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ISOCHRONOUS ANALYSIS OF THE
BEHAVIOR OF CERAMIC-MATRIX COMPOSITES
UNDER
THERMOMECHANICAL CYCLIC LOADING
CONDITIONS

by

Alain BURR, Francois HILD and Frederick A. LECKIE

ABSTRACT

The design of parts made of Ceramic-Matrix Composites needs computations in fatigue and creep.
Micromechanical analyses under monotonic loading conditions have been integrated within the
framework of Continuum Thermodynamics. The extension to creep and/or fatigue loadings leads to a
description of the state of the material with a large number of internal variables. In the present paper,
an isochronous approach is presented in order to decrease this number, and therefore to give an
answer with nowadays computational facilities in a time equivalent to monotonic loading conditions.
The main objective of this paper is to present and illustrate an original method that allows the designer
to simplify the computation of the long time analyses (i.e., fatigue, creep) to reduce the CPU time

down to a monotonic analysis.

Keywords: ceramic-matrix composite, creep, fatigue, isochronous analysis, finite element

computations.



1. INTRODUCTION

Composites consisting of a ceramic matrix reinforced by continuous ceramic fibers are
candidates for application in components which operate at temperatures in excess of those which are
normal for metallic structures. In spite of the fact that the constituents of the Ceramic-Matrix
Composite (CMC) are both brittle it has been demonstrated that following matrix-cracking, sliding
occurs at the fiber-matrix interface which causes inelastic strains [1]. The presence of matrix cracks
and inelastic deformations may impart to the material the ability to redistribute stresses. The ability to
redistribute stress is an important property since design studies indicate that combined working
stresses and temperatures for CMC components are sufficiently high for matrix-cracking to be
unavoidable in regions of stress concentration occurring at the junctions and penetrations which are a
feature of engineering components.

A constitutive law is proposed for CMCs that models matrix-cracking, interface sliding and
wear [2], fiber breakage [3], fiber pull-out and creep [4]. These different mechanisms induce loss of
stiffness [5,6], inelastic strains [7,8], creep strains, hysteresis loops, and crack closure. The features
are analyzed within the framework of Continuum Damage Mechanics (CDM) [9] by the introduction
of physical internal variables identified previously in Material Science investigations. By combining
CDM with micromechanical studies which are mechanism-based, constitutive equations are
developed [10], which lend themselves to the finite element procedures commonly used in practice.

The first part will present the principal results of the construction of a constitutive law to
model the behavior under monotonic loadings within the framework of CDM. The second and the
third parts are the extensions of the model to account for fatigue and creep, respectively. The model is
integrated into a finite element system (ABAQUS) and is used to estimate the behavior of a
representative structure under monotonic, cyclic and creep loading conditions. Design and lifing
procedures are able to deal with thermal loading, creep and cyclic loading, just by extending the
original software to Isochronous Analysis. It is observed that some CMCs have the ability to

redistribute stresses. It follows that, as it is for plasticity, the presence of an initial stress



concentration does not compromise the performance of the component, because it is reduced during

the loading.

2. MECHANICAL BEHAVIOR UNDER MONOTONIC LOADINGS

In this part, the results of the construction of a multi-axial constitutive equation are briefly
summarized. They are based upon micromechanical studies of matrix-cracking, fiber/matrix interface
debonding and sliding as well as fiber breakage and pull-out in CMCs. These active mechanisms are
reformulated by using the CDM formalism, which is more appropriate to be integrated into a Finite
Element code. This study is primarily concerned with (0,90) fiber architectures embedded in a matrix
(e.g., laminated and woven composites). The detail of the full construction of this constitutive
equation [10] can be summarized by the expression of the free energy density, .

The initial behavior of the matrix is assumed to be isotropic. The presence of cracks leads the
behavior to become anisotropic. The assumption is made that cracking occurs normal to the y-
direction (e.g. maximum principal strain direction) in the matrix. Under the hypothesis of monotonic
loading condition, only one damage variable is needed to model matrix—cracking, and is denoted by
D,,,- The study of a cracked system normal to one direction shows that the Young's modulus along
that direction as well as the shear modulus are altered and that the expression of the elastic energy

density of the matrix is
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where E_, v, G are the initial elastic properties of the matrix. The components of the strain tensor

of the matrix €, expressed in the x-y frame are denoted by €, &,,, and €.,
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The fibers are aligned along the 1-direction. The fiber breaks are assumed to be perpendicular

to the fiber direction and described by a damage parameter Dy,. Therefore the elastic energy density of

the fibers is given by
1 ~
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where E, vq, G; are the initial elastic properties of the fiber. The components of the strain tensor of

the fiber €; expressed in the x-y frame are denoted by &, &y, and &,.

A layer consists of fibers aligned along the 1-direction embedded in the matrix. To determine

the behavior of this layer, micro-interface compatibility conditions are written in terms of strains & N

and stresses 6" on the layer level. It is more convenient to write the conditions in the 1-2 frame. The

following equations are derived by using Voigt's approximation in the fiber direction and Reuss'

approximation for the transverse properties
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where ff, f denote the volume fraction of the fiber and the matrix, respectively, O'iLj and 81-13 are the

components of the stress and strain tensors 6" and € in the 1-2 frame. The solution of the previous

system yields

gL = IE-:‘L(D Dy) gL (7)
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where EL(D Dy,) is the stiffness tensor of a layer which is dependent upon all damage

my?

variables defined at the constituent level. The elastic energy density associated to matrix cracking and

fiber breakage at the layer level is expressed as
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The elastic behavior of a (0,90) composite system is determined by applying classical laminate

theory

£ = §oo _ §90 and o= £00 900 + 120 990 ©)

where % and f*° denote the volume fraction of the 0 and 90 degree layers, € . gOO and ¢ % 5% the

strain and stress tensors in the 0 and 90 degree layers, respectively. The overall behavior of the

composite is defined as

o=E oy Doy Det-Diy) : € (10)
with
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where E(DY DX DY DY) is the fourth order elastic tensor of the composite, which is a

my, my>

function of all damage variables on the constituent level for all layers. The elastic energy density

associated with matrix-cracking and fiber breakage can be written on the composite level
WP = 00 00 4 20 % (12)

where y® and y*° are the elastic energy densities of the 0 and 90 degree layers, respectively.
Inelastic strains are essentially due the interface sliding between the fiber and the matrix. From
a micromechanical point of view, sliding can take place as soon as a crack is bridged by fibers. The

analysis of these sliding systems leads to the following expression of the stored energy density [5]
2 2 2
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with
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where E” is the Young's modulus of the O degree layer in the fiber direction, E* is the Young's

modulus of the 90 degree layer in the fiber direction, G™ is the shear modulus of the 0 degree layer,

G? is the shear modulus of the 90 degree layer, d,;, d,, and d,, are damage quantities related to

sliding, €;,,, €, and €, are the inelastic strains. The following expression of the free energy density

for (0,90) CMCs can thus be obtained
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From this expression, the associated forces to each internal variable are given by partial differentiation

and X=-_— (16)
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where D = {DOO;D?H?(; D, D?{)} and Y = {YI?]?(; W o Yo Y??}, d = { d;s dygs d12} and
y = { Yi1i Ya2s Y12}- A priori, it is necessary to know ten evolution laws associated to the ten

internal variables. But, only the four following evolution laws are necessary:

* one law related to matrix cracking D =D_(Y,,), because the variables Drgg and Dn?()),

correspond to only one single mechanism, and therefore have the same evolution law

Y \Mm
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ml

« one law related to fiber breakage D;= DY), since DY} and D?? have the same evolution law,

because fiber breaks are perpendicular to the fiber direction

% (mer1)/2
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* two laws related to the inelastic strains, since debonding and sliding mechanisms in the 0 and

90 degree layers are identical, thus €;;, and €;,, have the same evolution law. The second one



concerns €;;,.In a unidimensional analysis [11,12] it has been observed that the back stress X
is only a function of the applied stress . If the relation is extended to a multiaxial state, then

the inelastic strain tensor € is a function of the stress tensor 6
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with an equivalent shear stress dependent upon the hydrostatic pressure

Teq = '\/ ‘012 [012 + %(G”+0'22):H (20)

where oo, = 11, 22 and {.) are the Macauley brackets ;

e two laws related to in-plane debonding d = d(y), d,; and d,, are assumed to have the same

evolution law. These last evolution laws are not necessary to derive the behavior of the
composite. Neither the state laws nor the evolution laws are explicit functions of the damage

variables d which are needed to express the stored energy.

The identification procedure is carried out by using the results of pure tension tests along two
orientations: one in the direction of a set of fibers (0°) and one at £45°. Each test involves a series of
loading and unloading sequences. The evolution laws were first identified on a laminated SiC/SiC
composite [13] and a woven one [14], then on an Oxide/Oxide composite (woven A1203/A1203). In
the following, the constitutive equation corresponds to a (0,90) woven SiC/SiC CMC processed by

Dupont de Nemours (Appendix 1).

3. EXTENSION TO CYCLIC LOADINGS

Microscopic examinations of SiC/SiC composites subjected to fatigue loading in excess of the
matrix-cracking stress indicate that matrix-cracking and fiber/matrix interface debonding and slip

remain the dominant mechanisms [15]. Under cyclic conditions the interface shear strength decreases



because of interface wear [2]. A consequence of the reduced interface strength is a transfer of stress
from the matrix on to the fiber causing an increase of the inelastic (ratchetting) strains with the
number of cycles [16,17].

Since the mechanism responsible for the increase of the inelastic strain with the number of

cycles was first identified to be the wear of the fiber/matrix interface {2], the key idea is based upon

the (sudden) variation of the interfacial shear stress between the fiber and the matrix from Ty o T,

(with Ty > T_.), when reverse sliding direction between the fiber and the matrix occurs the first time.
3.1. Construction and Identification of Kinetic Laws in Fatigue

A micromechanical analysis [17] pointed out the parameters which are important in deriving

the kinetics of the inelastic strains as a function of the number of cycle

Giop 1-F[N] 21)
Eiop(N)

where SiaB(N) is the inelastic strain after N cycles and €, the inelastic strain for the first loading

(N=0). The function F[N] utilized for the identification of the tests is

FIN] =y (1 - epoL—OETL”)nD (22)

where y denotes the wear interface parameter, y = (TO - ’l:m)/(‘l:0 +7_ ). Four-point bend tests

(specimen loaded in the fiber direction) were used for the current identification. The symbols in Fig.
1 correspond to the maximum and minimum values of the inelastic strain, respectively, at the
maximum and minimum stress levels, as a function of the number of cycles, N. The identification of
the kinetics of the inelastic strains was performed by using the maximum stress level. The minimum
value of the inelastic strain is a prediction by assuming that the interfacial behavior is modeled by a
constant interface shear strength. In that case, the minimum value is half of the maximum value [1,6].

For cyclic loadings, the behavior of the CMCs is only exactly described when the load is
proportional, and when the maximum and minimum stresses remain constant from one cycle to

another one. The computation of the cyclic inelastic strain is obtained, from the monotonic inelastic



strains, by a multiplication factor that depends on the number of cycles (Eqn. 21). In that particular
case, for a given number of cycle, N, the result given by the computation and the measurements are
strictly equivalent. Therefore, the result of a computation for N cycles is the same than a monotonic
computation 'distorted at N-cycle', according to the multiplication factor (Eqn. 22).

For the complete description of a loop for a given cycle N, the full integration of the
constitutive law needs to be performed. The advantage of this approach is that the first N-1 cycles are
quickly computed, but the details of cycle N can also be evaluated. The technique of computation is
called an 'isochronous' analysis because the time is virtually suspended during the computation. It
can be repeated for any number of cycles, which makes the computation very effective for large
number of cycles. For a structure, the complexity of the stress redistribution is not exactly reproduced
as the number of cycles increases. However, this simplified approach was tested successfully in a 4-
point bend test (Fig. 1). The inspection of the evolution of the stress profile through the thickness of
the specimen as a function of the number of cycles (Fig. 2) shows that the first cycle gives the overall
shape of that profile. This means that there is very little stress redistribution in this test during

cycling, even if the strains are evolving.

3.2. Validation on a Plate with a Hole Subjected to Remote Tension

To carry out structural calculations, the model presented herein has been implemented in the
industrial code ABAQUS [18] via a user material UMAT subroutine. In the following, the geometry
of the tested specimen is 38 mm in width, for a thickness of 2.4 mm and a length of 102 mm. The
diameter of the hole corresponds to the half-width of the specimen, located at the center of the plate.
The CPU time used in the case of a 6000 degree of freedom mesh is of the order of one minute on an
HP735 workstation.

The specimen was tested in the direction of the fiber in tension between 0 and a maximum
value of load (load ratio R = 0). The specimen did not fail. A series of 9 gauges was placed on
specific points of the specimen. At critical places, several gauges were doubled the confirm the
measurements, and to be sure that bending due to gripping is minimized. Figure 3a shows the
measurement (e.g. dots) up to 100 000 cycles, which are compared to the computations, for the same

location of various strain gauges (Fig. 3b). There is a good correlation between the measurements
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and the predictions. The measurement performed near the stress concentration of the hole (gauges 4 et
5) are under estimated by the computation by about 5%. The conditions of the test was not perfect,
because the response of gauges 3 and 6 are different, even though they should have been identical.
However, the computation and the measurements are close enough to validate the approach and the

experiment.

3.3. Stress Redistribution in Fatigue

Figure 4 shows that the stress concentration factor near the hole exhibits a drop of 10% after 10
thousand cycles, and 20% after 1 million cycles. Even after 1 million cycles, the stress profile is not
stabilized yet and the stress concentration factor is equal to 1.4. This means that the stress-strain
curve near the stress concentration must be still evolving. However, this change slows down as the
number of cycles increases. During cycling, matrix-cracking and interface debonding and sliding
allows part of the stress concentration due to the presence of the hole to be accommodated. This result
is favorable for the design of structures in fatigue. Should fiber breakage occur, this conclusion
would probably be less positive [19].

In summary, the numerical results under cyclic loading conditions (four-point bending, plate
with a hole in remote tension) were obtained for a computation time comparable with a monotonic
analysis. Furthermore, they give a complete set of information on the state of strain, stress and
damage in the composite, which can be directly used in classical design rules of more complex
structures. The fast computation enables the designer to analyze more cases, and can fully integrated
in the optimization process of a structure or a part made of CMCs. This approximate procedure has
the advantage that the stress and strain fields in a structural component for a given number of cycles
N can be found directly without the need to perform a cycle by cycle calculation. The computation
time is therefore the same as that for monotonic loadings by 'suspending' the time, or the number of

cycles. The next part will show how to use the same techniques with creep.
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4. EXTENSION TO CREEP CONDITIONS

In the present case, the time and temperature are virtually 'suspended.’ Creep laws are written
according to micromechanical models in which only the matrix exhibits a creep component of strain
of Norton type [20,21]. Consequently, the composite exhibits the same Norton type of behavior

when subjected to creep tests.

4,1. Formulation and Identification

In this approach, only the matrix is considered to be creeping. It means that the material is
used well below the creeping temperature of the fibers. The following expression of the free energy

density for (0,90) CMCs can thus be generalized

(e-€7€.) : EOpe.Da.Di.DY) : (E—€i€0) + W (23)

N —
I

W:

where € is the creep strain tensor. From this expression, the associated force S to the creep strain is

given by partial differentiation

_v
820

n

(24)

There are two different creeping mechanisms. The first one is activated when the CMC is subjected to
a constant stress level in the fiber direction. Because creep occurs in the matrix, there is a time
dependent transfer of stress from the matrix on to the fibers until the fibers in the loading direction of
the stress carry all of the applied stresses. The creep strains in the fiber directions, € , are limited by
the elastic strain of a series of fibers (0 or 90 degrees). We use a generalized Arrhenius function that
accounts for a large range of time scale. In the range of considered temperatures (T<1200°C), the

elastic properties are supposed to be constant with temperature. This remark leads to the following

possible expression for e

20

€all] = ffé‘j(l - exp[ﬁ)“tD (25)
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where n, is the exponent of the creep law, t., is a normalizing time scale, and the ratio

20 /fE,is a creep strain amplitude controlled by the elasticity of the fiber alone. It is worth noting
that the first order expansion of Eqn. (25) leads to an expression of Norton's law, which gives even
more credit to the presence of exponent n,. As the elastic properties do not vary much with
temperature, we decided not to include the temperature explicitly in the expression of € . This

assumption was correlated by experiments (T<1200°C, no fiber creep). The parameters n, and t,, are

probably dependent on the temperature, but there were not enough coupons to perform all the
necessary tests. Consequently, they are assumed to be constant with the temperature.

When the CMC is subjected to a constant tensile stress at £45 degrees with respect to the fiber
direction, a micromechanical analysis demonstrates that there is only a small stress transfer between
the matrix and the fibers. Consequently, the shear stress is applied directly to the matrix which then

creeps without constraint from the fibers. The creep strains in a ceramic follow a similar law as those

used for metals [22]. The expression of the creep shear strain €, is written as

€t = € 0 0] b (Tlo - 1)} (%)no (i}ns (26)

where the reference '0' is related to a normalizing test, which should be as close as possible to the

operation conditions of the shear stress 6, temperature T and time t. The parameters €_,, and b are

12 1

amplification coefficients, and n_ et n_ are exponents corresponding to a generalization of Norton's

law applied to CMCs. By inspection of the material parameters (Appendix 1), one can notice that the
time exponent is the same for both creep strains (tensile and shear). The big difference comes from
the dependence in terms of stresses. When the tensile creep strain is proportional to the stress, the
creep shear strain follows a power law with an exponent of 4.5 which high. Therefore shear stresses

are very severe when creep is concerned.

4.2. Application to a Plate with a Hole

The geometry of the specimen is identical to the one used in the fatigue test (loading at +45
degrees with respect to the fiber directions). The profile of normal stresses in the ligament of the plate

with a hole heated at 980°C and under an average stress of 50 MPa shows very little redistribution as

13



time proceeds (Fig. 5). The same plate for a temperature of 1200°C with the same average stress in
the ligament experiences a drop of 25% of the stress concentration factor after 200 hours (Fig. 6). It
is worth noting that the stress redistribution is faster at the beginning of the loading time. Even after
200 hours, it does not tend to a uniform distribution in the ligament. The stress concentration factor is
still equal to 1.4. However, this computation does not account for fiber creep. Creep experiments
show that for higher temperature (T = 1300°C), fibers are exhibiting creep [23] and were confirmed
by a few of the present data. It will be then necessary to integrate this information in the evolution law
by modifying the expression of the creep strain in the direction of the fibers (0 or 90 degrees) €__ .
The case of coupled fatigue/creep can be obtained by considering in isochronous analyses in
both fatigue and creep cases with a coupling coefficient relative to the 'suspended' time and

femperature.

5. CONCLUSION

A Continuum Damage Mechanics model is developed for CMCs which is mechanisms—
based. When applied to SiC/SiC (0,90) lay—ups, the present model has ten internal variables, viz.
three inelastic strains modeling debonding, three damage variables describing the amount of
debonding and four damage variables accounting for matrix—cracking in the two plies and fiber—
breakage. Only two different experiments in tension are needed to identify the growth laws of the
twelve internal variables. The laws which relate the growth of the internal state variables to their
associated forces have been derived from tensile loading-unloading experiments for two different
directions in the 0/90 and +45 fiber configurations.

The ability of the model to be extended to fatigue and creep conditions suggests the advantage
of a mechanisms—based approach. The extension in fatigue involves one type of test, which can be
either a cyclic tensile test or a four-point bend test. The only variables to modify are the inelastic
strains with respect to the number of cycle. When creep is concerned, the kinetics of the three creep
strains can be identified by using 4 different types of creep tests.

The results on the plate with a hole under cyclic loading conditions, are compared to

experimental measurements. They show a good correlation in terms of strain level measured at

14



different points of the specimen. These fatigue tests have been performed up to 1 million cycles and
exhibit a reduction by 20% of the maximum normal stress in the ligament. The creep simulations
done on a specimen of the same geometry revealed a major redistribution of the normal stress along
the ligament for a loading configuration at +45 degrees and at a temperature of 1200°C and very little
redistribution at a temperature of 980°C.

This paper shows how to derive from a monotonic-based constitutive equation a simple
extension to cyclic and/or creep loading conditions. However, this derivation is only possible if the
construction of the constitutive law relies on analyses based upon well-identified degradation
mechanisms. Isofatigue and isochronous analyses were used to analyze complex loading conditions.
This techniques gives a much faster answer to designers and engineers than regular constitutive
equations that go over the complete loading history. Consequently, designers can analyze more

solutions in the same time and should be more efficient in their final design choice.
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7. APPENDIX 1: MATERIAL PARAMETERS FOR A SiC/SiC COMPOSITE

Material parameter Value  Unit
Matrix elastic Modulus En 157 GPa
Matrix Poisson's ratio Vm 0.25

Matrix volume fraction fm 0.55
Weibull modulus mpy, 1.6
Normalizing energy Ym0 0.60 MPa
Saturation parameter Dgat 0.99

Fiber elastic modulus E¢ 200 GPa
Fiber Poisson's ratio Vf 0.25

Fiber volume fraction fr 0.45
Weibull modulus myg 4.5
Normalizing energy Y 42.5 MPa
Tensile inelastic strain constant Eint | 4.99 107
Threshold tensile stress Oth 135 MPa
Exponent njj 1.0

Shear inelastic strain constant  €ips 50107
Threshold shear stress Tth 59.1 MPa
Exponent N2 2.0
Fatigue amplitude Y 0.984
Normalizing value a 6.96
Exponent n 1.56

Time power law exponent n 0.451
Normalizing time tio 702 h
Shear creep strain constant €120 | 1.3510°3
Temperature coefficient b 28.1

Stress power law exponent Ng 4.2

Time power law exponent Ng 0.4
Normalizing temperature To 1204 <
Normalizing stress To 34.5 MPa
Normalizing time t120 100 h
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8. FIGURE CAPTIONS

Figure 1: Comparison of maximum and minimum inelastic strains experimentally measured and

predicted by the model.

Figure 2: Normal stress profile across the thickness in a 4 point bend test for an elastic and non-linear

computation when N=0 and N=300 000.

Figure 3: (a) Comparison of strains between experiment and computations of a test on a plate with a

hole. (b) Strain gauge location in the experiment.

Figure 4: Stress profile along the ligament of a plate with a hole tested in fatigue.

Figure 5 : Stress redistribution in creep of a plate with a hole (T = 980°C).

Figure 6: Stress redistribution in creep of a plate with a hole (T = 1200°C).
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