, one may think that the finiteness of V0 arises only because we considered

a string theory model where supersymmetry is spontaneously broken à la Scherk-Schwarz,

since we have shown in Eq. (2.41) that finiteness is also encountered in field theory for each

pair of non-degenerate superpartners with gap M between their masses. To clarify this

issue, we now compare in details the two frameworks when they both realize a spontaneous

breaking of supersymmetry, and will show in Sect. 4 that finiteness survives in string theory

even when supersymmetry is explicitly broken.

3.2 String theory versus quantum field theory

Our aim is to figure out the differences between the finite field theory result VB+F given

in Eq. (2.41), and that found in string theory, V0 + V∗, which are both associated with

configurations where supersymmetry breaking is spontaneously broken via a Scherk-Schwarz

mechanism. To be specific, for the notion of spontaneous breaking to be valid in the string

theory model, let us assume in this subsection R9 > RH in Eq. (3.3), in order for R9 to be

allowed to take very large values and possibly restore supersymmetry (in d+ 1 dimensions).
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Let us first consider V0 on which we can apply the unfolding formula, Eq. (3.15), for

the series of functions labeled by (n9, m̃9). This can be done since absolute convergence

is valid for R9 > RH. The contribution for (n9, m̃9) = (0, 0), which is integrated over the

fundamental domain F , vanishes due to the exact supersymmetry of the integrand. For the

same reason, the contributions (n9, m̃9) = (0, 2k̃9), k̃9 ∈ Z∗, which are integrated over the

upper-half strip, vanish as well. Thus, we obtain

V0 =− R9

2(2π)d

∫ 1
2

− 1
2

dτ1

∫ +∞

0

dτ2

τ
1+ d+1

2
2

∑
k̃9

e
−πR

2
9

τ2
(2k̃9+1)2 1

2

∑
a,b

(−1)a+b+abθ[ab ]
4(−1)a

1

2

∑
γ,δ

θ̄
[
γ
δ

]8
(−1)ξγ

1

2

∑
γ′,δ′

θ̄
[
γ′

δ′

]8
(−1)ξ

′γ′ Γ(3,3)Γ(6−d,6−d)

η12η̄24
,

(3.22)

which reduces to an expression involving the level-matched spectrum only, due to the inte-

gration over τ1.

The field theory we have considered in Sect. 2.2 involves one massless boson (fermion)

and one fermion (boson) of mass M , together with their KK towers of states propagating

along the internal circle S1(R9). However, beside such KK towers, the physical spectrum

contributing to V0 also contains states that cannot be organized as pure KK towers of modes

associated to S1(R9). The latter involve momentum and/or winding modes along all internal

directions and/or from string oscillators. To make contact with the field theory result, we

thus restrict from now on to the case where M is much lower than all other mass scales

present in the model. In particular, we have R9 � 1, for the string scale to be much heavier

than M . In practice, the lightest states of the model are therefore nothing but the KK modes

propagating along S1(R9) and they will dominate in the expression of V0. To see this, we

expand

1

2

∑
a,b

(−1)a+b+ab θ[
a
b ]

4

η12
(−1)a =

θ
[

1
0

]4
η12

= 16
(
1 +O(q)

)
,

1

2

∑
γ,δ

θ̄
[
γ
δ

]8
(−1)ξγ = 1 + 112q̄ + (−1)ξ128q̄ +O(q̄2),

1

η̄24
=

1

q̄

(
1 + 24q̄ +O(q̄2)

)
,

Γ(3,3)Γ(6−d,6−d) = 1 + denq̄ +O(e−πc
2τ2),

(3.23)

where q = e2iπτ . In the last line, we take into account the possibility that the internal metric

and antisymmetric tensor appearing in the Γ(3,3) and Γ(6−d,6−d) lattices sit at an enhanced
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symmetry point in moduli space, thus yielding den additional massless vector multiplets in

the supersymmetric parent theory. Moreover, a moduli-dependent constant c is introduced

to account for the fact that the mass scales introduced by the lattices are heavier than the

supersymmetry breaking scale, i.e. that 1 > c� 1/R9. By using the following result, valid

for K,M > 0,∫ +∞

0

dτ2

τ
1+ d+1

2
2

e
− π
τ2
K2

e−πτ2M
2 ∼ M

d
2

K1+ d
2

e−2πKM when KM� 1, (3.24)

we obtain

V0 = (nF − nB)
ξd
Rd

9

+O
(( c

R9

) d
2
e−2πcR9

)
, (3.25)

where ξd is defined in Eq. (2.48). In the above expression, nF and nB are the numbers

massless fermionic and bosonic degrees of freedom, and they satisfy

nF − nB = 8
(
(−1)ξ+1128 + (−1)ξ

′+1128− 248− den

)
. (3.26)

Notice that the dressing coefficient ξd in Eq. (3.25) reflects the fact that their entire KK towers

of states associated to the large circle S1(R9) contribute significantly. On the contrary, all

other string states yield exponentially suppressed contributions to V0. Note that the sign of

V0 can be positive or negative: (ξ, ξ′) 6= (1, 1) implies nF − nB < 0, while (ξ, ξ′) = (1, 1),

den ≤ 8 yields nF − nB ≥ 0.

The expression of V∗ in Eq. (3.18) can also be simplified. Applying a Poisson resummation

over m̃9, the lattice of zero modes associated to the Scherk-Schwarz circle can be written in

Hamiltonian form,

R9√
τ2

∑
m̃9

e
−πR

2
9

τ2
|m̃9+n9τ |2(−1)m̃9[a+ξγ+ξ′γ′+n9(1+ξγ+ξ′γ′)] =

∑
m9

q
1
4

(
M9
R9

+n9R9

)2

q̄
1
4

(
M9
R9
−n9R9

)2

,

where M9 = m9 +
1

2

[
a+ ξγ + ξ′γ′ + n9(1 + ξ + ξ′)

]
. (3.27)

Applying Eq. (3.24) for K = Rd−1|m̃d−1| and any mass M =
√

(n9R9)2 + · · ·, where the

ellipses are positive, one concludes that since R9 � 1, the contributions for n9 6= 0 are

exponentially suppressed, as compared to those arising for n9 = 0. In that case, we may
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write

V∗ =− R9

2(2π)d

∫ 1
2

− 1
2

dτ1

∫ +∞

0

dτ2

τ
1+ d+1

2
2

∑
m̃d−1 6=0

e
−
πR2

d−1
τ2

m̃2
d−1

∑
k̃9

e
−πR

2
9

τ2
(2k̃9+1)2

1

2

∑
a,b

(−1)a+b+abθ[ab ]
4(−1)a

1

2

∑
γ,δ

θ̄
[
γ
δ

]8
(−1)ξγ

1

2

∑
γ′,δ′

θ̄
[
γ′

δ′

]8
(−1)ξ

′γ′ Γ(3,3)Γ(6−d,6−d)

η12η̄24

+O
(
e−2πRd−1R9

)
, (3.28)

where we have used the fact that only odd values of m̃9 = 2k̃9 + 1 contribute, due to

supersymmetry. In fact, V0 given in Eq. (3.22) is nothing but the “missing” m̃d−1 = 0 term

of the above dominant contribution of V∗. By proceeding exactly as we did for evaluating

V0, we find

V∗ = (nF − nB) f∗
(
Rd−1
R9

) 1

Rd
9

+O
(( c

R9

) d
2
e−2πc

√
R2

9+R2
d−1

)
, (3.29)

where we have defined

f∗(u) =
Γ
(
d+1

2

)
2d π

3d+1
2

∑
m̃d−1 6=0, k̃9

1[
(2k̃9 + 1)2 + m̃2

d−1u
2
] d+1

2

. (3.30)

Combining Eqs (3.25) and (3.29), the final expression in string theory of the energy density

in a universe circular along xd−1 turns out to be in agreement with the field theory analysis,

when supersymmetry is spontaneously broken by the Scherk-Schwarz mechanism at a low

scale. The finite result is,3

V0 + V∗ = (nF − nB) f
(
Rd−1
R9

) 1

Rd
9

+O
(( c

R9

) d
2
e−2πc

√
R2

9+R2
d−1

)
, (3.31)

which matches with Eq. (2.41) for nB and nF massless bosonic and fermionic degrees of

freedom and their KK towers of modes, up to exponentially suppressed contributions arising

from heavy string states not present in field theory. Hence, the Casimir force can be derived

in both frameworks from Eqs. (3.21) and (3.29).

4 Casimir effect and hard breaking of supersymmetry

So far, we have analyzed the Casimir effect in the case of a spontaneous breaking of super-

symmetry. We observed that in string and field theory, the force acting on the hyperplane

3Such expressions also appear in the context of cosmological solutions [15–17] or in models with vanishing
effective potential at one-loop [21,22].
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located at xd−1 = 0 and generated by the vacuum energy between the two plates is finite,

and so is the force induced by the vacuum in the infinite space xd−1 < 0. In the limit of low

supersymmetry breaking scale, as compared to the other scales arising in the string model

(Higgs-like or string scale), the two frameworks yield identical results. Therefore, string

theory is of limited interest in this case, since the field theory approach is technically sim-

pler. However, the situation may be drastically different in models where supersymmetry is

explicitly broken, due to the illness of the definition of the energy density in field theory in

these conditions. As seen in Eq. (2.29) (or in Eqs (2.30) and (2.50) for the massless case) a

prescription consisting in subtracting the energies associated to two configurations, though

individually divergent, is required to make sense.

To analyse the string theory picture when supersymmetry breaking is hard, we note

that Eq. (3.16) is valid for both ranges defined in Eq. (3.3), which are related by T-duality

R9 → 1/(2R9). Thus, instead of considering the model of the previous section at large

R9 (and even recovering exact supersymmetry in d + 1 dimensions as R9 → +∞), we may

consider the opposite limit, R9 → 0, where the scale of supersymmetry breaking and actually

the mass of the gravitinos are sent to infinity. The gravitini being decoupled from the rest

of the spectrum, explicit and consistent models in d + 1 spacetime dimensions with hard

breaking of supersymmetry may be found this way, provided no tachyons are generated in

taking the limit [5].

In the expressions of V0, V∗ and λtw given in Eqs (3.17), (3.18) and (3.10), let us redefine

m̃9 ≡ 2k̃9 + g and n9 ≡ 2l9 + h, where g, h ∈ {0, 1}, and perform Poisson resummations over

k̃9 and l9. Including the signs responsible for super-Higgs and the Higgs mechanisms, the

relevant terms are

R9

∑
n9,m̃9

e
−πR

2
9

τ2
|m̃9+n9τ |2(−1)m̃9a+n9b+m̃9n9 (−1)ξ(m̃9γ+n9δ+m̃9n9) (−1)ξ

′(m̃9γ′+n9δ′+m̃9n9)

=
1

2

∑
h,g

2R9

∑
l9,k̃9

e
−π(2R9)

2

τ2
|k̃9+ g

2
+(l9+h

2
)τ |2

(−1)g(a+ξγ+ξ′γ′)(−1)h(b+ξδ+ξ′δ′)(−1)gh(1+ξ+ξ′) (4.1)

=
1

2R9

∑
k9,l̃9

e
− π

(2R9)
2τ2
|l̃9+k9τ |2 1

2

∑
h,g

(−1)gk9+hl̃9(−1)g(a+ξγ+ξ′γ′)(−1)h(b+ξδ+ξ′δ′)(−1)gh(1+ξ+ξ′).

In the limit R9 → 0, the only surviving contribution is for (k9, l̃9) = (0, 0), which yield

1

2R9

∑
h

δa+ξγ+ξ′γ′+h(1+ξ+ξ′),0 mod 2(−1)h(b+ξδ+ξ′δ′) ≡ 1

2R9

Φξξ′
[
a,γ,γ′

b, δ, δ′

]
, (4.2)
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where Φξξ′ satisfies

Φ10

[
a,γ,γ′

b, δ, δ′

]
= 2δaγδbδ,

Φξξ

[
a,γ,γ′

b, δ, δ′

]
= (−1)ab(−1)ξ[a(δ+δ′)+b(γ+γ′)+(δ+δ′)(γ+γ′)].

(4.3)

Hence, the total energy in the universe is better understood from a d+ 1-dimensional point

of view, since ∫
ddxVo ∼

R9→0

∫
ddx 2π

1

2R9

V̂o ≡
∫
dd+1x V̂o, (4.4)

where we have defined

V̂o = V̂0 + V̂∗(Rd−1)− λ̂tw

Rd−1

. (4.5)

In our notations, the first contribution in V̂o is independent of Rd−1, while the second does

not,

V̂0 = − 1

2(2π)d+1

∫
F

dτ1dτ2

τ
1+ d+1

2
2

Γ(3,3)Γ(6−d,6−d)
1

η8η̄8
Ẑ,

V̂∗ = − 1

2(2π)d+1

∫ 1
2

− 1
2

dτ1

∫ +∞

0

dτ2

τ
1+ d+1

2
2

∑
m̃d−1 6=0

e
−
πR2

d−1
τ2

m̃2
d−1 Γ(3,3)Γ(6−d,6−d)

1

η8η̄8
Ẑ,

(4.6)

where we have denoted

Ẑ =
1

2

∑
a,b

(−1)a+b+ab θ[
a
b ]

4

η4

1

2

∑
γ,δ

θ̄
[
γ
δ

]8
η̄8

1

2

∑
γ′,δ′

θ̄
[
γ′

δ′

]8
η̄8

Φξξ′
[
a,γ,γ′

b, δ, δ′

]
. (4.7)

Notice that without Φξξ′ included, the above conformal block appears in the partition func-

tion of the parent supersymmetric E8 × E8 heterotic string. Finally, the third contribution

involves

λ̂tw = − 1

2(2π)d+1

∫
F

dτ1dτ2

τ
1+ d

2
2

Γ(6−d,6−d)

1

2

∑
a,b

(−1)a+b+ab 1

2

∑
γ,δ

1

2

∑
γ′,δ′

∑
(H,G)6=(0,0)

ω
[
H,a,γ,γ′

G, b, δ, δ′

]
Φξξ′
[
a,γ,γ′

b, δ, δ′

]
.

(4.8)

To describe the particle content of the conformal block Ẑ which appears in V̂0 + V̂∗, we

introduce the O(2n) affine characters,

O2n =
θ
[

0
0

]n
+ θ
[

0
1

]n
2ηn

, V2n =
θ
[

0
0

]n − θ[01]n
2ηn

,

S2n =
θ
[

1
0

]n
+ (−i)nθ

[
1
1

]n
2ηn

, C2n =
θ
[

1
0

]n − (−i)nθ
[

1
1

]n
2ηn

. (4.9)
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• For ξ = ξ′ = 0, the only effect of Φ00 is to reverse spacetime chirality, S8 ↔ C8, so that

Ẑ = (V8 − C8)(Ō16 + S̄16)(Ō′16 + S̄ ′16), (4.10)

where “primed” characters refer to those arising from the sums over γ′, δ′. In fact, this shows

that the model based on background (3.1) is supersymmetric in both T-dual decompactifi-

cations limits, R9 → +∞ and 1/(2R9) → +∞, with E8 × E ′8 gauge symmetry. While the

light gravitinos present at large R9 become infinitely massive and decouple in the 2R9 → 0

limit, other gravitinos arising from states winding S1(R9) are becoming light. As a result,

this case does not yield the hard breaking of supersymmetry we are looking for.

• For ξ = 1, ξ′ = 0, the presence of Φ10 breaks supersymmetry and preserves an SO(16)×E ′8
gauge symmetry,

Ẑ = (O8V̄16 + V8Ō16 − S8S̄16 − C8C̄16)(Ō′16 + S̄ ′16). (4.11)

However, it also has a dramatic consequence, due to the following sector which contains a

level-matched tachyon,
O8

η8

V̄16

η̄4

Ō′16

η̄4
=

1

q
1
2 q̄

1
2

+ · · · . (4.12)

As a result, the model does not define a true vacuum, and the integral form of the energy

density V̂0 is divergent, which does not meet our objectives.

• For ξ = ξ′ = 1, supersymmetry is broken and the gauge symmetry is SO(16)× SO(16),

Ẑ = V8(Ō16Ō
′
16 + S̄16S̄

′
16)− S8(Ō16S̄

′
16 + S̄16Ō

′
16)

+O8(V̄16C̄
′
16 + C̄16V̄

′
16)− C8(V̄16V̄

′
16 + C̄16C̄

′
16).

(4.13)

Moreover, the potentially tachyonic left- and right-moving characters O8 and Ō16 being

nowhere multiplied, there are no level-matched tachyon and V̂o is finite. Hence, we can

proceed with this consistent model in d + 1 dimensions, where supersymmetry is explicitly

broken [5].

It turns out that V̂0 is of order 1 and positive when so are the internal moduli (c = O(1)

in Eq. (3.23)) [5,22]. Moreover, expanding in q, q̄ the integrand of V̂∗, we find that when the

compact (though external) direction xd−1 is large, namely c� 1/Rd−1, the contributions of

the KK towers of modes propagating along xd−1 dominate over all other string states, which

are heavier. To be specific, we find

V̂∗ = (nF − nB)
vd+1

Rd+1
d−1

+O

(
c
d
2

R
d
2

+1

d−1

e−2πcRd−1

)
, where nF − nB = 8(264− den), (4.14)
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and where vd was defined in field theory in Eq. (2.49). In the above expressions, nF, nB

denote the numbers of massless fermionic and bosonic degrees of freedom, while vd+1 captures

the contributions of their KK towers of states propagating in the (Z2-modded) spacetime

direction xd−1.

Notice that V̂ = V̂0 + V̂∗ reproduces the field theory answer, which is written in Eq. (2.26)

for a single bosonic degree of freedom, or in Eq. (2.49) for a single bosonic or fermionic degree

of freedom, but with three differences:

• The string theory answer contains exponentially suppressed contributions arising from

the heavy string modes which are not included in field theory.

• The string model with hard breaking we have constructed is in d+1 dimensions, rather

than d dimensions in field theory. Actually, starting from a d-dimensional model and then

sending to zero the radius R9 of an internal direction, we end up in string theory with d+ 1

spacetime coordinates because of the reconstruction of an external direction from the towers

of winding modes becoming massless. On the contrary, taking R9 → 0 in field theory makes

completely disappear an internal direction already invisible at small but finite R9.

• V̂0 replaces (in d+ 1 dimensions) the divergent integral over the Euclidean momentum

in Eq. (2.26) (derived in second quantized formalism), or equivalently the term proportional

to ξd/R
d
9 which diverges when R9 → 0 in Eq. (2.49) (derived in first quantized formalism).

In the Casimir effect, as shown in Eqs (3.19) and (3.20), the forces per unit area exerted

on the plate at xd−1 = πRd−1 from the vacuum located on each sides are

F̂int = −∂(Rd−1V̂o)

∂Rd−1

= −V̂0 −
∂(Rd−1V̂∗)
∂Rd−1

, F̂ext = V̂0, (4.15)

and they add to give the final answer

F̂ ≡ F̂int + F̂ext = (nF − nB)
vd+1d

Rd+1
d−1

+O

(
c
d
2

+1

R
d
2
d−1

e−2πcRd−1

)
. (4.16)

This is the analogue of the field theory result, Eqs (2.31), (2.32), where the forces per unit area

acting on either side of the plate were infinite, albeit with finite sum. Therefore, string theory

provides a more rigorous derivation of the resulting Casimir force when supersymmetry is

not present at all (explicit breaking), to the extent that the forces on either side of each

plate are individually finite.
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5 Conclusion

We have shown that at weak coupling, string theory and quantum field theory yield similar

results for the net force exerted on parallel plates on which all degrees of freedom in the

bulk are imposed vanishing boundary conditions (Dirichlet boundary conditions). To be

specific, the answers are equal, up to exponentially suppressed corrections arising in the

string computation from the heavy string states, which are absent in field theory. The

net force can be derived by subtracting the energies associated with the vacuum comprised

between the two plates, when they are at finite or infinite distance.

In configurations where supersymmetry is spontaneously broken à la Scherk-Schwarz,

both frameworks yield a finite energy density between the two plates, whatever is their dis-

tance. There is no need to subtract energies associated with two configurations to obtain

consistent results. Moreover, if this fact turns out to remain true in string theory when su-

persymmetry is explicitly broken, it is not valid anymore in quantum field theory. Therefore,

it is in this case that the infinite spectrum of the string, with unbounded masses, plays a

major role, as it provides the necessary UV regularization responsible for an absolute energy

to make sense. Thus, it is in this case that string theory provides a more robust derivation

of the Casimir effect, as compared to the usual quantum field theory analysis.

We have derived these results by using a non-standard orbifold action. Whereas Z2

twists of four internal directions are very common in string theory for reducing the number

of supersymmetries, we have considered a Z2 generator G that twists one external compact

direction and three internal coordinates. Moreover, for the two hyperplanes of the external

space fixed by G to behave as “conductive plates”, we have implemented in a way consistent

with modular invariance the projection (1−G)/2 on the spectrum running in the vacuum-

to-vacuum amplitude at one-loop, which is orthogonal to the usual projector.
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