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Abstract

We review that in no-scale models in perturbative string theory, flat, homoge-
neous and isotropic cosmological evolutions found at the quantum level can enter
into “quantum no-scale regimes” (QNSRs). When this is the case, the quantum
effective potential is dominated by the classical kinetic energies of the no-scale
modulus, dilaton and moduli not involved in the supersymmetry breaking. As
a result, the evolutions approach the classical ones, where the no-scale structure
is exact. When the 1-loop potential is positive, a global attractor mechanism
forces the initially expanding solutions to enter the QNSR describing a flat, ever-
expanding universe. On the contrary, when the potential can reach negative
values, the internal moduli induce in most cases some kind of instability of the
growing universe. The latter stops expanding and eventually collapses, unless
the initial conditions are tuned in a tiny region of the phase space. Finally, in
QNSR, no gauge instability takes place, regardless of the details of the potential.

1Based on works done in collaboration with T. Coudarchet and C. Fleming [1, 2], and presented at the
7th International Conference on New Frontiers in Physics (ICNFP2018).

2herve.partouche@polytechnique.edu
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1 Introduction

In quantum field theory, what is considered classically is a flat and static universe, with

arbitrary particle content. Quantum corrections of the associated fields are then computed,

without wondering whether the particle content imposes contraints for the flat universe to

be stable. In fact, for spacetime to remain (nearly) flat and static in presence of gravity, the

minima of the quantum potential should (nearly) vanish, a fact that is obviously satisfied but

of limited phenomenological interest when supersymmety is exact. On the contrary, when

supersymmetry is spontaneously broken, one may look for models at weak string coupling

where the 1-loop potential (nearly) vanishes, 〈V1-loop〉 ' 0 [3–6].1 Additional conditions

should then be imposed for loop corrections up to some higher order to be (nearly) vanishing

as well [7]. If such models with realistic particle content would exist, selecting them may

necessitate some version of the anthropic principle.

In the present paper, we follow a different approach, where the 1-loop effective potential

is generic. In this case, the quantum potential energy appears as a source term to be

added in the classical Einstein equations. The static universe being no more a solution, we

look for the flat, homogeneous and isotropic cosmological evolutions. This is done in the

framework of the initially maximally supersymmetric heterotic string in d dimensions, where

all supersymmetries are spontaneously broken by a stringy version [8] of the Scherk-Schwarz

mechanism [9]. In this framework, analytic derivations can be done explicitly, allowing us

to address two questions [1, 2] :

(i) Under which conditions a flat expanding universe keeps on growing ? A direct conse-

quence of Einstein equations is that a sufficient condition for this to arise in a perturbative

regime is to have V1-loop ≥ 0. It turns out that in the heterotic setup we analyze, the universe

can also be ever-expanding when V1-loop < 0. However, the presence of moduli fields often in-

duces some kind of “instability” : Most of the initially growing universes stop expanding, and

eventually collapse into Big Crunches. This happens unless the initial conditions are tuned

in a tiny region of the phase space. These observations may suggest that spectra leading to

positive quantum potentials are way more natural to describe flat expanding spacetimes.

1In the framework described in the core of this review, “nearly vanishes” means exponentially suppressed
in Ms/Mσ, where Ms is the string scale and Mσ the supersymmetry breaking scale measured in σ-model
frame.
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(ii) What are the properties of these flat, expanding universes ? In the stringy Scherk-

Schwarz mechanism, the supersymmetry breaking scale is a field, Mσ ≡ eαΦMs for some

constant α, that parameterizes at tree level a flat direction of a classical potential Vtree ≥ 0.

As a result, Φ is referred as the “no-scale modulus” and the classical model is said to be a “no-

scale model” [10]. In the cosmological evolutions we find at the quantum level, the classical

kinetic energies of Mσ, of the dilaton and of moduli fields to be characterized dominate

over |V1-loop| and the kinetic energies of the remaining moduli. As a result, the expanding

solutions approach asymptotically those found classically, when the 1-loop potential is not

taken into account, or alternatively when V1-loop vanishes (up to exponentially suppressed

terms). In other words, the no-scale structure present at the classical level and broken by

quantum effects is restored cosmologically. For this reason, we will say that the universe

enters dynamically in “quantum no-scale regime” (QNSR). Moreover, we will see that no

Higgs-like instability occurs in such a regime, whether moduli sit at minima, maxima, saddle

points or actually anywhere in moduli space.

In Sect. 2, we describe a toy model involving a minimal set of degrees of freedom, in

order to highlight the existence of QNSRs [1]. The effects of marginal deformations in true

heterotic models are described in Sect. 3 [2]. Our concluding remarks can be found in the

last section.

2 Toy model

The positive thing in considering a reduced set of degrees of freedom is that solving exactly

the equations of motions at 1-loop is possible. To be specific, we consider the heterotic string

with classical background

R1,d−1 ×
d+n−1∏
i=d

S1(Ri)× T 10−d−n , (2.1)

where the size of T 10−d−n is of the order of the string scale. A coordinate-dependent com-

pactification [8] along the n circles of radii Ri is implemented, which is the counterpart in

string theory of the Scherk-Schwarz mechanism in supergravity [9]. The radii Ri are chosen

large (compared to 1) for the supersymmetry breaking scale to be lower than the string scale,
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Mσ ≡
Ms(

Rd · · ·Rd+n−1

) 1
n

�Ms . (2.2)

This restriction ensures that no Hagedorn instability can occur, and allows a great simplifi-

cation of the expression of the 1-loop effective potential. The latter, defined in terms of the

partition function Z, takes the following form [3,4]

Vσ1-loop ≡ −
Md

s

(2π)d

∫
F

d2τ

2τ 2
2

Z = (nF − nB) vdM
d
σ +O

(
(MsMσ)

d
2 e−Ms/Mσ

)
, (2.3)

where nB, nF are the numbers of massless bosons and fermions.2 The dominant contribution

of this expression arises from the towers of Kaluza-Klein (KK) modes associated to the large

supersymmetry breaking circles. In fact, vd is a function of the complex structures Ri/Rd,

we will treat in this section as constants. The contributions of all other string states are

exponentially suppressed and will be neglected from now on. At 1-loop order, the effective

action involves the classical kinetic terms of Mσ and of the dilaton φdil = 〈φdil〉+ φ, as well

as the potential.3 In Einstein frame, we obtain

S =
1

κ2

∫
ddx
√
−g
[
R
2
− 1

2
(∂Φ)2 − 1

2
(∂φ⊥)2 − κ2V1-loop

]
, (2.4)

where we have introduced canonical scalars Φ and φ⊥. The former is the no-scale modulus,

which is related to the supersymmetry breaking scale measured in this frame, while φ⊥ is an

“orthonormal” combination of fields,

M = e
2
d−2

φMσ = eαΦMs , where α =

√
1

d− 2
+

1

n
,

φ⊥ =
1√

d− 2 + n

[
2φ+ ln

(
Rd · · ·Rd+n−1

)]
. (2.5)

In our notations, R is the Ricci curvature, κ2 = e2〈φdil〉/Md−2
s is the Einstein constant and

the potential becomes

V1-loop = (nF − nB) vd e
dαΦMd

s . (2.6)

Ignoring higher order corrections in string coupling, the field configurations which make

extremal this action are relevant when compatible with weak coupling.

2As usual, τ = τ1 + iτ2 is the genus-1 Teichmüller parameter and F the fundamental domain of SL(2,Z).
3When V1-loop does not vanish identically, it is a source for the kinetic energies. Adding 1-loop corrections

to the kinetic terms would effectively modify the solutions at second order in string coupling.
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Being interested in homogeneous and isotropic cosmological evolutions in flat space, we

consider the scalar fields Φ(t), φ⊥(t) and metric gµν = diag(−1, a(t)2, . . . , a(t)2) ansatz, where

t is cosmic time. If φ⊥ is a free field, it turns out that the proportionality of ∂V1-loop/∂Φ

and V1-loop leads to the existence of a second free field, which involves the no-scale modulus.

Integrating once their equations of motion, we obtain

φ̇⊥ =
√

2
c⊥
ad−1

, αΦ̇ +
α2

2
d(d− 2)H =

cΦ

ad−1
, (2.7)

where c⊥ and cΦ are constants. These results can be used in the equation obtained by varying

S with respect to a,
1

2
(d− 2) Ḣ = −1

2
Φ̇2 − 1

2
φ̇2
⊥ , (2.8)

where H = ȧ/a, to obtain a second order differential equation in scale factor only. The latter

can be solved when cΦ 6= 0 by defining a new (dimensionless) time variable τ , in terms of

which Eq. (2.8) becomes

A
da

a
= − τdτ

P(τ)
, where τ =

2A

d(d− 1)cΦ

(ad−1)· ,

P(τ) = τ 2 − 2τ + ω
[
1 + 2α2

(c⊥
cΦ

)2]
, A =

ω

4
d2(d− 2)α2 , ω = 1− 4(d− 1)

d2(d− 2)α2
. (2.9)

Finally, it is convenient to determine the second integration constant of the no-scale modulus

by using Friedmann equation, which takes an algebraic form in terms of τ ,

(nF − nB) vd κ
2Md = − c2

Φ

2α2ω

P(τ)

a2(d−1)
. (2.10)

In the following, we present the cosmological solution found for arbitrary c⊥/cΦ, for which a

critical value turns out to be [1]

γc =

√
1− ω
2α2ω

. (2.11)

Spercritical case,
c⊥

γccΦ
> 1 : The degree 2 polynomial P(τ) has no real

root. Due to Friedmann equation (2.10), this case arises only in models where nF − nB <

0. Moreover, no classical limit κ2 → 0 exists, and the evolutions are thus intrinsically of

quantum nature. The scale factor, which involves an integration constant a0, is found to be

a = a0
e−

1
As

arctan( τ−1
s

)

P(τ)
1

2A

, where s =
√

1− ω
√( c⊥

γccΦ

)2

− 1 , (2.12)
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τ τ

a a(i) (ii)

τ− τ+

Figure 1: Qualitative behaviors of a(τ), (i) in the supercritical and (ii) subcritical cases. The arrows
indicate the directions of the evolutions for increasing cosmic time t, when cΦ > 0. Solid and dashed curves
correspond to no-scale models with nF − nB < 0 and nF − nB > 0, respectively. Dotted lines describe the
classical trajectories.

and is shown in Fig. 1(i). The arrow indicates the direction of the evolution when t increases

and cΦ > 0. Translating the τ → ±∞ limits in cosmic time, the scale factor behaves as

a(t) ∼ # |t− t±|
1

A+d−1 , for some constants t±. In these limits, the evolution describes a Big

Bang and a Big Crunch, where the universe is dominated by the total energy of M , i.e.

kinetic plus quantum potential,

H2 ∼ # Φ̇2 ∼ #κ2V1-loop ∼
#

a2(A+d−1)
� φ̇2

⊥ =
#

a2(d−1)
. (2.13)

The 1-loop potential is also responsible for stopping the expansion of the universe, since

we have ä ∝ V1-loop < 0 at the maximum of a. In fact, the evolution can be trusted

far enough from the Big Bang and the Big Crunch, for several reasons: First, all kinetic

energies must be bounded by the string scale, a fact that is guaranteed as far as a(t) is not

too low. Second, the string coupling must remain weak, which imposes a limitation on the

range of τ , since we have e2dα2φ ∼ #|τ | 2ω , as τ → ±∞. To conclude on the supercritical

case, the generation of negative quantum potentials allows new universes to exist (they

have no classical counterparts), however “unstable” in the sense that the potentials are also

responsible for their collapses.

For completeness, we signal that the case cΦ = 0 is somehow “infinitely supercritical”

when c⊥ 6= 0. It requires nF − nB < 0 and yields an evolution qualitatively similar to the

above one. When cΦ = c⊥ = 0, the maximum of the scale factor is formally sent to infinity,

and the trajectories become monotonic.
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Subcritical case,
c⊥

γccΦ
< 1 : The polynomial P(τ) has 2 distinct real roots,

τ± = 1± r , where r =
√

1− ω
√

1−
( c⊥
γccΦ

)2

. (2.14)

From Eq. (2.10), we see that there is no restriction on the massless spectrum of the models :

• When nF − nB > 0, the range of allowed time is τ− < τ < τ+.

• When nF − nB = 0, τ(t) is constrained to be identically equal to τ+ or τ−.

• When nF − nB < 0, two branches of solutions are allowed, namely τ < τ− and τ+ < τ .

Let us first describe the case nF − nB = 0. In the literature, the models with massless

spectra satisfying this condition are sometimes referred as “super no-scale models”. This fol-

lows from the fact that at the points in moduli space associated to the classical backgrounds,

the 1-loop effective potential is extremal (with respect to all internal space moduli), vanishes

and is degenerate for arbitrary value of the no-scale modulus.4 Thus, when the extremum

is a minimum, the exact classical no-scale structure is promoted to the 1-loop level.4 When

the 1-loop effective potential does not contribute at all in the action S, one should in prin-

ciple add the 1-loop corrections to the kinetic terms of Φ and φ⊥. However, once marginal

deformations associated to the internal space are taken into account, as is done in Sect. 3,

V1-loop is not identically vanishing even when nF − nB = 0. Thus, the present case where

the potential is formally absent does not need to be considered in very details and we only

present the limit behaviors of the 1-loop evolutions. In perturbative regime, they can be

found easily by extremizing the classical action. For τ ≡ τ±, we find the expanding (or

contracting, by time reversal) behaviors

H2 ∼ # φ̇2
⊥ ∼ # Φ̇2 ∼ #

a2(d−1)
, where a ∼ #|t− t±|

1
d−1 , (2.15)

which imply in particular

Md ∼ #

a2(d−1)+K±
, where K± = ± 2Ar

1± r
. (2.16)

It can be checked that for the evolution τ ≡ τ+, an interval of c⊥/cΦ exists such that

φ(t)→ −∞ as cΦ(t− t+)→ +∞, which yields a consistent perturbative expanding universe.

Similarly, for τ ≡ τ−, the Big Crunch behavior cΦ(t− t−)→ 0+ is also perturbative in some

finite range of c⊥/cΦ [1].

4Up to exponentially suppressed terms.
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In generic models, where nF−nB 6= 0, the scale factor and supersymmetry breaking scale

evolutions are found to be

a =
a0

|τ − τ−|
1
K− |τ − τ+|

1
K+

, Md =
Md

+

a2(d−1)+K+

∣∣∣∣ τ − τ−τ+ − τ−

∣∣∣∣ 2
τ+

=
Md
−

a2(d−1)+K−

∣∣∣∣ τ+ − τ
τ+ − τ−

∣∣∣∣ 2
τ−
,

(2.17)

where M± can be expressed in terms of cΦ, τ+ and τ−. As announced before and shown in

Fig. 1(ii), the expression of a(τ) admits two branches when nF − nB < 0 (in solid lines),

while for nF − nB > 0 a unique branch exists (in dashed line). The classical trajectories

τ ≡ τ± are also plotted (in dotted lines). Some remarks are in order :

• All trajectories start and/or end with a Big Bang or Big Crunch.

• The behavior of the solutions as τ → ±∞, which exists when nF− nB < 0, is identical

to that found in the supercritical case.

• More interesting is the fact that all solutions approach τ+ and/or τ− i.e. the classical

evolutions, which are also the limit behaviors found in the super no-scale case nF − nB = 0.

To be specific, when τ → τ± we have

H2 ∼ # φ̇2
⊥ ∼ # Φ̇2 ∼ #

a2(d−1)
� |V1-loop| ∼

#

a2(d−1)+K±
, (2.18)

which shows that the no-scale structure is restored during the cosmological evolution. By

definition, we will say that the universe enters “quantum no-scale regimes”, which are char-

acterized by the no-scale modulus Φ becoming free.

• The conditions for the QNSRs to be compatible with string weak coupling are identical

to those found in the classical case.

• When V1-loop > 0, the initially expanding solutions are always attracted to the ever-

expanding QNSR τ → +∞. However, in the models where V1-loop < 0, only one out of

the two branches describes this behavior, while the second branch yields initially expanding

universes sentenced to collapse. These two drastically different histories are somehow on

equal footing, depending on the choice of initial conditions for τ , greater than τ+ or lower

than τ−. This very fact turns out to be amended when the dynamics of other moduli fields

is included, as will be seen in the next section.

• The supersymmetry breaking scale admits a non-trivial dynamic. In the branch τ > τ+,

where the potential is negative, Eq. (2.17) shows that when the universe expands (τ → τ+),

7



M decreases. Thus, the no-scale modulus climbs its exponential potential. In addition, when

τ varies between τ− and τ+, M climbs and then descends its positive potential, when the

integration constant satisfy |c⊥/(γccΦ)| <
√
ω (see also [11]). Around the maximum of M ,

the cosmological evolution may accelerate but with at most an e-fold number of order 1,

thus not describing a substantial inflation.

For completeness, we mention that the critical case, namely |c⊥/(γccΦ)| = 1, for which

the polynomial P(τ) admits a double root τ+ = τ− = 1, is qualitatively similar to the

subcritical one, up to the fact that it applies only to models where nF − nB ≤ 0.

3 Including moduli fields

Having defined the QNSRs in a toy model, our aim is to show how they are affected by the

dynamics of marginal deformations [2]. Compactifying the heterotic string on T 10−d, the

Narain moduli space
SO(10− d, 26− d)

SO(10− d)× SO(26− d)
(3.1)

can be parameterized by the internal metric and antisymmetric tensor G, B, as well as

Y -fields. They can be split into constant backgrounds and y-deformations,

(G+B)Ij = (G(0) +B(0))Ij+
√

2 yIj , I, j ∈ {d, . . . , 9} , YIj = Y
(0)
Ij +yIj , j ∈ {10, . . . , 25} ,

(3.2)

where yIj is the Wilson line of the j-th Cartan U(1) along XI . For simplicity, we implement

the coordinate-dependent compactification along n = 1 direction, Xd. As a result, the

supersymmetry breaking scale in σ-model frame is Mσ =
√
GddMs. As before, we take the

direction Xd to be large, while the size of the remaining compact coordinates is of the order

of the string scale.

Once we take into account marginal deformations, nF and nB are not strictly speaking

integer constant. This is due to the fact that they interpolate between distinct integer values

valid in different regions of moduli space. Choosing an initial background where no non-zero

mass scale exists below Ms, the 1-loop effective potential (2.6) now involves nF and nB that
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are functions of the y-deformations. Taylor expanding, one obtains [2, 4]

V1-loop = (n
(0)
F −n

(0)
B ) vdM

d+Md vd−2

2π

25∑
j=d+1

(
Cj

B−C
j
F

)[
(d−1)y2

dj+
1

Gdd

(
y2
d+1,j+· · ·+y2

9j

)]
+· · · ,

(3.3)

where Cj
B (Cj

F) is 1
2

times the sum of the (charges)2 of all massless bosons (fermions) of the

undeformed background, with respect to the j-th Cartan U(1). As a result, Wilson lines may

be massive, massless or tachyonic. To analyze all cases, we need to consider backgrounds

with factors Cj
B − Cj

F of arbitrary signs. Let us first remind that in the most standard

implementation of the Scherk-Schwarz mechanism, the massless bosonic (fermionic) fields in

d + 1 dimension are periodic (antiperiodic) along Xd. As a result, denoting md ∈ Z and

F ∈ Z2 the momentum and fermionic number of the descendent modes in d dimensions, the

generalized momentum along Xd is

Pd ≡ md+
1

2
F + · · ·+(G+B)djnj = md+

1

2

[
F +2(G(0) +B(0))djnj

]
+ · · ·+

√
2 ydjnj , (3.4)

where nj ∈ Z is the winding number along Xj, j ∈ {d+1, . . . , 9}. In this formula, the ellipses

stand for irrelevant contributions involving the Y -fields. When the background is chosen so

that 2(G(0) + B(0))djnj is an even integer, the lightest bosons are massless at ydj = 0, while

the lightest fermions have a KK mass. However, when 2(G(0) + B(0))djnj is an odd integer,

the role of bosons and fermions is reversed : The lightest bosons have a KK mass at ydj = 0,

while the lightest fermions are massless.

As an example to be detailed in great details until the end of this paper, consider the

matrix (G+B)Ij for I, j ∈ {d, d+ 1}, with b ∈ Z,

(G+B)Ij =

 R2
d

b

2
+
√

2 yd,d+1

− b
2

+
√

2 yd+1,d 1 +
√

2 yd+1,d+1

 . (3.5)

When Rd → +∞ and supersymmetry is recovered in d + 1 dimensions, 2 vector multiplets

with md+1 = −nd+1 = ±1 are massless when b is even and the y-deformations vanish. As

a result, the Cartan U(1) gauge symmetry arising from the direction Xd+1 is enhanced to

SU(2). When Rd is finite, the fermionic parts of these vector multiplets acquire a mass Mσ,

the SU(2) gauge symmetry remains valid and we end up with a mass coefficient Cd+1
B − 0 =

8 × 2. However, Rd finite allows the other interesting case where b is odd. In this case,

the fermionic parts of the vector multiplets are massless, the gauge symmetry becomes U(1)
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and the mass coefficient is 0−Cd+1
F = −8× 2. In fact, freezing for simplicity the degrees of

freedom

yI,d+2 ≡ · · · ≡ yI,25 ≡ 0, I ∈ {d, . . . , 9} , yid ≡ yi,d+1 ≡ 0, i ∈ {d+ 2, . . . , 9} , (3.6)

the 1-loop effective potential for arbitrary yd,d+1, yd+1,d and yd+1,d+1 turns out to be, in

σ-model frame,

Vσ1-loop =
(
n

(0)
F − n

(0)
B + (−1)b 8× 2

)
vdM

d
σ

− (−1)b 16
2Md

σ

(2π)
3d+1

2

∑
k

cos
(
2π(2k + 1)z

)
|2k + 1|d+1

H
(

2π|2k + 1|M
Mσ

)
+O

(
(MsMσ)

d
2 e−Ms/Mσ

)
,

where M =

√
2 |yd+1,d+1|Ms√
1 +
√

2 yd+1,d+1

, z =
√

2

(
yd,d+1 −

yd,d+1 + yd+1,d√
2
(
1 +
√

2 yd+1,d+1

) yd+1,d+1

)
. (3.7)

In this result, M characterises how the SU(2) non Cartan fields are massive. When they

are heavy, M > Mσ, all of the second line of Vσ1-loop is exponentially suppressed, as follows

from the function H(x) ≡ x
d+1

2 K d+1
2

(x). On the contrary, when M < Mσ, the potential

has a simple U -shape, with a minimum at M = 0, when b is even and z = 0. Moreover,

the potential is 1-periodic in z =
√

2 yd,d+1 + · · · and the second line evolves essentially as

cos(2πz). Consistently, changing b even to b odd amounts to shifting z → z + 1
2
. Note that

since there are only 2 combinationsM and z of Wilson lines on which the potential depends,

the latter admits a flat direction
√

2 yd+1,d + · · · [2].

Small Wilson line deformations : In order to show the existence of QNSRs in

presence of dynamical Wilson lines, it is enough to consider the case of small deformations,

|yd,d+1| � 1, |yd+1,d| � 1, |yd+1,d+1| �
√
Gdd. At quadratic order in y’s, the 1-loop effective

action to be considered is

S =
1

κ2

∫
ddx
√
−g
[
R
2
− 1

2
(∂Φ)2 − 1

2
(∂φ⊥)2 − 1

4
(∂yd+1,d+1)2

− Gdd

4
(∂yd,d+1)2 − Gdd

4
(∂yd+1,d)

2 + · · · − κ2V1-loop

]
. (3.8)

The ellipses stand for higher order corrections in Wilson lines we neglect for the time being,

Gdd = e
2
α

Φ e
− 2√

d−1
φ⊥ , and the potential is

V1-loop = edαΦMd
s

[(
n

(0)
F − n

(0)
B

)
vd + (−1)b

8

π
vd−2

(
(d− 1)y2

d,d+1 +
y2
d+1,d+1

Gdd

)]
+ · · · . (3.9)
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After deriving the equations of motion, evolutions describing flat, homogeneous, and isotropic

ever-expanding universes or Big Bangs are sought, with 1-loop potential dominated in Fried-

mann equation :

a(t) −→
t→+∞

+∞ or a(t) −→
t→t−

0 , κ2Md
s e

dαΦ = O
(
H2

aK±

)
. (3.10)

In the above ansatz, ±K± > 0 is a constant to be determined by consistency. We find the

following :

• The simplest behavior to derive is that of the scale factor, a ∼ #|t − t±|
1
d−1 , which is

a consequence of the negligible potential.

• As can be seen from the action S, the Wilson lines yd,d+1 and yd+1,d have non-trivial

friction terms. Moreover, the positive or negative mass term of yd,d+1 turns out to be

irrelevant in the limits (3.10), so that

ẏd+1,d =
#

ad−1Gdd
, ẏd,d+1 ∼

#

ad−1Gdd
. (3.11)

An important remark then follows. In Friedmann equation,

1

2
(d− 1)(d− 2)H2 =

1

2
Φ̇2 +

1

2
φ̇2
⊥ +

Gdd

4
ẏ2
d,d+1 +

Gdd

4
ẏ2
d+1,d +

1

4
ẏ2
d+1,d+1 + κ2V1-loop , (3.12)

the l.h.s. behaves as H2 ∼ #/(t− t±)2, while in the r.h.s. the kinetic energies of yd,d+1 and

yd+1,d yield a contribution ∼ #/[(t− t±)2Gdd], and the potential is dominated. By consis-

tency, we assume that Gdd ∼ #(t − t±)J± , where ±J± > 0 is a constant to be determined.

Under this assumption, one obtains that yd,d+1 and yd+1,d converge to arbitrary constants,

which are small in the present paragraph. Note that even when its mass term is negative,

yd,d+1 does not automatically develop a large expectation value, which would destabilize

drastically the initial background.

• yd+1,d+1 has a positive or negative mass term, irrelevant in the limits we consider. As

a result, one obtains

ẏd+1,d+1 ∼
2cy
ad−1

=⇒ |yd+1,d+1| ∼ #| ln(t− t±)| �
√
Gdd , (3.13)

where cy is an integration constant. Due to the fact that Gdd ∼ #(t− t±)J± , with ±J± > 0,

we have M/Mσ → 0. This shows that even if yd+1,d+1 has a logarithmic behavior, it is

effectively attracted to the extremum of the potential at yd+1,d+1 = 0. In other words,
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whether the potential has a minimum at M = 0 (when b is even) or a maximum (when b is

odd), the theory is always approaching the configuration where M effectively vanishes.

• φ⊥ and Φ couple to the kinetic and mass terms of Wilson lines. However, in the regimes

we are interested in, they are becoming free,

φ̇⊥ ∼
√

2
c⊥
ad−1

, αΦ̇ +
α2

2
d(d− 2)H ∼ cΦ

ad−1
, (3.14)

where c⊥, cΦ are constants.

• From the above relations, the coefficients K± and J± can be determined in terms of

c⊥/cΦ and cy/cΦ. The result for K± is that found in the toy model, Eq. (2.16), up to the

change c2
⊥ → c2

⊥ + c2
y in the expression of r given in Eq. (2.14). As a result, the subcritical

region for which QNSRs exist, which is a segment in the previous section, becomes a disk of

radius 1, as shown in Fig. 2. However, the additional condition ±J± > 0 arising from the

c⊥
γccΦ

cy
γccΦ

1

Figure 2: The points
(
c⊥
γccΦ

,
cy
γccΦ

)
of the disk of radius 1 that yield QNSRs a → ∞ and a → 0 sit in the

left and right shaded crescents, respectively.

dynamics of yd,d+1 and yd+1,d amounts to restricting
(
c⊥
γccΦ

, cy
γccΦ

)
to the shaded regions : The

left and right crescents yield QNSRs a→ +∞ and a→ 0, respectively.

• Due to this restriction to the shaded domains, the QNSR a→ +∞ turns out to always

be perturbative. The a→ 0 one is also perturbative, except in the neighborhood of the tips

of the right crescent [1].

This concludes the proof that QNSRs exist even when the dynamics of internal moduli fields

is taken into account. However, it is important to stress that in Fig. 2, the left crescent
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is actually much smaller than that we have drown. Its width along the horizontal axis is

between 10−3 and 10−2 , for 3 ≤ d ≤ 9. However, one should not conclude that be reached,

QNSRs always imply some kind of fine tuning, as explained in the following.

Numerical simulations To analyze whether global attractor mechanisms avoid the

need to tune integration constants or initial conditions for the QNSR a→∞ to be reached,

we consider computer simulations. For this purpose, restricting to the spacetime dimension

d = 4, we simulate numerically the quantities

csim
⊥ =

ad−1

√
2
φ̇⊥ , csim

Φ = ad−1

(
αΦ̇ +

α2

2
d(d− 2)H

)
, csim

y =
ad−1

2
ẏ55 , (3.15)

which are expected to converge to constants c⊥, cΦ, cy. In fact, we have checked that if(
csim⊥
γccsimΦ

,
csimy
γccΦ

)
starts in the left thin shell of Fig. 2 and that the initial velocities are low, the

above quantities do freeze. Moreover, the climbing of M when its potential is negative as well

as the non-destabilisation of the background when y45 and y55 sit at maxima are confirmed.

On the contrary, if the trajectory of
(

csim⊥
γccsimΦ

,
csimy
γccΦ

)
starts outside the shell and/or the

initial velocities are high, the scalars y are expected to explore large distances in moduli

space. Thus, we are forced to simulate a(t), Φ(t), φ⊥(t), y45(t) and y54(t) using the exact

kinetic terms and the full potential (3.7). For simplicity, we have kept y55 ≡ 0 in this

analysis, which implies y54 to be a flat direction. We find that when V1-loop < 0 for some

values of y45, the initially expanding flat universes stop growing and then collapse, unless the

trajectories sit in the tiny shell. As a result, the presence of Wilson lines implies the set of

initial conditions that yield ever-expending universes to be drastically reduced, as compared

as in the toy model. On the contrary, when V1-loop ≥ 0 for all y45, the point
(

csim⊥
γccsimΦ

, 0
)

is

always attracted towards the shell, inside of which it eventually stops. Recalling that in the

QNSR we consider the scale factor satisfies ad−1 ∼ #t, Fig. 3(i) shows the trajectory and

convergence of (ad−1)· to a constant.

Fig. 3(ii) represents the curve obtained when the initial velocities ẏ45(0) and ẏ54(0) ap-

proach zero. A surprising structure of plateaux appears, which can be understood as follows :

(1) When the initial time-derivatives of the Wilson lines are small, we are essentially

back to the toy model, where we have shown that when V1-loop ≥ 0, the universe is always

attracted to a QNSR. Thus, (ad−1)· converges to its first plateau.
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1

5

1

5(i) (ii)

Figure 3: (i) Convergence of (ad−1)· towards a constant, signalling the entrance of the universe in QNSR.
(ii) When the initial velocities of the Wilson lines are small, the final convergence is reached after successive
approximate QNSRs.

(2) However, at this stage, the value of J+ is in most cases negative (we do not a priori sit

in the tiny shell). As a result, the kinetic energies of y45 and y54 end up dominating in Fried-

mann equation (see the remark below Eq. (2.10)) and destabilize the above “approximate”

QNSR. Since
1

d− 1

(ad−1)··

ad−1
≡ Ḣ + (d− 1)H2 =

2

d− 2
κ2V1-loop > 0 , (3.16)

(ad−1)· leaves the plateau from above.

(3) However, we have shown analytically that the domination of the kinetic energies of y45

and y54 cannot last forever (there is no such asymptotic solution). Therefore, these moduli

have to release this energy to the rest of the system, and the latter is back to the conditions

mentioned in point (1).

(4) The process is repeated until J+ becomes positive, i.e. the representative point of

the system stops in the shell, so that the universe stays in QNSR for good.

4 Conclusion

We have shown that the flat cosmological evolutions found at the quantum level in generic

no-scale models can be identical, asymptotically, to those found classically. This means that

the no-scale structure broken by quantum effects can be restored during the evolution. We

have seen on an example that global attractor mechanisms can make the entrance into the

QNSR a → +∞ unavoidable when V1-loop ≥ 0. On the contrary, when the potential can

reach negative values, the QNSR a → +∞ is only reached when the initial conditions are

14



chosen in a tiny region of the phase space.

In QNSR, the universe is dominated by the kinetic energies of the supersymmetry break-

ing scale M , of the dilaton and of the Wilson lines yij, where i, j are not directions involved

in the Scherk-Schwarz mechanism. On the contrary, the effective potential V1-loop and the

kinetic energies of the Wilson lines having indices in Scherk-Schwarz directions are negligible.

Finally, the scalars yij are effectively attracted towards extrema of the effective potential,

which are not necessarily minima, while the remaining moduli freeze at arbitrary values.
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