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Natural aluminium (Al) is a well-known refractory
ent (the third most abundant element in the earth

st, just behind oxygen and silicon elements) not easily

labile (Belhadj et al., 2017). However, anthropological
activities also release aluminium in the environment. For
instance, water treatments use aluminium salts that are
subsequently found in natural waters. The use of
aluminium sacrificial anodes is another source of anthro-
pogenic aluminium, mainly in marine environments. The
anodes enable the protection of the immersed steel
structure by cathodic protection. This process involves
an electrical connection between the submerged or buried

 T I C L E I N F O

le history:

ived 28 May 2018

pted after revision 29 May 2018

lable online 22 June 2018

dled by François Chabaux

ords:

inium speciation

ment

ificial anodes

A B S T R A C T

To protect their steel structures from corrosion by cathodic protection, many harbours use

aluminium sacrificial anodes, which induces aluminium release and potential contami-

nation of the surrounding waters and sediments. To study the impact on Al mobility, a

natural marine sediment was artificially contaminated with aluminium from different

sources: sulphate or chloride salts, or sacrificial anodes. To estimate Al mobility in

sediments, single (HCl) and sequential (F6) extractions were performed; they highlighted

that aluminium is poorly mobile in natural sediment (HCl-leachable: 2% and F6-leachable:

9%). Contamination by aluminium salts inhibits HCl-leachability (� 2%), whereas the Al

F6-leachability is intensified up to 18%, suggesting that the additional aluminium is

scavenged in a mobile fraction that HCl is not able to solubilise. In case of aluminium anode

contamination, sediments present surging Al HCl-leachable (15%) and F6-leachable (32%)

fractions, which are related to aluminium mineralogical speciation. Indeed, contrary to the

Al naturally present or introduced by salts, Al released by anodes is partly bound to the

acid-soluble fraction, probably because of the integration of the released Al into the

calcareous deposit produced at the anodes surfaces that finally comes away and gets

mixed up with the sediment. The presence of aluminium in the acid-soluble fraction of

sediments could have an important environmental impact as this fraction is easily

available. Indeed, Al scavenged in the acid-soluble fraction of sediments participates in

enhancing Al lability near the sacrificial anodes and may affect the surrounding

ecosystems.
�C 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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metallic steel structures to protect and a block of
aluminium, which behaves as an anode, so that the steel
behaves as a cathode and the corrosion is strongly delayed
(Leleyter et al., 2007).

As aluminium is more stable in solid phase than in
aqueous phase, aluminium ions poured in natural waters
tend to be sorbed onto surrounding sediments (Gabelle
et al., 2012; Pineau et al., 2008), which then could act as a
sink of aluminium to biota. Many studies have proved that
the growth of plants and aquatic biota in acidic ecosystems
is largely affected in Al-contaminated environments
(Leleyter et al., 2016; Lu et al., 2011; Meiri et al., 1993;
Platt et al., 2001).

Contamination by heavy metals in sediments is often
assessed by the determination of their total contents and
comparison with either established national guidelines or
some background reference values (Baraud et al., 2017;
Chand and Prasad, 2013; Covelli and Fantolan, 1997;
Dubrulle et al., 2007; Giancoli Barreto et al., 2004; Leleyter
and Baraud, 2005; Meybeck et al., 2007). However, metal
concentrations derived from these total digests do not
necessarily provide biologically meaningful data. The
alternative is to use a partial extraction that only targets
the labile mineral phases, as these are most likely to exert
an influence on biota (Scouller et al., 2006; Tam et al.,
1989). Many chemical extractions procedures have been
proposed in the literature, to estimate the mobility of
metals in soil and sediments, or their bioavailability
defined as the capacity of an element to be transferred
from a soil fraction to a living organism, regardless of the
mechanism.

Thus, some studies focused on the potential mobility of
the heavy metals in sediments, estimated by either simple
(HCl or EDTA) or sequential extractions (several steps)
procedures (Alvarenga et al., 2014; Baraud and Leleyter,
2012; Devesa-Rey et al., 2010; El Azzi et al., 2013;
Hamdoun et al., 2015a, b; Islam et al., 2015; Leleyter
and Probst, 1999; Leleyter et al., 2012; Rousseau et al.,
2009; Roussiez et al., 2013; Sutherland, 2002; Tessier et al.,
1979). These chemical extraction procedures should be
efficient (to solubilize all the elements in sediments which
could be naturally solubilized due to changes in the
physicochemical properties of the aquatic environment)
and selective (the residual metals, that are associated with
very stable fractions of sediments, should not be mineral-
ized during the extractions).

For marine sediments, HCl (1 M) extraction is recom-
mended by many authors (Burton et al., 2005; Doherty
et al., 2000; Hamdoun et al., 2015a, b; Larner et al., 2008;
Leleyter et al., 2012; Peña-Icart et al., 2014; Scouller et al.,
2006; Snape et al., 2004), as HCl is assumed to extract
heavy metals thanks to its acidic properties combined with
the chelatant property of Cl�. Moreover, sequential
extraction procedures, which present the advantage of
characterizing the different labile fractions and thus to be
more selective and specific, are recommended by many
authors too (Leleyter and Baraud, 2006; Leleyter and
Probst, 1999; Shuman, 1985; Tessier et al., 1979; Ure et al.,
1995).

For a comprehensive environmental risk assessment,
both approaches (total and labile contents) are generally

complementary to fully characterize the degree of metallic
contamination of sediments. However, detecting anthro-
pogenic aluminium contamination in sediments could be
especially difficult. Indeed, the usual trace metal conta-
minations studies (using background references compari-
sons) could not be easily transposed to the study of a major
element such as aluminium, because anthropological
quantities are often negligible compared to the natural
amount. First tests (Gabelle et al., 2012; Leleyter et al.,
2012) on natural sediments exhibited some differences in
the mineralogical partitioning of natural and anthropolog-
ical aluminium: partial extractions appear as the only
chemical procedures to use to highlight aluminium
contamination.

To study aluminium fractionation speciation in sedi-
ment, a natural marine sediment (noted SL) was collected.
Some aliquots of SL sediments were contaminated by
aluminium salts or by aluminium sacrificial anode. Then
the total contents of aluminium in the contaminated or
natural sediments were determined as well as the Al
mobility, estimated by single (HCl) and sequential
(Leleyter and Probst, 1999) extractions.

2. Materials and methods

2.1. Sampled sediments

The natural sediment (noted SL) is collected on a weakly
urbanized zone (Luc-sur-Mer, Calvados, western France).
Two cans of 10 L of sediments are taken to the marine
research station (380 m from the sea coast at Luc-sur-Mer),
air-dried and sieved on a < 1 mm mesh. Approximately
8 kg of the obtained sediments are boorishly crushed and
homogenized. Then, a small part (200 g) of the sediments is
crushed in a mortar (agate), homogenized, and stored at
4 8C. This sediment was characterized by a high percentage
of calcium carbonate (evaluated at 33% in the dried
sediments, due to the erosion of marine shells collected
with sediments) and the presence of different clays:
kaolinite (44% of the clay fraction), smectites (31%), illite
(19%), chlorite (4%), and interstratified layers of illite and
chlorite (2%) (for details, see Gouali, 2013).

2.2. Al total concentration

The total concentrations of Al were determined by ICP–
AES (Inductively Coupled Plasma–Atomic Emission Spec-
trometry, Varian, Vista MPX) following sample dissolution
using alkaline fusion (procedure NF ISO 14869-2, AFNOR,
2002). 0.2 g of dried sediment was thoroughly mixed with
0.8 g of lithium metaborate and 0.2 g of lithium tetraborate
in a Pt crucible. The mixture was heated at 1000 8C for
45 min, and then the fusion product was immediately put
in 60 mL of 1 mol�L�1 HNO3 solution until total dissolution
of the residue occurred. The recovered solutions were
made up to a volume of 100 mL with 1 mol�L�1 HNO3

solution and analysed by ICP–AES.
To check the efficiency of the process, a standard harbour

sediment reference (HR1) and a standard marine sediment
reference (PACS2) were analysed (three replicates), and
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e proved the efficiency of the mineralisation process and
 accuracy of the chemical analyses (Gabelle et al., 2012).

 Single and sequential extraction techniques

1 mol�L�1 HCl single extraction and one sequential
raction procedure (Leleyter and Probst, 1999) are
formed.
1 mol�L�1 HCl single extraction is commonly recom-
nded to estimate the content of labile metals in marine
iments (Burton et al., 2005; Larner et al., 2008; Leleyter
al., 2012; Scouller et al., 2006; Snape et al., 2004;

nsend et al., 2009). 1 g of dry sediment is mixed with
mL of a 1 mol�L�1 HCl solution under agitation at room
perature for 1 h. The resulting mixture is centrifuged

00 rpm; 2 min), filtered at 0.45 mm, and the filtrate is
lysed using ICP–AES.
Leleyter and Probst’s (1999) sequential extraction
thod was chosen (for details, see Leleyter and Baraud,
6; Leleyter and Probst, 1999; Leleyter-Reinert, 2017)

ong several procedures, as this procedure was checked
selectivity, reproducibility, and repeatability of the

erent steps, and was commonly used in the literature
r et al., 2009; Cecchi et al., 2008; N’guessan et al., 2009;
arredy-Aranguren et al., 2008). This chemical extrac-

 dissolves, in selective and efficient ways, all the
mical constituents of sediments in the following order:
water soluble fraction (released by ultrapure water);
exchangeable fraction (extracted with a magnesium
ate solution); F3, acid-soluble fraction (leached by an
/acetate buffer); F4, reducible fraction (extracted with
roxyl ammonium, oxalic acid and ascorbic acid); F5,

disable fraction (released by hydrogen peroxide-am-
nium acetate extraction). F6 is the sum of all labile
tions (F6 = SF1 to F5).

 Laboratory contamination tests

1. Salts contamination

As the most frequently salts used in treatments of
kable waters in the coagulation/flocculation process are

minium polychloride and aluminium sulphate (Takaoka
l., 2015), contamination tests were run with these two
mon aluminium salts according to the following

tocol. Aluminium sulphate (Al2(SO4)3�18 H2O) or alumin-
 chloride (AlCl3�6 H2O) are added to an artificial sea water
tion, to get an aluminium concentration of 200 mg�L�1

ich is the reference for drinking waters according to the
nch ‘‘arrêté’’ of 11 January 2007). Then 10 g of sediment
re mixed with 30 mL of z saline solution (aluminium

hate or chloride) under agitation at room temperature
24 h. The resulting mixture is centrifuged (3000 rpm;
in) and residual are dried (40 8C), and noted SLsulfate or

loride (respectively SL contaminated by aluminium
hate or aluminium chloride solutions). The pHs of the
tions are measured. The obtained values for the initial

 final solutions remain stable and equal to 8.0.

2. Sacrificial anode contamination

Contamination tests by an aluminium sacrificial anode

cell (20 8C) by means of a classic electrochemical experiment
with three electrodes–aluminium alloy working electrode
(5.2 cm2), reference saturated calomel electrode, and
platinum counter-electrode (46.1 cm2). In the cell, 100 g
of sediments and 700 mL of artificial sea water (ASTM) are
placed. A positive current of 0.1 A is imposed for 24 h. At the
end of the experiment, we collect the superficial layer of the
sediment (0 to 0.5 cm; noted SLanode), which is finally dried
at 40 8C. As for salt contamination tests, the initial and final
pHs of the solutions are measured: the pH drops from 8.0 to
4.0. This pH variation is probably due to the precipitation of
solubilised Al, as aluminium hydroxysulphates form
(Gouali, 2013).

3. Results and discussion

3.1. Aluminium mineralogical speciation in natural sediment

The total content of Al in the natural sediment (SL) is
equal to 28 � 1 g�kg�1 (see Table 1). This value remains in the
ranges reported by various studies (Gabelle et al., 2012 ;
Hamdoun et al., 2015a). As already observed in our previous
studies in non-contaminated sediments (Gabelle et al., 2012),
Al in the natural sediment SL is mainly scavenged in the
residual fraction. Indeed, the two extraction procedures
tested (HCl and sequential extractions, Table 1) solubilize less
than 9% of the total aluminium, suggesting a poor mobility of
this element. The applied sequential extraction (Leleyter
et al., 2012) is more aggressive (9% mobilized) than HCl
extraction (only 2% of Al mobilized). Such a result is usual for
most of the current studied elements, except for lead or zinc
(Hamdoun et al., 2015a ; Leleyter et al., 2012).

Fig. 1 displays aluminium fractionation, according to
the sequential procedure applied: the percentage of the
total aluminium mobilized in each fraction is reported. The
natural sediment SL is characterized by leachable Al almost
exclusively present in the reducible fraction (95%) and only
5% in the oxidable fraction.

3.2. Impact of aluminium contamination on aluminium

mobility

The total contents of Al in contaminated sediments are
respectively 29 and 33 g�kg�1 after the aluminium

Table 1

Al total concentration (g�kg�1) (alkaline fusion: FA) in contaminated (salts

or anode) natural marine sediments (SL).

FA (g�kg�1) HCl (%) F6 (%)

SL 28 2 9
Ec SL 1 0 1

SLsulphate 33 2 18
Ec SLsulphate 1 0 2

SLchloride 33 2 11
Ec SLchloride 0 0 1

SLanode 29 15 32
Ec SLanode 1 0 1

Percentage of labile aluminium (HCl and sequential (F6) extractions),

three replicates. (average values in bold; standard deviations in italic).
rificial anode contamination and salt contamination
tails in Gouali, 2013) are performed in a 1-L thermostatic sac
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tests (see Table 1). Compared to the initial sediment Al
content, the increase in total aluminium content is low (5%
for the case of the sacrificial anode) to moderate (18% for
the contamination by salts). Thus, analysis of total content
cannot discriminate the aluminium from anthropogenic
source, as anthropological quantities are often negligible
compared to the natural amount of this major element.

Focusing on the salts contamination experiments, it
seems that the nature of the used salts (sulphate or
chloride) affects neither the rate of Al contamination
(33 g.kg�1, Table 1), nor the HCl-leachable percentage (2%,
Table 1), nor the mineralogical speciation (reducible
fraction > 94% with the two salts, Fig. 2). On the other
hand, the F6-leachable percentage differs according to the
salt nature: Al from sulphate salts is more F6-leachable
than Al from chloride salts.

Compared to the natural sediment (SL), the HCl-
leachable percentage remains unchanged for the sedi-
ments contaminated (2%) with the two salts (despite the
moderate increase of the aluminium total content).
Whereas an increase in F6-leachable percentage is

observed, with values up to 18 or 11% (respectively in
case of aluminium sulphate or chloride contamination),
compared to 9% for SL. This suggests that the aluminium
from salt contamination is scavenged in a mobile fraction
that HCl is not able to solubilise.

A previous study, conducted in tidal artificial condi-
tions, with natural sediments artificially contaminated
with aluminium salts, highlighted that the Al-contamina-
tion had a strong effect on diatom communities growing at
the sediments surface, and that 1 mol�L�1 HCl-extraction
probably underestimates aluminium bioavailability for
phytobenthic communities (Leleyter et al., 2016).

The sediment contaminated by the sacrificial anode
stands out by the important HCl-leachable percentage
(15%, Table 1) measured, compared to the low HCl
leachability (2%) observed for the other sediments studied.
Thus, anode contamination induces a rise in the HCl-labile
content, which could not exclusively be correlated with the
low additional quantity of Al introduced (5%). These results
show that cathodic protection by an Al sacrificial anode
does not only discharge anthropological aluminium, but
also modifies the mineralogical speciation of the initial
natural aluminium, and therefore its environmental
availability, which is increased. This phenomenon could
be explained by the fact that cathodic protection induces
changes in redox potential and pH conditions, which are
known as environmental factors influencing the speciation
and availability of the elements (Leleyter and Probst,
1999).

This increase in the HCl-leachable percentage in the
case of sacrificial anode contamination is fairly consistent
with our previous study (Gabelle et al., 2012) in an open-
air field of the Port of Le Havre (western France), where Al

Fig. 1. Leachable aluminium fractionation according to the sequential

extraction applied.
Fig. 2. Aluminium partitioning in different mineralogical fractions.
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rificial anodes are used to protect steel structures
inst corrosion. Indeed, we observed an important
rease in HCl mobility (11%) in the sediment collected
r the Al sacrificial anodes, with regard to HCl mobility
and 3% respectively) in less or non-contaminated
iments sampled downstream and upstream from the
t. The strong HCl-lability associated with the dissolu-

 of the sacrificial anode, confirmed by the present
dy, is worrying, as sediments characterised by alumini-

 HCl mobility superior to 4% induced important
ative effects for benthic diatoms growing at the surface
he sediments, reported in Leleyter et al. (2016).
Moreover, this difference of HCl-mobility according to

 nature of the contamination source (salt or anode
olution) could be explained by the mineralogical
ciation of labile aluminium. Fig. 2 shows that labile
is almost exclusively bound to the reducible fraction

4%) for the sediments contaminated by the aluminium
s. In contrast, for the sediment contaminated by Al
des, even if the reducible fraction remains the
vailing one (69%), a significant percentage of labile Al
lso found in the oxidable (3%) and acid-soluble (28%)
tions. This acid-soluble fraction is mainly composed of

bonates, phosphates, and sulphates (Leleyter and
aud, 2006); the use of sacrificial anodes in seawater
uces the formation of a calcareous deposit, mainly
stituted of calcium carbonate (Rousseau et al., 2010).
eed, cathodic currents induce dissolved oxygen
uction – Eq. (1) –, which generates hydroxyl ions at

 very near polarized surface, which increase the
rfacial pH and result in enhanced carbonate ion
centration – Eq. (2) – and in the precipitation of an
rganic layer whose principal component is calcium
bonate, even containing some magnesium – Eq. (3). This
ed deposit is generally called ‘‘calcareous deposit’’.

þ 2H2O þ 4e�! 4OH� (1)

O3
� þ OH�! H2O þ CO3

2� (2)

þ þ CO3
2�! CaCO3ðsÞ (3)

Then, it is possible that the Al3+ ions, resulting from
de dissolution, co-precipitate with the calcareous
osit. The incorporation of foreign metal ions in this
osit has already been observed in a previous work
rré et al., 2017). Parts of this deposit can fall apart and

 mixed up with the sediment. In the same way, the
ly formed precipitates of aluminium hydroxysulphates

 be finally incorporated within the sediment. These
pounds then enrich the acid-soluble fraction. Similar

ults have been obtained in the analysis of natural
iments collected near to sacrificial anodes installed in

 Port of Le Havre (Gabelle et al., 2012). This presence of
minium in the acid-soluble fraction could have an
ortant environmental impact, as this fraction is

4. Conclusion

The Al total content in a natural sediment
(28 � 1 g�kg�1) was poorly solubilized, either by single HCl
or by sequential (Leleyter and Probst, 1999) extractions,
suggesting a poor mobility of this element. Moreover,
leachable aluminium is scavenged mostly exclusively (95%)
in this reducible fraction of this natural sediment (5% in the
oxidable fraction).

Aluminium contamination tests (with aluminium salts
or aluminium from sacrificial anode) induce a low increase
in the Al total concentration with regard to the non-
contaminated sediment. Thus, anthropogenic aluminium
in sediments could not be detected by total mineralization
methods, as anthropological quantities are often negligible
compared to the natural amount of this major element.

For the sediments contaminated by Al salts, we notice
an unchanged value for the HCl Al-leachable percentage
(2%), but a strong increase in the F6-leachable percentage
(SL: 9%, SLsulphate: 18% and SLchloride: 11%). This suggests
that Al coming from salt contamination is scavenged in a
mobile fraction of the sediment that HCl extraction is not
able to solubilise. A previous study (Leleyter et al., 2016),
which highlighted that Al-contaminated sediments had a
strong effect on the diatom communities growing at the
surface of the sediments, proved that 1 mol�L�1 HCl
extraction (widely used in the literature for metal mobility
evaluation in marine sediments) underestimated the
aluminium bioavailability for phytobenthic communities.
Thus, we do not recommend 1 mol�L�1 HCl single
extraction to study aluminium mobility in sediments.

Moreover, we note that cathodic protection by Al
sacrificial anodes does not only discharge anthropological
aluminium in the environment, but also modifies the
mineralogical speciation of the initial natural aluminium,
and therefore its environmental availability, which is
increased (F6-leachable: 32%). Thus, labile aluminium is
mainly bound to the reducible fraction (> 94%) in the
sediments contaminated with salts, whereas it is also
bound to the acid-soluble (28%) and oxidable fractions (3%)
for the sediment contaminated by the sacrificial anode.

This rise of Al-lability could be explained by:

� a modification of the mineralogical speciation of the
natural aluminium induced by the changes in redox
potential and pH conditions;
� and/or by the use of sacrificial anodes in seawater, which

induces the formation of a calcareous deposit; the Al3+

ions resulting from anodes dissolution co-precipitate
with the calcareous deposit and enrich (as also probably
aluminium hydroxysulphate precipitates) the acid-solu-
ble fraction of the sediments.

Then, it seems that the origin of the anthropological
contamination (aluminium salts or aluminium sacrificial
anode) has a considerable importance on the form of
aluminium sorption on the sediments, which has a direct
impact on aluminium speciation and distribution in the
sediments fractions. The presence of aluminium in the
-soluble fraction of the sediments could have an
erally considered as really easily available. acid
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important environmental impact, as this fraction is
generally considered as really easily available. Thus, we
do not recommend the use of aluminium sacrificial anodes
in natural environments, especially if the installations to
be protected are close to the coast, facilitating metal
accumulation in the sedimentary phase.
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