
HAL Id: hal-02342989
https://hal.science/hal-02342989v1

Submitted on 1 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spontaneous dark-matter mass generation along
cosmological attractors in string theory
Thibaut Coudarchet, Lucien Heurtier, Hervé Partouche

To cite this version:
Thibaut Coudarchet, Lucien Heurtier, Hervé Partouche. Spontaneous dark-matter mass generation
along cosmological attractors in string theory. International Journal of High Energy Physics, 2019,
03, pp.117. �10.1007/JHEP03(2019)117�. �hal-02342989�

https://hal.science/hal-02342989v1
https://hal.archives-ouvertes.fr


CPHT-RR118.122018, December 2018

Spontaneous dark-matter mass generation along
cosmological attractors in string theory

Thibaut Coudarchet1, Lucien Heurtier2

and Hervé Partouche1

1Centre de Physique Théorique, Ecole Polytechnique,∗
F–91128 Palaiseau, France

thibaut.coudarchet@polytechnique.edu, herve.partouche@polytechnique.edu

2Department of Physics, University of Arizona, Tucson, AZ 85721
heurtier@email.arizona.edu

Abstract

We propose a new scenario for generating a relic density of non-relativistic dark
matter in the context of heterotic string theory. Contrary to standard thermal
freeze-out scenarios, dark-matter particles are abundantly produced while still
relativistic, and then decouple from the thermal bath due to the sudden increase
of their mass above the universe temperature. This mass variation is sourced by
the condensation of an order-parameter modulus, which is triggered when the
temperature T (t) drops below the supersymmetry breaking scale M(t), which
are both time-dependent. A cosmological attractor mechanism forces this phase
transition to take place, in an explicit class of heterotic string models with spon-
taneously broken supersymmetry, and at finite temperature.
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1 Introduction

As an ultraviolet complete theory unifying gravity with gauge interactions, string theory is

a natural framework to study the primordial universe and describe cosmology using a top-

down approach. In modern language, a possible question to be asked is whether ingredients

which are used in the most common cosmological scenarios — such as models including a

cosmological constant and a cold dark-matter component (ΛCDM) — can be derived from

models of the string theory landscape, rather than embedded in only apparently consistent

low energy field theories of the swampland [1].

It is nowadays established that our universe is constituted of three crucial components,

which are dark energy, dark matter and Standard-Model particles. The amount of each of

these ingredients have been measured with very good accuracy in the present universe [2],

indicating that a very large portion of the universe energy density is shared by dark energy

and dark matter rather than baryons and radiation. Furthermore, the study of the cosmic

microwave background has shown to be compatible with dark energy and non-relativistic

matter playing a key role in diluting the inhomogeneities of the primordial universe at early

times, throughout a phase of so-called cosmic inflation (see e.g. Ref. [3] for a review). If a

lot of the string-cosmology literature has been focusing on finding a way to generate enough

e-folds of inflation in the primordial universe (see debates on such a possibility [1,4]), studies

trying to obtain a phase of matter domination during the late cosmological evolution of the

universe are much more rare [5]. In practice, most of the dark-matter models which have

been proposed in the context of string theory are string inspired, in the sense that the particle

interactions and mass spectrum are derived from string-theory models. Therefore, in such a

framework, the discussion of dark-matter decoupling and non-relativistic matter production

remains to be an effective, low-energy discussion, or relies on purely geometrical effects such

as domain-walls or cosmic-strings decay. The interesting possibility that a whole tower of

KK-states contribute collectively to the dark-matter relic density, while different species

decay at different time scales, was also proposed in Ref. [6] under the name dynamical dark-

matter. In these models, the relic density is typically produced in the early universe through a

misalignment mechanism. The freeze-out mechanism was also considered in Ref. [7], although

in such context the particle spectrum is taken to be a time-independent data set, contrary

to what we will consider.
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In particular, in the usual thermal freeze-out scenario, it is assumed that a significant

amount of dark matter is produced in the early universe, before it decouples from the thermal

bath when the temperature drops under the dark-matter mass. In this paper, we present

an alternative mechanism in which dark matter is naturally abundantly produced while still

relativistic, and then decouples from the thermal bath due to the brutal variation of its

mass above the temperature. This scenario arises within a class of explicit string models

in d dimensions, due to cosmological attractors that yield a phase transition responsible

for the spontaneous mass generation of the dark-matter particles. Note that the possibility

of a variable-mass dark-matter particle has already been proposed in Ref. [8] in a different

context, but relatively unexplored from the phenomenological perspective.

In the past literature, heterotic string models compactified on tori (or orbifolds) with

spontaneously broken supersymmetry [9, 10] à la Scherk-Schwarz [11] have been considered

at finite temperature [10] and weak string coupling. It was shown that in the context of

flat, homogenous and isotropic cosmological evolutions, the universe is attracted towards

a “radiation-like critical solution” [12–16], along which the supersymmetry breaking scale

M(t), the temperature T (t) and the inverse of the scale factor a(t) evolve proportionally,

M(t) ∝ T (t) ∝ 1/a(t). The denomination “radiation-like” is motivated by the fact that the

total energy density and pressure arising from (i) the thermal bath of the infinite towers of

Kaluza-Klein (KK) states along the internal Scherk-Schwarz directions and (ii) the coherent

motion ofM(t) satisfy the same state equation as pure radiation, ρtot = (d−1)Ptot [13,14]. If

helpful to understand the behavior of the early universe after reheating, when the light matter

content of the universe is in thermal equilibrium, such a critical solution cannot be a low

energy attractor for our universe since we know that (i) at present time the supersymmetry

breaking scale is extremely large as compared to the universe temperature, and (ii) that the

universe is matter dominated. Therefore, one needs to complexify the picture in order to

open the possibility that part of the massless spectrum becomes massive and then decouples,

while the universe evolves.

This is precisely what we do in the present work. We use the fact that at special points

in moduli space, states which are generically very heavy become massless [17]. When these

states contain more fermions than bosons, the free energy density F arising from their

thermalized towers of KK modes shows very peculiar properties. First of all, at such a
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point in moduli space, F is extremal. Second, this extremum is a minimum (maximum)

for large enough (low enough) temperature T , as compared to the supersymmetry breaking

scaleM . Assuming generic initial conditions compatible with a minimum, the destabilization

of the order parameter, which is a modulus, then occurs dynamically, provided the attractor

mechanism described in the above paragraph enforces T (t)/M(t) to reach low enough values.

As a result, while the universe expands and the temperature (as well as the supersymmetry

breaking scale) drops, for the evolution dictated by the radiation-like critical solution to be

approached, a phase transition takes place, where the condensation of the order-parameter

modulus induces a large mass to the whole initially light KK towers. We will see that

such a condensation is naturally pushed up to values which are necessarily larger than the

temperature of the thermal bath, generating spontaneously an important amount of non-

relativistic matter that may freeze-out later on i.e. quit equilibrium, due to the expansion

of the universe.

The paper is organized as follows: In Sec. 2, we construct the simplest heterotic models

for which the free energy density presents suitable features for developing the instability re-

quired for the spontaneous dark-matter mass generation. Sec. 3 is devoted to the analytical

description of the attractor mechanisms. In a first stage, the order-parameter modulus is

attracted towards the minimum of its potential well, while the whole cosmological evolution

approaches a radiation-like critical solution [15,16]. This effect is already non-trivial, in the

sense that the mechanism avoids the so-called “cosmological moduli problem” [18].1 Then,

the ratio T/M being dynamically pushed to some low enough value, the phase transition

suddenly takes place, inducing the dark-matter particle to become heavier than the tempera-

ture scale. In Sec. 4, we first review how dark-matter particles decouple from a thermal bath

in the context of the usual thermal freeze-out scenario. Then, we present the new mecha-

nism which we propose in this paper to make dark matter decouple spontaneously from the

thermal bath, when the phase transition happens. We finally relate the relic energy density

of cold dark matter to the scale factor of the universe and the freshly acquired dark-matter

mass. Our conclusions and perspectives can be found in Sec. 5, where we summarize our

results and present futur prospects.
1Typically encountered in inflationary scenarios, the universe at intermediate times may be dominated

by the energy stored in massive scalars, which cannot stabilize. Their eventual decay into radiation can lead
to an entropy excess.
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2 Thermal effective potential

Throughout this paper, all dimensionful quantities will be expressed in string units (α′ = 1),

and denoted with suffixes “(σ)” when measured in string frame i.e. σ-model frame. In

this section, we consider models realizing a spontaneous breaking of supersymmetry at a

scale M(σ), and derive their free energy density F(σ) at finite temperature T(σ). To be more

specific, we would like F(σ), which is nothing but the effective potential at finite temperature,

to depend on a modulus that will be massive at high temperature and tachyonic at low

temperature, as compared to the supersymmetry breaking scale. As will be shown in Sec. 3,

the dynamics of the universe may then enforce the time evolutions of T(σ) andM(σ) to trigger

a destabilization of the modulus, which is responsible for a dark-matter mass generation.

2.1 Heterotic models and free energy

Our starting point is the E8 × E8 heterotic string compactified on the background

S1
E(R0)× Rd−1 × T 2 × T 8−d, (2.1)

where time is Euclidean and compactified on a circle of radius R0, and Rd−1 stands for the

spatial directions. For simplicity, we consider the internal space to be factorized in two tori.

The radius of one direction in T 2, say Xd, is the modulus to be (de-)stabilized, while the

second direction, which we denote by X9, is responsible for the spontaneous breaking of

supersymmetry. On the contrary, all moduli associated with T 8−d will play a minor role in

the sequel.

Technically, both finite temperature and spontaneous breaking of supersymmetry can be

implemented by a stringy version of the Scherk-Schwarz mechanism [9, 10]. At 1-loop, the
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free energy density can be written as

F(σ) = − 1

2(2π)d

∫
F

dτ1dτ2

τ
1+ d+2

2
2

∑
g0,h0

∑
k̃0,l0

e
−πR

2
0

τ2
|2k̃0+g0+(2l0+h0)τ |2

1

2

∑
g9,h9

√
detG

∑
k̃d,ld
k̃9,l9

e
− π
τ2

[k̃i+ gi
2

+(li+
hi
2

)τ̄](Gij+Bij)
[
k̃j+

gj
2

+(lj+
hj
2

)τ
]

1

2

∑
a,b

(−1)a+b+abθ[ab ]
4 (−1)g0a+h0b+g0h0 (−1)g9a+h9b+g9h9

1

2

∑
γ,δ

θ̄[γδ ]
8 (−1)g9γ+h9δ+g9h9

1

2

∑
γ′,δ′

θ̄[γ
′

δ′ ]
8 (−1)g9γ

′+h9δ′+g9h9

Γ8−d,8−d

η12η̄24
,

(2.2)

where we use the following notations:

• τ = τ1 + iτ2 is the Teichmüller parameter of the genus-1 Riemann surface and F the

fundamental domain of the modular group. η(τ) and θ[αβ ](τ) are the Dedekind and Jacobi

modular forms, for which conventions can be found in Ref. [19].

• The lattices of zero modes associated to the Euclidean circle and the T 2 coordinates

are in the first and second lines. The numbers k̃0, k̃d, k̃9 and l0, ld, l9 are arbitrary integers,

while g0, h0 and g9, h9 are parities i.e. equal to 0 or 1. For notational compactness, we have

also introduced gd, hd but those are simply vanishing. Moreover, Gij and Bij are the metric

and antisymmetric tensor background values on T 2, to be specified shortly.

• The worldsheet left-moving fermions contribute to the conformal block in the third line.

The latter is dressed with “cocycles” i.e. phases that couple the above mentioned lattices

to the spin structures a, b ∈ {0, 1}, thus implementing finite temperature and spontaneous

breaking of supersymmetry [10]. In string frame, the temperature is the inverse of the

Euclidean-time circle circumference,

T(σ) =
1

2πR0

. (2.3)

• In the fourth line, the 16 extra right-moving coordinates of the bosonic string yield

two E8 lattices, where γ, δ and γ′, δ′ ∈ {0, 1}. Cocycles responsible for the E8 × E8 →
SO(16) × SO(16) spontaneous breaking are also included [20]. In total, the lattice of the
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direction X9 is involved in the phase

(−1)g9(a+γ+γ′)+h9(b+δ+δ′)+g9h9 , (2.4)

which shows that super-Higgs and Higgs mechanisms combine in a non-trivial way. Consider

an initially massless, supersymmetric pair of bosonic (a = 0) and fermionic (a = 1) degrees

of freedom: If their gauge charge γ + γ′ is even, then the Scherk-Schwarz mechanism along

X9 induces a non-trivial mass to the fermion, while the boson remains massless. On the

contrary, when γ + γ′ is odd, the mass splitting is reversed, in the sense that the boson

becomes massive, while the fermion remains massless [13,14,21].

• The last line contains the lattice of zero modes associated to the internal directions

Xd+1, . . . , X8, and worldsheet left- or right-moving oscillator contributions.

• We consider a T 2 metric and antisymmetric tensor

(G+B)ij =

(
R2
d ε
−ε 4R2

9

)
, i, j ∈ {d, 9}, (2.5)

where Rd and R9 are dynamical radii, while ε ∈ Z is a constant background. To motivate

this choice, notice that in the absence of any cocycle responsible for finite temperature and

supersymmetry breaking along X9, we would have an U(1) → SU(2) enhancement of the

gauge symmetry at Rd = 1 and arbitrary ε ∈ Z. In fact, a pair of non-Cartan vector

multiplets would be exactly massless at such a point in moduli space. As shown in great

details in Ref. [22]2, once supersymmetry breaking is implemented along X9, the effect of

an even value of the “discrete Wilson line” ε is to induce a tree-level mass 1/(2R9) (equal to

that of the gravitini) only to the fermions of the non-Cartan vector multiplets. Conversely,

an odd value of ε implies the fermions to remain massless, while their bosonic superpartners

become massive. In both cases, we may define the scale of supersymmetry breaking in string

frame to be

M(σ) =
1

2πR9

. (2.6)

In the remaining part of this subsection, we show how the picture is generalized in presence

of both supersymmetry breaking and finite temperature.
2In the appendix of Ref. [22], all marginal deformations of the heterotic theory are taken into account.

However, for the sake of clarity and simplicity in the present work, we only discuss and keep dynamical the
moduli relevant to the phase transition under consideration.
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Redefining a = â+ h0 + h9, b = b̂+ g0 + g9, and using the Jacobi identity to handle the

sum over â, b̂, the free energy density becomes

F(σ) =
1

2(2π)d

∫
F

dτ1dτ2

τ
1+ d+2

2
2

∑
g0,h0

∑
k̃0,l0

e
−πR

2
0

τ2
|2k̃0+g0+(2l0+h0)τ |2

Rd

∑
m̃d,nd

e
−πR

2
d

τ2
|m̃d+ndτ |2 R9

∑
g9,h9

∑
k̃9,l9

e
−πR

2
9

τ2
|2k̃9+g9+(2l9+h9)τ |2

(−1)ε(m̃dh9+ndg9)

θ
[

1−h0−h9
1−g0−g9

]4 1

2

∑
γ,δ

θ̄[γδ ]
8 1

2

∑
γ′,δ′

θ̄[γ
′

δ′ ]
8 Γ8−d,8−d

η12η̄24
(−1)ϕ,

where ϕ = g0 + g9 + h0 + h9 + g9h0 + g0h9 + g9(γ + γ′) + h9(δ + δ′).

(2.7)

To proceed, we assume that the radii of the periodic directions X0, X9, are large compared

to the Hagedorn radius, in order for Hagedorn-like instabilities not to occur,

R0, R9 � RH =
1 +
√

2√
2

. (2.8)

This guarantees that the integrand does not develop level-matched tachyonic modes and

the free energy to be well defined. By noticing that all contributions with non-vanishing

winding numbers 2l0 + h0 or 2l9 + h9 yield contributions O(e−#R2
0) or O(e−#R2

9), where #

is positive and O(1), we may focus on the sectors h0 = h9 = 0, with l0 = l9 = 0. Due to

the θ
[

1
1−g0−g9

]4 factor, non-trivial contributions arise only for (g0, g9) = (1, 0) or (0, 1). As a

result, we obtain

F(σ) =
R9

2(2π)d

∫
F

dτ1dτ2

τ
1+ d+1

2
2

∑
(g0,g9)=

(1,0) or (0,1)

∑
k̃0,k̃9

e
− π
τ2

[R2
0(2k̃0+1)2+R2

9(2k̃9+1)2]
∑
md,nd

q
1
2
p2L q̄

1
2
p2R (−1)εndg9

θ
[

1
0

]4
η12η̄24

1

2

∑
γ,δ

θ̄[γδ ]
8 (−1)g9γ

1

2

∑
γ′,δ′

θ̄[γ
′

δ′ ]
8 (−1)g9γ

′
Γ8−d,8−d +O(e−#R2

0) +O(e−#R2
9),

(2.9)

where q = e2iπτ . In this expression, we have written the lattice of zero modes associated to

S1(Rd) in Hamiltonian form, where

pL =
1√
2

(md

Rd

+ ndRd

)2

, pR =
1√
2

(md

Rd

− ndRd

)2

. (2.10)

Due to the presence of factors e−
πR2

0
τ2

(2k̃0+1)2 or e−
πR2

9
τ2

(2k̃9+1)2 in the integrand, we may extend

the fundamental domain F of integration to the “upper half strip”,∫
F

dτ1dτ2 ( · · · ) =

∫ 1
2

− 1
2

dτ1

∫ +∞

0

dτ2 ( · · · ) +O(e−#R2
0) +O(e−#R2

9). (2.11)
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Hence, integrating over τ1 projects on the physical i.e. level-matched spectrum.

To evaluate explicitly the free energy, we expand

θ4
2

η12
= 16

(
1 +O(q)

)
,

1

2

∑
γ,δ

θ̄
[
γ
δ

]8
(−1)g9γ = 1 + 112q̄ + (−1)g9128q̄ +O(q̄2),

1

η̄24
=

1

q̄

(
1 + 24q̄ +O(q̄2)

)
.

(2.12)

Moreover, choosing the radius of the direction Xd to be “moderate”,

1

R0

,
1

R9

� Rd � R0, R9, (2.13)

Rd may sit in the neighborhood of 1, where the states with momenta and winding numbers

md = −nd = ±1 become massless. We may then write∑
md,nd

q
1
2
p2L q̄

1
2
p2R (−1)εndg9 = 1 + 2(−1)εg9 q̄ e

−πτ2
(
Rd− 1

Rd

)2
+ · · · , (2.14)

where the ellipses stand for all other modes, mdnd 6= −1. Note that the latter cannot yield

states in the spectrum simultaneously level-matched and lighter than T(σ) and M(σ). In a

similar way, we assume the size of T 8−d,8−d to be “moderate”, i.e. with metric satisfying

1

R2
0

,
1

R2
9

� |GIJ | � R2
0, R

2
9, I, J ∈ {d+ 1, . . . , 8}. (2.15)

Hence, (G+B)IJ may sit at a point of enhanced gauge symmetry in moduli space, U(1)8−d →
Gen, so that

Γ(8−d,8−d) = 1 + denq̄ + · · · . (2.16)

In the above formula, we take for simplicity (G + B)IJ to sit exactly at such a point, or to

be outside of their neighborhoods, in which case den = 0. We are now ready to integrate

physical mode by physical mode. This can be done using the identity

Hν(x) ≡ 1

Γ(ν)

∫ +∞

0

du
u1+ν

e−
1
u
−x2u =

2

Γ(ν)
xνKν(2x), (2.17)

where Kν is the modified Bessel function of the second kind. In practice, x is essentially

the ratio of mass in the spectrum, to T(σ) or M(σ). As a consequence, different contributions
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can have different orders of magnitude, as follows from the behaviors of Hν(x) at large and

small arguments,

Hν(x) ∼
√
π

Γ(ν)
xν−

1
2 e−2x when x� 1,

Hν(x) = 1− x2

ν − 1
+O(x4) when |x| � 1.

(2.18)

The dominant contribution to F(σ) arises from the (nearly) massless states, including those

with md = −nd = ±1 when Rd ' 1, together with their towers of KK modes associated

to the Euclidean time and direction X9. All other states yield exponentially suppressed

contributions. They include in particular those arising from oscillator modes at the string

scale, or from the states winding around the large compact directions X0, X9.

To write the final result, it is convenient to define

ζ = ln(Rd), η = ln(R9), z = ln

(
R0

R9

)
= ln

(
M(σ)

T(σ)

)
, (2.19)

in terms of which we find

F(σ) = T d(σ)f(z, η, ζ) +O
(

(cMsT(σ))
d
2 e−cMs/T(σ)

)
+O

(
(cMsM(σ))

d
2 e−cMs/M(σ)

)
. (2.20)

In this expression, cMs > 0 is the lowest (Higgs-like) mass scale generated by the moduli

GIJ . As follows from Eq. (2.15), it is heavier than T(σ) and M(σ), thus yielding exponential

suppression.3 The dominant contribution in F(σ) involves

f(z, η, ζ) =− (nF + nB)f
(d)
T (z) + (nF − nB)f

(d)
V (z)

− (ñF + ñB)f̃
(d)
T (z, η, ζ) + (ñF − ñB)f̃

(d)
V (z, η, ζ),

(2.21)

where nB and nF are the numbers of bosonic and fermionic massless states for generic Rd,

while ñB and ñF count those becoming massless at Rd = 1. The dressing functions account

for the corresponding towers of KK modes along X0, X9 [15, 16],

f
(d)
T (z) =

Γ
(
d+1

2

)
π
d+1
2

∑
k̃0,k̃9

edz[
e2z(2k̃0 + 1)2 + (2k̃9)2

] d+1
2

,

f̃
(d)
T (z, η, ζ) =

Γ
(
d+1

2

)
π
d+1
2

∑
k̃0,k̃9

edzH d+1
2

(
π|eζ − e−ζ |eη

√
e2z(2k̃0 + 1)2 + (2k̃9)2

)
[
e2z(2k̃0 + 1)2 + (2k̃9)2

] d+1
2

,

(2.22)

3For instance, if GIJ = O(1), then so is c.
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while the last two functions can be defined by

f
(d)
V (z) ≡ e(d−1)zf

(d)
T (−z), f̃

(d)
V (z, η, ζ) ≡ e(d−1)zf̃

(d)
T (−z, η + z, ζ). (2.23)

To be specific, the massless spectrum satisfies

nB = 8× (8 + 120 + 120 + den), nF = 8× (128 + 128),

ñB = 8× 2 (1− ε), ñF = 8× 2 ε.
(2.24)

There is a universal degeneracy factor 8 arising from the fact that at zero temperature

and supersymmetry breaking scale, the theory is maximally supersymmetric i.e. with 16

supercharges (N = 4 in 4 dimensions). In nB, the 8 × 8 degrees of freedom are those

of the metric, antisymmetric tensor and dilaton field dimensionally reduced from 10 to d

dimensions. The 120’s are the dimensions of the two SO(16) gauge groups, while den is the

number of roots of the enhanced U(1)8−d → Gen gauge factor. They all satisfy (γ, γ′) = (0, 0).

In nF, the 128’s are the dimensions of the spinorial representations of the SO(16) factors,

corresponding to (γ, γ′) = (1, 0) and (0, 1). At Rd = 1, modes having md = −nd = ±1 are

massless, with charges pR = ±
√

2 under the right-moving U(1) isometry group of S1(Rd).

Either ñB or ñF is non-trivial: When ε = 0, the modes are bosons corresponding to the roots

of the enhanced U(1)→ SU(2) and on the contrary, ε = 1 yields a pair of fermionic states,

charged under U(1) which is not enhanced.

2.2 Properties of the free energy

From now on, we will neglect in F(σ) (and omit in all formulas) the exponentially-suppressed

contributions in Eq. (2.20). Some remarks are in order:

• F(σ) is the free energy density valid for arbitrary mass |Rd − 1/Rd| of the ñB or ñF

states, provided Eq. (2.13) holds. Consistently, we find that when they are massless, i.e. at

Rd = 1,
f(z, η, 0) = −(NF +NB)f

(d)
T (z) + (NF −NB)f

(d)
V (z),

where NF = nF + ñF, NB = nB + ñB.
(2.25)

• The above split of f into two pieces is motivated by taking the limit z → +∞, where

thermal effects are screened by quantum effects. In fact, we have

F(σ)|Rd=1 ∼
z→+∞

Md
(σ) (NF −NB) ξ, where ξ =

Γ
(
d+1

2

)
π
d+1
2

∑
m

1

|2m+ 1|d+1
, (2.26)
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which reproduces the expression of the 1-loop effective potential at zero temperature in a

theory where supersymmetry is spontaneously broken by the Scherk-Schwarz mechanism [13,

14,23].

• Conversely, when z → −∞, quantum corrections are screened by thermal effects. As a

result, we recover

F(σ)|Rd=1 ∼
z→−∞

− 2πR9 T
d+1
(σ) (NF +NB) ξ, (2.27)

which is the Stefan-Boltzmann law for radiation in d+1 dimensions. The overall factor 2πR9

arises consistently with the interpretation of the density in d+ 1 dimensions.

• Expanding around ζ = 0, we identify the mass term of ζ,

f(z, η, ζ) =− (NF +NB)f
(d)
T (z) + (NF −NB)f

(d)
V (z)

+
ζ2

πT 2
(σ)

[
(ñF + ñB)f

(d−2)
T (z)− (ñF − ñB)f

(d−2)
V (z)

]
+O(ζ4),

where ñF + ñB = 8× 2, −(ñF − ñB) = (−1)ε 8× 2.

(2.28)

When the extra massless states at Rd = 1 are bosons (ε even), ζ is massive. Thus, as a

function of ζ, F(σ) presents a local minimum at ζ = 0, as shown in the qualitative Fig. 1.

However, the situation is more involved when the massless states are fermions (ε odd). By

Figure 1: Qualitative shape of the the free energy density F(σ) as a function of ζ = lnRd, when
ñF − ñB ≤ 0, or for low enough M(σ)/T(σ) when ñF − ñB > 0. Several phases can be identified: A well
of size max(1/R0, 1/R9). On both of its sides, plateaus extend until ±min(lnR0, lnR9). The latter are
followed/preceded by exponential falls if nF − nB ≤ 0, or for low enough M(σ)/T(σ) when nF − nB > 0. The
exponential behavior is increasing for large enough M(σ)/T(σ), when nF − nB > 0.

noticing that the limits z → +∞ and −∞ of the functions f (d)
T (z) and f (d)

V (z) that we took

11



in Eqs (2.26) and (2.27) can be easily applied to the d − 2 case, we conclude that for large

enough ez, ζ is tachyonic, while for low enough ez, it is massive. The tachyonic case is

illustrated in Fig. 2, where F(σ) has a maximum at ζ = 0. The massive case is as before,

Figure 2: Qualitative shape of the the free energy density F(σ) as a function of ζ = lnRd, in the case ñF−
ñB > 0, when M(σ)/T(σ) is large enough. Several phases can be identified: A bump of size max(1/R0, 1/R9).
On both of its sides, plateaus extend until ±min(lnR0, lnR9). The latter are followed/preceded by exponential
falls if nF−nB ≤ 0, or for low enough M(σ)/T(σ) when nF−nB > 0. The exponential behavior is increasing
for large enough M(σ)/T(σ), when nF − nB > 0.

shown in Fig. 1. The dynamical switch from the massive case to the tachyonic case will be

used in the next section to trigger the destabilization of Rd, which is responsible for the mass

generation of fermionic dark matter.

• For Rd sufficiently far from the self-dual point, the masses of the ñB or ñF states

(depending on the parity of ε) exceed T(σ) and M(σ). Thus, their contributions to the free

energy become exponentially suppressed and the second line of Eq. (2.21), which captures

all ζ- and η-dependences, can be omitted. Hence, as a function of ζ, F(σ) develops a well

or a bump around ζ = 0, whose size is max(1/R0, 1/R9), and on both sides of which is a

plateau (see Figs 1, 2).

Large extra dimension regime: For completeness, we may ask what is the behavior

of the free energy when the condition (2.13) is relaxed. When Rd & R0 or R9, KK modes

along Xd are lighter than T(σ) or M(σ) and their contributions to the free energy are no more

exponentially suppressed. Similarly, the winding modes along S1(Rd) start contributing to

12



the free energy when Rd . 1/R0 or 1/R9. On the contrary, the ñB and ñF states being even

heavier than when ζ sits on a plateau discussed above, they can be omitted in the evaluation

of F(σ). Under such conditions, one obtains [15]

f(z, η, ζ) = −(nF + nB)
[
f

(d)
T (z) + k

(d)
T (z, η − |ζ|)

]
+ (nF − nB)[f

(d)
V (z) + k

(d)
V (z, η − |ζ|)

]
= e|ζ|−η−z

[
−(nF + nB)F

(d+1)
T (z, η − |ζ|) + (nF − nB)F

(d+1)
V (z, η − |ζ|)

]
, (2.29)

where, in the first line, the functions k(d)
T and k

(d)
V account for the additional corrections

attributed to the KK or winding states,

k
(d)
T (z, η − |ζ|) =

Γ
(
d+1

2

)
π
d+1
2

∑
md 6=0

∑
k̃0,k̃9

edzH d+1
2

(
π|md|eη−|ζ|

√
e2z(2k̃0 + 1)2 + (2k̃9)2

)
[
e2z(2k̃0 + 1)2 + (2k̃9)2

] d+1
2

,

k
(d)
V (z, η − |ζ|) = e(d−1)z k

(d)
T (−z, η − |ζ|+ z).

(2.30)

In the second line of Eq. (2.29), a Poisson summation on the momentum (or winding number)

along S1(Rd) is performed, which yields

F
(d+1)
T (z, η − |ζ|) =

Γ
(
d+2

2

)
π
d+2
2

∑
k̃0,k̃9,m̃d

e(d+1)z[
e2z(2k̃0 + 1)2 + (2k̃9)2 + e−2(η−|ζ|)m̃2

d

] d+2
2

,

F
(d+1)
V (z, η − |ζ|) = edzF

(d+1)
T (−z, η − |ζ|+ z).

(2.31)

Much of the behavior of the free energy is captured in the regime Rd � R0, R9 (or Rd �
1/R0, 1/R9), which can be derived from the second expression in Eq. (2.29). Defining u = 1

or −1 to treat both cases simultaneously, we obtain

F(σ) = 2πRu
d T

d+1
(σ)

[
−(nF + nB)f

(d+1)
T (z) + (nF − nB)f

(d+1)
V (z)−

(R0

Ru
d

)d
nBξ

′ + · · ·
]
, (2.32)

where the ellipses stand for exponentially suppressed terms in Ru
d/R0 and Ru

d/R9, and

ξ′ =
Γ
(
d
2

)
π
d
2

ζ(d). (2.33)

The factor 2πRu
d of Eq. (2.32) may be used to interpret the result in d + 1 dimensions.

However, from the d-dimensional point of view, this translates into an exponential behavior,

F(σ) ∝ e|ζ| for |ζ| → ∞, which we took to be decreasing in Figs 1 and 2. If this is so when

nF − nB ≤ 0, this is not always true when nF − nB > 0. In the latter case, we can use for

d + 1 the limits z → ±∞ taken in Eqs (2.26) and (2.27) to conclude that the exponential

behavior is decreasing for low enough ez, and increasing for large enough ez.
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3 Dynamical stabilization / destabilization

In this section, we consider the free energy F(σ) = T d(σ)f in generic models, namely with the

function f given in Eq. (2.21) (or (2.29)), for arbitrary nF, nB and ñF, ñB. We want to show

how the nature of the ñF + ñB states becoming massless at Rd = 1 impacts the dynamics

and final expectation value of Rd. After deriving the cosmological equations of motion, we

review the evolution found for ñF − ñB < 0, which was considered in Ref. [15] and yields

a stabilization of the modulus at the self-dual point. Then, we turn to our main case of

interest, namely ñF − ñB > 0, which can trigger dynamically the destabilization of Rd from

its self-dual point. During this process, the ñF + ñB initially massless states acquire a large

mass. Becoming non-relativistic, we will see in Sect. 4 that they may realize a component

of cold dark matter in our universe, given that they are stable on cosmological time scales.

3.1 Equations of motion and thermodynamics

Our starting point is the 1-loop effective action in d dimensions. Considering only the degrees

of freedom relevant for the (de-)stabilization mechanism, we have

S =

∫
ddx
√
−g(σ)

[
e−2φ

(
R(σ)

2
+ 2 ∂µφ∂

µφ− 1

2

∂µR9∂
µR9

R2
9

− 1

2

∂µRd∂
µRd

R2
d

)
−F(σ)

]
, (3.1)

where g(σ) is the string frame metric with signature (−,+, . . . ,+), R(σ) is the associated

Ricci curvature, and φ is the dilaton in d dimensions. Defining the Einstein frame metric as

gµν = e−
4
d−2

φg(σ)µν , (3.2)

all dimensionful quantities acquire a dilaton dressing. In Einstein frame, the temperature,

supersymmetry breaking scale and free energy density are therefore

T =
e

2
d−2

φ

2πR0

, M =
e

2
d−2

φ

2πR9

=
e

√
d−1
d−2

Φ

2π
, F = e

2d
d−2

φF(σ) = T df(z, η, ζ). (3.3)

Note that we have introduced a new field Φ, the so-called “no-scale modulus” [24]. In fact,

defining

Φ =

√
d− 2

d− 1

(
2φ

d− 2
− η
)
, Φ⊥ =

1√
d− 1

(2φ+ η), (3.4)

the action takes a suitable form in terms of canonical fields,

S =

∫
ddx
√
−g
[
R
2
− 1

2
∂µΦ∂µΦ− 1

2
∂µΦ⊥∂

µΦ⊥ −
1

2
∂µζ∂

µζ −F
]
. (3.5)
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Interested in flat, homogeneous and isotropic cosmological evolutions, we consider a

Friedmann-Lemaître-Roberstson-Walker metric and space-independent scalar fields,

ds2 = −β(x0)2(dx0)2 + a(x0)2

d−1∑
i=1

(dxi)2, Φ(x0), Φ⊥(x0), ζ(x0), (3.6)

where the lapse function β is found by analytic continuation of the Euclidean background.

Hence, it is the circumference of S1(R0) measured in Einstein frame, which is nothing but

the inverse temperature,

β = e−
2
d−2

φ2πR0 =
1

T
. (3.7)

Friedmann equations can be found by varying the action with respect to β and a. They can

be rewritten in terms of the more conventional cosmic time defined by dt = βdx0:

(d− 1)(d− 2)

2
H2 = K + ρ, (3.8)

(d− 1)(d− 2)

2
H2 + (d− 2)Ḣ = −K − P, (3.9)

where dot-derivatives are with respect to t and H = ȧ/a. In the above equations, K is the

kinetic energy of the scalars, while ρ and P are the energy density and pressure arising from

the 1-loop contribution F ,

K =
1

2

(
Φ̇2 + Φ̇2

⊥ + ζ̇2
)
, ρ = F − T ∂F

∂T
, P = −F . (3.10)

Notice that the variational principle we have used matches perfectly with the thermodynam-

ics laws,

ρ =
1

V

(
∂(βF )

∂β

)
V

, P = −
(
∂F

∂V

)
β

, where V = (2πa)d−1, F = V F . (3.11)

For convenience, we may write the thermal energy density and pressure as

ρ = T dr(z, η, ζ), P = T dp(z, η, ζ), where r = fz − (d− 1)f, p = −f, (3.12)

and fx = ∂f/∂x, for x = z, η, ζ. With these notations, the scalar-field equations of motion

take the form,

Φ̈ + (d− 1)HΦ̇ = −∂F
∂Φ

= −T d
(√

d− 1

d− 2
fz −

√
d− 2

d− 1
fη

)
, (3.13)

Φ̈⊥ + (d− 1)HΦ̇⊥ = − ∂F
∂Φ⊥

= − T d√
d− 1

fη, (3.14)

ζ̈ + (d− 1)Hζ̇ = −∂F
∂ζ

= −T dfζ . (3.15)
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Combining the equations, it can be seen that Eq. (3.9) can be replaced by an equation

that can be solved [15],

ρ̇+ Ṗ

ρ+ P
+ (d− 1)H =

Ṫ

T
=⇒ (aT )d−1

(
r(z, η, ζ) + p(z, η, ζ)

)
= S, (3.16)

where S is the integration constant. The latter can be interpreted as the entropy of the

universe since the above result implies

U − TS = −PV ≡ F, where U = V ρ. (3.17)

3.2 Radiation-like dominated solutions and stabilization

When the supplementary massless states at the self-dual point contain more bosons than

fermions, ñF− ñB < 0 (recall that this means ε even in our example as defined in Eq. (2.5)),

the thermal effective potential F admits a local minimum at ζ = 0 (see Fig. 1). As shown

in Ref. [15], this can yield a dynamical stabilization of ζ at the origin. In this subsection,

we review these results, since they will be used later on to infer the behavior of the more

involved mechanism of mass generation for dark matter.

Stabilization at the bottom of the well: Let us first describe a particular cosmological

solution. Clearly, ζ ≡ 0 solves Eq. (3.15). Since f(z, η, 0) is independent of η, Eq. (3.14)

is satisfied for an arbitrary constant Φ⊥ ≡ Φ⊥0. It turns out to be convenient to replace

Eq. (3.13) by a differential equation for z. The latter involves a potential for z, which admits

a minimum at some critical point z̃c if and only if the massless spectrum of the model satisfies

0 <
NF −NB

NF +NB

<
1

2d − 1
. (3.18)

In that case, z ≡ z̃c is a solution, where z̃c is the unique root of the equation

r̃(z̃c) = dp̃(z̃c), where r̃(z) ≡ r(z, η, 0), p̃(z) ≡ p(z, η, 0) > 0. (3.19)

Note that this corresponds to the state equation of radiation in d+1 dimensions, ρ = d×P .4

When the model-dependent quantity (NF−NB)/(NF +NB) varies from 0 to its upper bound,
4With n internal circles involved in the Scherk-Schwarz breaking of supersymmetry, this generalizes to

ρ = (d− 1 + n)P [14]
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z̃c varies from +∞ to −∞.5 We are left with the Friedmann equation (3.8), which turns out

to take the form H2 = C̃r/a
d. Ultimately, we find a critical solution

ζ ≡ 0, Φ⊥ ≡ Φ⊥0, M(t) ≡ T (t)× ez̃c ≡ 1

a(t)
× ez̃c

(
S

r̃(z̃c) + p̃(z̃c)

) 1
d−1

,

where a(t) = t
2
d ×

(d
2

√
C̃r

) 2
d
, C̃r =

2(d− 1)

d(d− 2)2
r̃(z̃c)

(
S

r̃(z̃c) + p̃(z̃c)

) d
d−1

> 0.

(3.20)

To summarize, the supersymmetry breaking scale and the temperature evolve proportionally

to the inverse of the scale factor. Moreover, this solution is compatible with weak string

coupling. This can be seen by using Eq. (3.4) to derive the time-dependence of the dilaton,

e2 d−1
d−2

φ(t) = 2πM(t) e
√
d−1Φ⊥0 , (3.21)

which decreases with time.

Note that along this very peculiar trajectory, H2 ∝ T d as if the universe was filled with

pure radiation in d dimensions, which seems in contradiction with the result ρ = d × P .

In fact, using Friedmann equation (3.8), the puzzle is resolved by observing that the total

energy density and pressure satisfy

ρtot =
1

2
Φ̇2 + ρ =

(d− 1)2

d(d− 2)
ρ

Ptot =
1

2
Φ̇2 + P =

d− 1

d(d− 2)
ρ

 =⇒ ρtot = (d− 1)Ptot. (3.22)

In other words, the classical kinetic energy of the no-scale modulus combines with the thermal

free energy of the infinite towers of KK modes along X9, to yield a “radiation-like” cosmo-

logical evolution i.e. indistinguishable with that of a universe only filled with thermalized

massless states.

The local stability of this solution against small fluctuations has been shown analytically

in Ref. [15] for d ≥ 4.6 Hence, for arbitrary initial conditions close enough to the trajectory

of Eq. (3.20), the generic evolution is attracted to the critical one. For this reason, we

refer to these generic cosmological evolutions as “radiation-like dominated solutions”. When

converging to z̃c, z(t) may or may not oscillate, depending on the initial conditions. Moreover,
5We may include the lower bound 0 in Eq. (3.18), at which we formally have z̃c = +∞. In that case, z(t)

is actually running away rather than being stabilized at some finite value. The class of theories satisfying
NF = NB and sometimes referred to as “super no-scale models” may be of particular interest [21,23,25,26].

6See also Refs [27,28], for supersymmetric theories at finite temperature.
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ζ always undergoes damped oscillations and eventually stabilizes at 0. Notice that this is a

remarkable effect. In the literature, when such a scalar field has a constant mass and oscillates

in a well, its energy does not dilute fast enough when the universe expands, the scalar does

not stabilize, and the universe is not entering in a radiation-dominated era. To bypass this

fact, known as the “cosmological moduli problem”, the decay of the massive scalar field is

invoked, which can lead to new difficulties such as an excessive entropy production [18].

The cosmological moduli problem does not occur in our string theory framework because

the mass m (measured in Einstein frame) of ζ is not constant. From Eq. (2.28), we find

m2 =
2

π
e

4
d−2

φ T d−2, (3.23)

which drops with time and increases the damping of the oscillations of ζ, which is not

anymore solely due to the friction resulting from the expansion of the universe. Eventually,

the energy stored in the modulus dilutes faster than the radiation-like density ρtot (or its

component associated with the NF +NB true species of radiation), so that ζ stabilizes.7

For completeness, we point out that when (NF − NB)/(NF + NB) > 1/(2d − 1), the

supersymmetry breaking directionX9 spontaneously decompactifies, and the supersymmetry

breaking is screened by thermal effects. The generic evolution is naturally interpreted in a

(d + 1)-dimensional anisotropic universe, which is radiation dominated [16]. Our purpose

being eventually to describe the destabilization of ζ arising when supersymmetry breaking

effects dominate over thermal ones, this case in not interesting to us in the present work.

Alternatively, when (NF−NB)/(NF+NB) < 0, the initially expanding universe stops growing

and then collapses, with domination of moduli kinetic energy [12]. These remarks justify

why we restrict our models to satisfy Eq. (3.18).

Freezing along the plateaus: The above attractor mechanism is only local, in the sense

that initial conditions too far from the critical solution with ζ = 0 may yield a different
7The generic solution for d = 3 turns out to be “marginally radiation-like dominated”, in the following

sense. As in higher dimensions, t−
2
3 a(t) and a(t)T (t) converge to constants, while z(t) → zc and ζ(t) → 0.

However, the asymptotic behavior of Φ⊥(t) is logarithmic rather than constant, and ζ̇2/H2 oscillates without
damping. Altogether, we have #H2 ∼ #Φ̇2

⊥ ∼ 1
2 Φ̇2 + 1

2 ζ̇
2 + ρ. This means that for d = 3, the definitions

of ρtot and Ptot should include the kinetic energies of Φ⊥ and ζ in addition to that of Φ, to satisfy the
“radiation-like” state equation ρtot ∼ 2Ptot. If the above behavior can be checked numerically, it could also
be shown as in Ref. [28], which analyzes the pure thermal case (i.e. without supersymmetry breaking). In
the latter case, though, the generic solution is “marginally radiation-like dominated” for d = 4, rather than
d = 3.
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behavior. In particular, when ζ is along one of the plateaus shown in Fig. 1, the ñF+ñB states

are heavier than T andM and yield exponentially suppressed contributions. Neglecting these

terms, we have

f(z, η, ζ) = −(nF + nB)f
(d)
T (z) + (nF − nB)f

(d)
V (z). (3.24)

Let us first describe a new critical solution. Clearly, the equations of motion (3.15)

and (3.14) of ζ and Φ⊥ are satisfied when these fields are arbitrary constants ζ0 and Φ⊥0. As

explained in [15], one can proceed as before and find that, provided that the model satisfies

0 <
nF − nB

nF + nB

<
1

2d − 1
, (3.25)

a particular solution exists with constant z ≡ zc, where zc is the unique root of the equation8

r̂(zc) = dp̂(zc), where r̂(z) ≡ r(z, η, 0), p̂(z) ≡ p(z, η, 0). (3.26)

Altogether, this peculiar evolution is

ζ ≡ ζ0, Φ⊥ ≡ Φ⊥0, M(t) ≡ T (t)× ezc ≡ 1

a(t)
× ezc

(
S

r̂(zc) + p̂(zc)

) 1
d−1

,

where a(t) = t
2
d ×

(d
2

√
Ĉr

) 2
d
, Ĉr =

2(d− 1)

d(d− 2)2
r̂(zc)

(
S

r̂(zc) + p̂(zc)

) d
d−1

> 0,

(3.27)

which is radiation-like. It is also stable against small fluctuations. In other words, initial

conditions close enough to the trajectory (3.27) yield evolutions attracted to the critical one,

and are therefore radiation-like dominated.

No eternal fall out of the plateaus: For completeness, even if we will not make use of

this property in the dark-matter generation mechanism described in the following section,

we mention that the attraction towards the flat regions of the thermal effective potential

of ζ is even stronger than may be expected. When the exponential behavior of F(σ) is

decreasing, as shown in Fig. 1 and 2, we may worry about the possibility that |ζ| falls out

of the plateaus when it rolls enough to exceed min(lnR0, lnR9). In that case, one may

think that the internal direction Xd may spontaneously decompactify. However, analytic

arguments in favor of an attraction of |ζ| back to the plateaus was raised in Ref. [15,16]. To
8As in Footnote 5, we may include the lower bound 0 in Eq. (3.25), and have z(t) running away towards

zc formally equal to +∞.
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figure out what is going on, we can simulate numerically the system of differential equations

when ζ is initially located on the waterfall part of the potential, with low enough velocity.

The evolutions in 4 dimensions of ζ(t), z(t), Φ⊥(t) and the product a(t)T (t) are plotted for a

set of generic initial conditions in Fig. 3a. While it is not a surprise to see |ζ(t)| to increase,

(a) (b)

Figure 3: (a) Numerical simulation of ζ(t), z(t), Φ⊥(t) and a(t)T (t), when ζ sits initially in the decreasing
exponential part of its potential (see Figs 1 and 2). The purple dashed curve shows the width of the plateau
which increases with time. ζ(t) begins by increasing while falling along the potential until it is caught by the
growing plateau. It then stabilizes while z(t), Φ⊥(t) and a(t)T (t) eventually reach their asymptotic values.
(b) Same simulation when the exponential region of the thermal potential increases with ζ, at initial time.
ζ(t) begins by decreasing, thus approaching the plateau where it eventually freezes.

the boundary min(lnR0(t), lnR9(t)) of the plateau (delimited by the shaded area) increases

faster and eventually catches up ζ(t). When the latter is back to the plateau, the evolution

is attracted as before towards the critical solution of Eq. (3.27).

When nF − nB > 0 while ez is large enough, the exponential behavior of F(σ) as a

function of ζ is increasing. When this is the case, the attraction back to the plateau is

naturally expected to be even more efficient than in the above waterfall case. As shown

in Fig. 3b, this expectation turns out to be confirmed by numerical simulation. As seen

on the plots, |ζ(t)| starts by decreasing and then freezes once it is caught by the plateau.

Notice however, that as long as z(t) > 0 holds, the width of the plateaus is given by lnR9(t),

while when z(t) < 0 it is determined by lnR0(t). As a result, a change of the slope of the

time-dependent length of the plateaus is observed when z(t) ' 0.
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3.3 Dynamical phase transition and mass generation

We are now ready to describe the mechanism that triggers the phase transition responsible

for generating large masses for states that will be interpreted as dark-matter constituents

in the next section. The key point is to have an excess of massless fermionic modes at the

self-dual point, ñF − ñB > 0 (ε odd in our example).

Qualitative expectations and specification of the models: In order to infer what

the mechanism will turn to lead to, let us remind what we learned from Eq. (2.28). When

T is sufficiently larger than M (i.e. ez is small enough), ζ is massive. Assuming ζ to be

initially in its potential well (see Fig. 1), provided that Eq. (3.18) holds, we expect the generic

cosmological evolution to approach the critical solution of Eq. (3.20). This attraction may

be definitive, if ez̃c is low enough for maintaining ζ massive throughout the convergence of

the evolution towards the critical one. In that case, the behavior of the universe is identical

to that described for ñF − ñB < 0, with a stabilization of ζ at the origin.

However, in models such that ez̃c is large enough for ζ to be tachyonic, the above at-

traction of z(t) towards z̃c forces the squared mass of ζ to change sign during the evolution.

The critical solution still exists, but becomes unstable at this stage. In fact, the potential

well of ζ becomes the bump shown in Fig. 2 and a Higgs-like transition is expected to occur,

responsible for the destabilization of ζ away from the origin. The latter slides along the

bump until it reaches one of the plateaus. Once there, assuming that Eq. (3.25) is satisfied,

we have shown in the previous section that ζ gets frozen, due to the friction arising from

the expansion of the universe. The final behavior of the evolution is thus attracted to the

critical solution, Eq. (3.27), and is therefore radiation-like dominated.

To summarize, for the mechanism to take place, the following conditions must hold:

(i) ñF − ñB > 0 (more extra massless fermions than bosons at ζ = 0),

(ii) 0 <
nF − nB

nF + nB

and
NF −NB

NF +NB

<
1

2d − 1
(zc and z̃c exist),

(iii) f
(d−2)
T (z̃c) <

ñF − ñB

ñF + ñB

f
(d−2)
V (z̃c) (ζ tachyonic at z = z̃c).

(3.28)

In our examples, these constraints translate into

(i) ε odd, (ii) 0 < 8− den and
10− den

506 + den

<
1

2d − 1
, (iii) z̃c > 0, (3.29)
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which admit solutions in various dimensions:

• For d = 3, we can have den = 0, 2, 4, 6. The limit case den = 8 can be included if we

allow z̃c to be +∞. The den roots of Gen can be realized at SU(2) and/or SU(3) enhanced

gauge symmetry points of the Narain lattice of the internal T 5.

• For d = 4, den = 0, 2, 4, 6 (and possibly 8) are allowed. The den roots can be realized

at SU(2) and/or SU(3) points of the Narain lattice of T 4.

• For d = 5, only den = 4, 6 (or 8) are allowed and realized at SU(2) and/or SU(3) points

of the Narain lattice of T 3.

• There is no solution for d = 6, 7 and 8 in our examples.

Numerical simulations: Unlike critical solutions that describe asymptotic behaviors, the

phase transition is a transient regime. Thus, solving analytically the equations of motions

to describe explicitly the associated solutions for generic initial conditions is difficult. For

this reason, we have simulated numerically the system of differential equations. The results

match with all the qualitative expectations described above.

Our choice of initial conditions at t = 0 is such that the universe expands (ȧ(0) > 0),

with the temperature T (0) slightly higher than the supersymmetry breaking scale M(0)

(z(0) . 0). Moreover, ζ(0) is anywhere in its well, with low enough velocity. Notice that if

we assume throughout this paper the temperature (and supersymmetry breaking scale) to

be lower than the Hagedorn temperature, R0 > RH , naturalness invites us to choose R0(0)

equal to few units (counted in
√
α′).9 Note that such a radius R0(0) is enough for neglecting

the exponentially suppressed contributions to the free energy, as done in Sect. 2. Second,

the well has an initial width which is not very small, say of order 1/10, and no severe fine

tuning is required for ζ(0) to sit inside it.

As shown in Fig. 4a, letting the system evolve in d = 4 dimensions, ζ(t) starts oscillating

with damping around the origin, while z(t) is increasing (to approach z̃c > 0). It is only when

z(t) becomes positive, so that the well turns into a bump, that ζ, which is still close to 0,
9This is at least the case if we imagine that the cosmological era we describe is occurring right after

a Hagedorn era characterized by a temperature T(σ) comparable to the string scale. Such an intrinsically
stringy epoch may describe a change of string vacuum [29], or bouncing cosmologies [30], which are alternative
to the big bang and inflationary scenarios.
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(a) (b)

Figure 4: (a) Numerical simulation for d = 4 of ζ(t), z(t), Φ⊥(t) and a(t)T (t), in a model that realizes the
dynamical phase transition responsible for a large mass generation of initially massless states. ζ(t) oscillates
with damping around 0 as long as z(t) < 0. When the latter become positive, ζ(t) condenses away from the
origin. (b) The shaded area represents the width of the well or bump. The oscillations are within the well,
while freezing takes place away from the bump, where the potential for ζ is flat.

acquires some potential energy and eventually starts sliding along the hill before freezing.

Meanwhile, z(t) and Φ⊥(t) converge to zc > 0 and some constant Φ⊥0, while the product

a(t)T (t) also reaches a constant value. Notice that in Fig. 4a, because the final value of |ζ| is
lower than |ζ(0)|, one may think that the modulus remains stuck on the bump. However, the

width of the hill decreases with time and eventually the motion of the modulus is coming to

an end along a plateau. This can be seen on Fig. 4b, which shows the evolution of the width

of the bump with time. To be specific, for the particular initial conditions we have chosen

in the simulation, the final (string frame) mass |Rd− 1/Rd| ' 2|ζ| of the ñF + ñB states is of

the order of 2% of the string scale, which is rapidly several orders of magnitude larger than

T(σ) and M(σ) that keep on dropping. As a result, the ñF + ñB modes yield exponentially

suppressed contributions to the free energy, thus implying ζ to sit on a plateau.

Before proceeding, we would like to stress that for the sake of simplicity, we have only

allowed in our analytic and numerical analyzes a minimal set of moduli fields to vary. In

particular, we could have treated the 4 degrees of freedom (G+B)ij in Eq. (2.5) as dynamical,

by generalizing the results of Ref. [22] in presence of finite temperature. However, the mass

generation mechanism we have presented would still take place. Moreover, it turns out

that in our simple model, the SO(16)× SO(16) Wilson lines are tachyonic for large enough

ez [21, 22], and it could be artificial to maintain them static.10 However, type I string

models that satisfy the constraint nF − nB > 0 and are tachyon free have been recently
10To figure out whether they can be destabilized or not, the ratio M/T above which they are tachyonic

should be compared with ezc .
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constructed [31], and the phase transition we have discussed may be implemented in their

heterotic dual descriptions.

4 Relic density evolution

The ratio of the mass induced by the phase transition to the temperature being large, the

Boltzmann number density of the ñF + ñB (with ñF − ñB > 0 in generic models) initially

massless degrees of freedom may drastically decrease. In the present section, we explain

how the expansion of the universe may nevertheless imply a non-trivial relic density of non-

relativistic matter to survive.

4.1 Dark-matter thermal freeze-out

In the well-known thermal scenario of cosmology, the dark-matter number density evolution

throughout the universe history results from the competition between two opposite effects:

On the one hand, number-depleting interactions between dark matter and the Standard

Model11 (typically, through its annihilation cross-section σDM↔SM) give the possibility for

dark-matter particles to constantly readjust their number density nDM to its Boltzmann

equilibrium value nDM,eq. The processes by which this happens are two-to-two, of the form

DM + DM → SM + SM. On the other hand, the expansion of the universe tends to make

interactions between dark-matter and Standard-Model particles more unlikely to happen,

since it lowers their respective number densities. Hence, such a dilution renders a thermal

equilibrium between dark-matter and Standard-Model particles more difficult to maintain.

Before presenting how our string theory framework provides an alternative way to gen-

erate a non-relativistic component of the universe energy density, let us first review how a

non-vanishing relic density of dark matter is generated in the usual thermal scenario.
11 Note that number-depleting interactions within the dark sector could also maintain a thermal equilib-

rium in the dark sector with its own temperature. In that case, all occurrences of “Standard-Model particles”
in the coming text should be replaced by “massless dark-matter particles”. However, it is natural to assume
gauge interactions between the dark sector and the visible sector if we deal with only one temperature.
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Cold dark matter scenario: In the standard thermal scenario,12 a dark-matter particle

has a constant mass mDM, and interacts with the Standard Model through two-to-two pro-

cesses, whose annihilation cross-section is denoted σDM↔SM. For visualizing the chronology

of the dark-matter number density, we draw in Fig. 5 the typical evolution of the so-called

1
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FIG. 1. SM-neutrinos, total probability of τ -exit at the Earth surface per angle under the horizon, for an incoming

neutrino of energy Eν = 10 EeV.
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FIG. 2. SM-neutrinos, total probability of τ -exit at the Earth surface per angle under the horizon, for an incoming

neutrino of energy Eν = 10 EeV.

Figure 5: Evolution of the dark-matter yield YDM = nDM/s as a function of x = mDM/T in the standard
thermal scenario, in 4 dimensions (green solid line). The black-dotted line represents the value that the yield
would follow if thermal equilibrium could be maintained all along the history of the universe. Freeze-out
takes place when interactions with the Standard-Model particles are too weak, as compared to the expansion
rate of the universe (after crossing of the red dashed line).

yield,

YDM =
nDM(T )

s(T )
, (4.1)

where s(T ) ∝ T d−1 ∝ 1/ad−1 is the entropy density of the thermal bath. In this figure,

the evolution is parametrized by x = mDM/T , and we have chosen arbitrary values of the

dark-matter mass and annihilation cross-section. The thermal scenario of cold dark-matter

production can be summarized as follows:

• T � mDM: At early times, both dark-matter and Standard-Model particles are rel-

ativistic. If their interactions are strong enough, dark matter is maintained chemically in

thermal equilibrium with the Standard-Model bath so that nDM = nDM,eq ∝ T d−1. The

entropy density of the universe evolving as s ∝ T d−1, the dark-matter yield YDM = n/s is
12In standard cosmology, there is no dynamical dilaton field and the Einstein frame is always implicit.
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initially constant, as can be seen on the left-hand side of Fig. 5. Quantitatively, the interac-

tion is strong enough when (d− 1)H < nDM〈σDM↔SMv〉, where v stands for the dark-matter

particles relative velocities and the brackets 〈 · · · 〉 denote the mean over velocity distribution.

• T . mDM: When the temperature drops under the dark-matter mass, dark-matter

particles become non-relativistic. The Boltzmann distribution becomes exponentially sup-

pressed, nDM,eq ∼ e−mDM/T , and dark-matter particles tend to annihilate more and more into

Standard-Model particles in order to maintain equilibrium, therefore lowering their number

density (see Fig. 5, where the black-dotted and green-solid lines drop together). Standard-

Model particles which have energy 〈E〉 ∼ T are less and less able to produce them back.

Again, such number depletion is possible as long as interactions are strong enough i.e. the

condition (d− 1)H < nDM〈σDM↔SMv〉 is still satisfied.

• T . mDM and (d − 1)H & nDM〈σDM↔SMv〉: After dark-matter particles started anni-

hilating significantly into Standard Model particles, the expansion rate of the universe can

dominate over the annihilation rate, which leads to a chemical decoupling. In Fig. 5, this

corresponds to the point where the red dashed curve is crossed. The universe being radiation

dominated before chemical decoupling, this curve turns out to satisfy YDM ∝ x
d
2
−1, which is

linear for d = 4. At the crossing, the annihilation of dark matter stops, dark-matter particles

freeze-out, and a relic density of dark-matter particles remains as a non-relativistic compo-

nent of the universe. Thus, the number density evolves again as nDM ∝ 1/ad−1 ∝ T d−1 and

the yield becomes constant.

Formally speaking, such a freeze-out can be described by the Boltzmann equation, in

terms of the dark-matter number density nDM(t),

dnDM

dt
+ (d− 1)HnDM = −〈σDM↔SMv〉

[
n2

DM − n2
DM,eq

]
. (4.2)

In this formulation, Standard-Model particles are assumed to be in thermal equilibrium.

Moreover, the dark-matter particles number density at equilibrium is defined as

nDM,eq(t) = ñ

∫
dd−1~k

(2π)d−1

1

e

√
m2

DM
+~k2

T (t) ± 1

, (4.3)

where ñ is the number of dark-matter degrees of freedom, with either Bose-Einstein of Fermi-

Dirac statistics and the integration runs over the momentum ~k of the particles. Neglecting

the expansion rate (d−1)HnDM in Eq. (4.2), an over-density (under-density) of dark-matter
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particles as compared to the equilibrium value would pull (push) the dark-matter density

back to its equilibrium value. Therefore, as long as the expansion term can be neglected as

compared to the interaction term in the right-hand side of Eq. (4.2), the dark-matter density

follows its equilibrium value,

nDM ' nDM,eq (before freeze-out). (4.4)

Conversely, when the expansion starts dominating over interactions in the equation, one can

neglect the right-hand side and obtain

nDM ∝
1

ad−1
(after freeze-out). (4.5)

The neutrino case: So far, we have been discussing the case of a cold dark matter,

decoupling from the thermal bath after it becomes non-relativistic. This guarantees that the

dark matter is cold enough for not streaming freely on large distances after it is produced,

ensuring that the large scale structures are preserved, in agreement with present cosmological

measurements [32].

Nevertheless, the condition that a particle becomes non-relativistic before it decouples

from the thermal bath is not necessary. In fact, as long as its interaction with Standard-Model

particles becomes weak enough at a temperature larger than the dark-matter mass, dark-

matter particles can still be relativistic when they freeze-out. This is exactly what happens

to neutrinos, which decouple at a temperature T ∼ MeV from the thermal bath, far before

they become non-relativistic. This mechanism will take place in some circumstances in the

string theory framework we are now turning to.

Our string theory scenario: As mentioned above, experimental constraints on structure

formation impose that dark matter constitutes today a large, non-relativistic component of

the energy density.

Moreover, we have seen that the key point for a cold dark-matter scenario to be successful

is to have at some point the temperature lower than the dark-matter mass, and to ensure that

its interaction with radiation is weak enough, for a significant amount of dark-matter particles

to remain frozen after they decouple. In string theory, gauge interactions between the dark

and visible sectors may or may not exist. In the examples we have constructed in Sect. 2,
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our main motivation was to present the simplest realization of a phase transition responsible

for a mass generation of initially massless states. Being maximally supersymmetric (in a

spontaneously broken version, e.g. N = 4 → N = 0 in 4 dimensions), massless matter

cannot be chiral and there is no Standard-Model to discuss in this context. However, models

compatible with chirality [33] and realizing an N = 1 → N = 0 spontaneous breaking of

supersymmetry in four dimensions may be considered. For instance, they can be realized

via orbifold compactifications or fermionic constructions. Implementing the mass generation

mechanism in such models, dark and Standard-Model sectors may for instance be unified

prior to the phase transition in a gauge theory based on E6, SO(10), a Pati-Salam gauge

group, etc. In such a case, a significant annihilation cross section σDM↔SM is then natural.

In the following, we assume the string theory model to be realistic enough for such a non-

trivial cross-section to exist. Other possibilities may however be considered, as noticed in

Footnote 11.

In the standard thermal scenario, before freeze-out, when the universe is radiation domi-

nated, as well as after dark matter decouples, the (approximate) relations s ∝ T d−1 ∝ 1/ad−1

we have used extensively hold. Instead, the cosmological evolution derived from string the-

ory before freeze-out is radiation-like dominated and satisfies Eq. (3.16). To be specific, prior

to the phase transition, ζ oscillates in the well, and the evolution approaches the critical,

radiation-like solution (3.20). Similarly, if the destabilization process ends and ζ is stuck

on a plateau, the evolution is attracted towards the second critical, radiation-like evolution,

Eq. (3.27). Hence, before freeze-out, the (approximate) relations s ∝ T d−1 ∝ 1/ad−1 hold and

the yield definition in Eq. (4.1) can be used as in the standard thermal scenario. However,

after dark matter decouples from the thermal bath and eventually dominates, z(t) and Φ⊥(t)

have no more reason to be static, implying S/(aT )d−1 not to be a constant. Consequently,

we will use in this regime an alternative definition of the yield,

YDM ∝ nDM ad−1, (4.6)

which clearly matches with Eq. (4.1) before freeze-out.

The main difference of our scenario with the usual thermal case is that the dark-matter

particles masses are driven by the value of ζ = lnRd and suddenly increase after the phase

transition described in Sec. 3.3 takes place. Since we have shown that the transition is

sufficient to render part of the spectrum spontaneously non-relativistic, such particles can
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freeze-out and constitute a dark component of the universe. To describe qualitatively this

mechanism, we consider in the following the limit case where the condensation of ζ, i.e. the

mass jump, is much faster than all other processes, such as the evolutions of the temperature

and number density nDM. Hence, we assume from now on that while the temperature

drops, ñF and ñB (with ñF− ñB > 0) dark-matter fermionic and bosonic degrees of freedom

are massless before the phase transition, and acquire “instantaneously” a mass mDM at a

temperature T = Tc (both measured in Einstein frame)

m(T ) =

{
0 for T > Tc,

mDM for T < Tc.
(4.7)

Notice that Tc is not determined a priori. Our assumption of instantaneity supposes ζ(t)

starts sliding from the top of the hill when z(t) ' zc (its final value after the transition)

but this condition fixes only the ratio M/T to its critical value ezc = Mc/Tc at the tran-

sition. It turns out that depending on the ratio xc = mDM/Tc, two qualitatively different

situations may occur, as can be seen in Fig. 6, which represents the evolution of the yield.

For completeness, a third case is also shown on this figure. To describe them, we define

the dark-matter number densities right before and right after the transition as n0
DM,eq and

nmDM
DM,eq, respectively. Moreover, we treat 〈σDM↔SMv〉 as not varying at the transition.

•Case 1: At T = Tc, n0
DM,eq〈σDM↔SMv〉 > (d−1)H and nmDM

DM,eq〈σDM↔SMv〉 > (d−1)H

In Fig. 6, this corresponds to the case where the black dotted curve is above the red dashed

curve at xc = mDM/Tc: Before xc, the dark-matter constituent being thermal radiation,

the yield is constant. After the dark matter acquires its mass, it can annihilate sufficiently

for its number density to drop all the way down to its new equilibrium value (see the

violet line in Fig. 6). Then, one recovers the case of a standard thermal cold dark-matter

scenario. Chemical decoupling eventually occurs, the density quits equilibrium and the yield

of Eq. (4.6) freezes-out.

•Case 2: At T = Tc, n0
DM,eq〈σDM↔SMv〉 > (d−1)H and nmDM

DM,eq〈σDM↔SMv〉 < (d−1)H

In Fig. 6, the black dotted curve is below the red dashed curve at xc = mDM/Tc: In this

case, the massless dark matter acquires a mass while its number density is still sufficient for

the annihilation process to be efficient for a while. However, while decreasing, the chemical

decoupling limit is reached before a new thermal equilibrium can be established. Therefore,

dark matter freezes-out at an intermediate relic density (see the yellow line in Fig. 6).

• Case 3: Thermal decoupling may also occur while dark-matter particles are still mass-
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Figure 6: Evolution of the dark-matter yield YDM = nDMa
d−1 (∝ nDM/s before freeze-out) as a function

of x = mDM/T in the string theory scenario, in 4 dimensions. The black-dotted line represents the value
that the yield would follow if the dark-matter particles always had a constant mass equal to mDM, and if
thermal equilibrium could be maintained all along the history of the universe. In Cases 1 (violet line) and 2
(yellow line), two different values of the phase transition temperature Tc are considered. In Case 3 (green
line), the decoupling from the thermal bath takes place while dark matter is still relativistic, and no phase
transition can take place thereafter.

less. In Fig. 6, the red dashed curve intersects the green horizontal line, while ζ has not been

destabilized yet. Before decoupling, the number density follows the relativistic equilibrium

value nDM,eq ∝ T d−1. Then, dark-matter decouples while still relativistic, similarly to the

neutrino case. The particle number gets frozen and its density keeps evolving as 1/ad−1 due

to the universe expansion. Therefore, the alternative definition of the yield, Eq. (4.6), re-

mains constant. In fact, it turns out that no mass generation can take place after decoupling,

and we recover a usual hot dark-matter scenario. To reach these conclusions, let us focus on

the free energy density component associated with the ñF + ñB massless states, accompanied

with their KK modes along the supersymmetry breaking direction X9. Before freeze-out,

the result (in string frame) can be extracted from Eq. (2.28),

FDM(σ) = T d(σ)

{
− (ñF + ñB)f

(d)
T (z) + (ñF − ñB)f

(d)
V (z)

+
ζ2

πT 2
(σ)

[
(ñF + ñB)f

(d−2)
T (z)− (ñF − ñB)f

(d−2)
V (z)

]
+O(ζ4)

}
,

(4.8)

where ζ ' 0 is massive. If at the decoupling from the thermal bath the dark-matter energy

30



density ρf
DM(σ) and pressure P f

DM(σ) = −F f
DM(σ) can be derived from the above formula, the

corresponding expressions at later times are

ρDM(σ) = ρf
DM(σ)

(
af

(σ)

a(σ)

)d−1

, PDM(σ) = P f
DM(σ)

(
af

(σ)

a(σ)

)d−1

. (4.9)

In our notations, af
(σ) is the scale factor when dark matter freezes out, and the scaling rule of

the energy density and pressure results from the dilution arising from the universe expansion.

Therefore, Friedmann equations (3.8) and (3.9) are affected. However, more important to

us is that the potential of ζ in this regime is nothing but

FDM(σ) = F f
DM(σ)

(
af

(σ)

a(σ)

)d−1

. (4.10)

Up to an irrelevant overall scaling, its shape is frozen to that given at the decoupling, which

we know is of a well shape around ζ = 0. As a result, the possibility that any phase transition

would be responsible for the mass generation of dark-matter particles is ruled out. In fact,

when decoupling occurs in the massive phase of ζ, dark matter remains hot, no matter the

sign of ñF − ñB is.

Let us finally comment on the fact that, so far, we have assumed the phase transition to

happen instantaneously, as compared to the time scale necessary for dark-matter particles to

readjust their number density to its equilibrium value. Indeed, while the mass of dark matter

varies with time, the shape of the equilibrium density as defined in Eq. (4.3) also changes

with time. If the mass variation is slow enough, dark-matter particles could adiabatically

annihilate into Standard-Model particles (i.e. with nDM following its mass-dependent equi-

librium value), modifying the temperature at which the chemical decoupling would happen,

and therefore the final value of the relic density. A careful solving of Boltzmann equation,

together with a precise computation of the annihilation cross-section would be necessary to

describe correctly such a situation, which will be addressed in a more complete study of the

phenomenon in the future.

4.2 Dark-matter relic energy density

Our aim is now to partially compute the relic energy density after phase transition and

freeze-out, in Cases 1 and 2. In the examples of Sect. 2, the dark-particles spectrum for ε
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odd amounts to ñF KK towers of fermionic degrees of freedom, together with their bosonic

superpartners. The former have KK momentum m9/R9 along the Scherk-Schwarz direction

X9, while the latter have shifted momentum (m9 + 1
2
)/R9.13

To proceed, we need to specify the velocity distribution of each dark-matter KK species

after the phase transition. Since the lowest string-frame mass |Rd− 1/Rd| of the KK modes

is already much higher than the temperature T(σ), we will simply assume a Dirac distribution

of all velocities i.e. that all dark-matter particles are at rest. The total energy associated

to the dark sector has then two origins. On the one hand, for each KK species, the mass

has to be weighted by the particle number obtained when all particles have decoupled from

the thermal bath (see the final constant values reached by the yield in Cases 1, 2 in Fig. 6).

On the other hand, the vacuum energy of all degrees of freedom also contributes. The latter

is the effective potential at zero-temperature associated to the KK towers of fermionic and

bosonic modes. As can be seen from Sect. 2, such an energy is exponentially suppressed

in R9|Rd − 1/Rd| � 1, since the mass of the zero-momentum mode along X9 is much

larger than the supersymmetry breaking scale M(σ).14 To be consistent with the fact that

we have neglected throughout this paper all such exponentially suppressed heavy modes

contributions, we restrict to the energy arising from the relic particles at rest.

From the above considerations, the total relic dark-matter energy measured in string

frame can be expressed in terms of the particle numbers and dynamical radii Rd, R9 as

follows15,

E(σ) = ñF(af
(σ))

d−1

∫
dd−1~k(σ)

∑
m9

[
N f

B,m9+ 1
2

(
~k(σ)

)√(
Rd −

1

Rd

)2

+
(m9 + 1

2

R9

)2

−N f
F,m9

(
~k(σ)

)√(
Rd −

1

Rd

)2

+
(m9

R9

)2
]
.

(4.11)

Of course, a precise computation of the cross-section σDM↔SM is required to determine when

decoupling takes place. This is compulsory to derive the value of the scale factor af
(σ) at this

13This can be seen by taking the limit R0 → +∞ in Eq. (2.2) and applying a Poisson summation over k̃9.
14In field theory, this vacuum energy is infinite for the bosonic modes alone, infinite for the fermionic

modes alone, but their sum turns out to be finite for arbitrary |Rd−1/Rd|. Technically, this finiteness arises
exactly as that of the free energy at finite temperature evaluated for a supersymmetric spectrum. String
theory yields the same final answer, up to contributions arising from stringy heavy modes not present in
field theory (see Ref. [34] for more details).

15If R9 is time-dependent, ζ = lnRd may evolve again once the universe is matter dominated.
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time. Knowledge of σDM↔SM is also necessary to figure out the final value of the yield (see

Fig. 6) i.e. the distributions N f
B,m9+ 1

2

, N f
F,m9

. However, computing the cross section and

distributions goes beyond the scope of the present paper and we leave this study for later

works.

In the end, the dark-matter contribution to the action for a homogeneous and isotropic

universe is

SDM = −
∫
N(σ)a

d−1
(σ) dx

d ρDM(σ) = −
∫
Nad−1dxd ρDM, (4.12)

where we have expressed the result in either string or Einstein frames, with arbitrary defini-

tion of time i.e. generic lapse functions N(σ) and N , respectively. From Eq. (3.2), the relic

dark-matter energy densities are

ρDM(σ) = ñF E (η, ζ)
(af

(σ)

a(σ)

)d−1

, ρDM = ñF (af
(σ))

d−1 E (η, ζ)
e

2
d−2

φ

ad−1
, (4.13)

where we have defined

E (η, ζ) =

∫
dd−1~k(σ)

(2π)d−1

∑
m9

[
N f

B,m9+ 1
2

(
~k(σ)

)√(
Rd −

1

Rd

)2

+
(m9 + 1

2

R9

)2

−N f
F,m9

(
~k(σ)

)√(
Rd −

1

Rd

)2

+
(m9

R9

)2
]
.

(4.14)

Of course, varying SDM with respect to either of the scale factors, one derives trivial pressures

for cold dark-matter,

PDM(σ) = 0, PDM = 0. (4.15)

However, in string frame, the dark-matter energy density sources the equations of motion

for ζ = lnRd and M(σ) = 1/(2πR9). In the Einstein frame, it affects the dynamics of ζ, the

no-scale modulus Φ and Φ⊥, as follows from Eq. (3.3) and the relation

e2 d−1
d−2

φ(t) = 2πM(t) e
√
d−1Φ⊥ . (4.16)

5 Conclusions and perspectives

The mechanism we have presented for generating non-relativistic dark matter may be relevant

for describing an intermediate era of the cosmological history of the universe. At earlier times,

the standard scenario assumes the existence of a period of inflation followed by reheating.
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While the possibility of realizing this picture in a ultraviolet complete theory is not clear so

far [1,4], other possibilities, inherently stringy by nature, have also been considered. Among

these proposals, various pre-big bang scenarios [30, 35] have been analyzed, or Hagedorn

phase transitions [29] may take place.

Whatever the very early eras look like, assuming that at some later time the universe is

flat, homogeneous, isotropic and thermalized, we have found that the mechanism that trig-

gers the phase transition responsible for the dark matter mass is preceded by a “Radiation-like

Dominated” evolution, which is an attractor of the dynamics. This means that the motion

of the supersymmetry breaking scale M(t) together with the thermal energy density and

pressure associated to KK towers of states conspire for the universe to evolve as if it was

dominated by pure radiation. In this regime, the temperature T (t) and the supersymmetry

breaking scale M(t) are of the same order of magnitude. However, when the dark-matter

particles suddenly become massive and freeze-out, their energy density eventually domi-

nates over radiation and a preliminary numerical analysis of the system seems to yield a

rapid increase of the ratio M(t)/T (t). Hence, a large hierarchy M � T is dynamically gen-

erated, as must be the case to account for the smallness of the cosmic microwave background

temperature, as compared to the very large supersymmetry breaking scale.

For the matter domination to end once dark energy takes over, the motion ofM(t) should

come to a halt. We let for future work the proposal of a mechanism responsible for the

stabilization ofM . However, models yielding an extremely small (and positive) cosmological

constant should be very peculiar. It could be that they satisfy conditions similar, and

actually stronger, than those considered in Refs [21, 23, 25], which have vanishing effective

potential at 1-loop.
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