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TENSILE DAMAGE CONCRETE:
ANALYSIS OF AN EXPERIMENTAL
TECHNIQUE

by

Dorothée Boudon—Cussac, Francois Hild and Gilles Pijaudier—Cabot

Abstract: The characterization of the tensile behavior of
unreinforced and fiber-reinforced cement and concrete is delicate
because of strain localization which introduces a strong
heterogeneity of the strain throughout the specimen and complicates
the interpretation of test data. An experimental technique to
distribute damage is analyzed in the framework of Continuum
Damage Mechanics by introducing internal variables to model the
degradation mechanisms taking place in this configuration. A
mechanism—based formulation is used to derive the state potential
and the kinetic laws. Comparisons are performed for cement
matrices with different volume fractions and orientations of short
fibers. The paper shows the shortcomings of this experimental
technique while it is still possible to use it in order to compare the

responses of plain and fiber-reinforced concrete.



Introduction

The development of Fiber—Reinforced Cement and Concrete
(FRC) is mainly due to the gain in toughness and ductility expected
by the presence of short fibers bridging cracks. Short fibers tend to
increase the ductility and toughness of the material rather than its
ultimate strength. The addition of fibers is of interest because of their
potential improvement of the material properties for example in
large strain regimes (e.g., seismic excitations) or in impact problems
where high fracture toughness is a prominent characteristic.
Furthermore, the penetration of water and corrosive agents plays a
major role in many deterioration mechanisms of cement and
concrete (e.g., freeze thaw damage, sulfate attack, alkali—aggregate
reaction). Since the permeability of cement and concrete increases
with the formation of cracks, toughening with fibers to control the
crack growth is an indirect means of improving the durability.

The identification of constitutive equations of mortar, concrete
and FRCs in tension is usually difficult to carry out from a direct
uniaxial test, because of strain localization leading to the formation
of a single macrocrack (e.g., see (Mazars and Berthaud 1989)).
Concrete and FRC are strain softening materials and experimental
techniques which avoid strain localization and exhibit the softening
response of the material in a stable fashion are difficult, if not
impossible, to devise. In most situations, the softening response of
the material is obtained indirectly from fracture tests (e.g., see

(Guinea et al. 1994)) or size effect tests (Bazant 1986).



In order to delay or avoid strain localization during a tensile test,
one possibility is to avoid localization instability and to prescribe the
global and local strains in the tested material so that the softening
part of the stress / strain can be monitored. This goal can be
achieved with the addition of primary reinforcements, e.g., a
significant volume fraction of continuous fibers (denoted by bars
later on) acting like reinforcement bars in reinforced concrete.
Inspired by the experimental analysis of L'Hermite (1960), a special
tension test designed for preventing strain localization to occur as
much as possible and obtaining distributed damage in a tension
specimen was devised by Bazant and Pijaudier—Cabot (1989) and
modified by Mazars et al. (1989; 1990) in order to identify the
response of concrete in tension with distributed cracking. This
experimental procedure will be referred to as "Identification of
Distributed Damage" (ID2) in the remaining part of the paper. The
specimen consists of twelve 8 x 8 x 250 mm? aluminum bars glued
on 38 x 80 x 160 mm? prismatic specimens (Fig. 1) to avoid the
formation of a single crack. Three-dimensional Finite Element
simulations have been used to analyze the homogeneity of the
stresses in the prismatic concrete specimen and it was found that
the bars do not modify drastically the state of stress in concrete
which is very close to pure tension (Mazars and Berthaud 1989; Sun
1989). The aim of the present paper is to analyze this experimental
technique with a broader interpretation of the test data and to
implement it for specimens with different volume fractions and

orientations of short fibers.



Because the interface between the aluminum bars and the
cementitious specimen is considered to be perfect (i.e., no debonding
is assumed to occur), the standard interpretation of the test data is
quite straightforward. The underlying behavior of concrete is deduced
by assuming that the specimen is a parallel system of concrete and
aluminum bars (Mazars and Berthaud 1989; Breysse and Schmitt
1991). The assumption of a perfect interface between concrete and
the reinforcement needs to be better supported. The influence of the
interface will be explicitly considered and discussed in the present
analysis. Furthermore, the effect of short fibers (acting as secondary
reinforcement in the experiment) in cementitious prismatic
specimens will be analyzed from the experimental point of view with
the same technique.

The first part of the paper reviews the main results pertaining to
the specimen analyzed as a composite material made of a matrix
(concrete, FRC) and fibers (aluminum bars). To make the analysis
tractable and simple, a one-dimensional approximation is
used to describe the mechanical behavior of the composite.
Because the specimen is treated as a composite, the effects of
matrix—cracking, interface debonding and sliding appear explicitly.
These main ingredients are then introduced in a continuum
description from which the interpretation of the test data is more
tractable because it remains at the mesoscopic level (that is the
level of the specimen) with references to the microstructural state of
degradation of the specimen. The analysis of experiments on

unreinforced concrete shows that the mechanical response of the



interface is quite important in this experimental technique and that
it cannot be considered to be perfectly bonded. Finally, the effect of

short fibers on the response of the tension specimen is discussed.

Composite Model

Loading a composite consisting of a brittle matrix (concrete or
FRC) supported by stronger fibers (aluminum bars), usually causes
multiple matrix—cracking (Aveston et al. 1971) accompanied by
debonding and sliding at the fiber/matrix interface if the interface is
sufficiently weak. Because of stress redistribution between the
fiber and matrix, the matrix—cracking density usually saturates, i.e.,
the crack spacing reaches a lower bound because the shear transfer
capability of the interface across each matrix crack is reached and
because the stress cannot be redistributed enough from the fibers on
to the matrix in order to reach the tensile strength of the matrix.

Matrix—cracking is responsible for the decrease of stiffness
observed in experiments on brittle-matrix composites, debonding and
sliding at the fiber-matrix interface are the source of irreversible
strains. The cell model first proposed by Aveston and Kelly (1973)
will be used with the introduction of a debond energy at the front of
the slipping region (Hutchinson and Jensen 1990). In the present
model, the composite is a series of unit cells of length equal to the

average crack—spacing.



Cell Model Description

In the unit cell shown in Fig. 2, the elastic moduli of the fiber and

matrix are Ecand E | respectively, the volume fraction of the fiber is
fand H,is the fiber equivalent height (so that f = H./ H, see Fig. 2).
The elastic modulus of the undamaged composite is E = fE + (1-
DE . Matrix—cracking (transverse cracks) occurs when the applied
stress reaches a material value o (Aveston et al. 1971; Budiansky

et al. 1986) and the average distance between cracks is denoted by
2L. The debond length at the fiber/matrix interface is 2/, and the

interface is assumed to have a constant shear strength t and a

critical energy release rate G  to extend the interface crack.

Following Outwater and Murphy (1969), this critical energy release

rate G can be represented as a debond strength 64 which introduces

simplicity in later calculations. This debond strength can be

expressed in terms of G4 as

20-PE BG4

To define the state in the unit cell, the values for the crack spacing

2L, the debond length 2/ ;, and the interface properties 64 and T must

be known. The latter are unknown material parameters but are

assumed to be constant.



Mechanical Response

The initial response of the composite is elastic when the modulus
is E. When the matrix—cracking stress o_ . is reached, matrix—
cracking occurs which is accompanied by matrix—fiber interface

debonding and slip inducing stiffness losses and inelastic strains. The

presence of cracks induces additional stresses in the matrix p_ (x)

and in the fiber p{x) that are self-balanced

(1-Hp,_ (%) + fpx) = 0 @)

where 0 < x <L is the microscopic coordinate (see Fig. 2), so that the

local strains in the fiber and in the matrix are expressed as

fR =+ ; g =p (3.12)

m

pt(x) o Pm(X)
Ep

Their combined effect yields a non linear strain (e) /stress (o)

relationship

L
£=%J8f(x)dx=%+sa @)

where €2 is the additional strain induced by all the degradation

mechanisms



)
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The degradation mechanisms lead to an overall crack opening

displacement A which is expressed as

L

pf(x) pm(x)
A= J[_Ef_ - T] dx (6)

m
0

By using Eqns. (2), (5) and (6), the crack opening displacement A can
be related to the additional strain €2 by

. (-DE A
€="EL - 2

The crack opening displacement is made up of the sum two terms,
viz. a first one related to the applied stress and corresponding to an
elastic contribution (A®), and a second one relative to friction and

referred to as inelastic contribution (Ai)
A=A°+ AL (8)
In fiber-reinforced composites, the two contributions need to be

accounted for. Matrix—cracking is described by an elastic

contribution of the crack opening displacement and debonding and



sliding are related to the second contribution. In the following, the two

mechanisms will be analyzed separately.

To model matrix—cracking, one of the simplest models will be

used, i.e., the Cox model (1952). The additional stress field in the fiber

p‘%(x) is a well-known solution to a second order differential equation

cosh[B(x—L)]
oL Hn ]

c
A cosh[ﬁ;}
in which the dimensionless quantities are defined by
fE 3G_E
- f . p2___m :
A= i-DE_ B ~fE, B, (10.1;2)

where G_ is the shear modulus of the matrix, 2H_ the crack length

(see Fig. 2). The value of the parameter J is obtained by assuming
that the displacement field in the matrix is parabolic through the
thickness (y—direction). Another kinematic hypothesis would alter
the number 3 but not the other material constants in . By using
Eqns. (5) and (9), the additional strain £€2~° relative to A® is expressed

as

H

(4] 1
ga_e=EQ, ] (;)=B—E1 ] Q:%tanh(;) (11.1;2;3)
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This additional strain causes an increase of the Gibbs' specific energy

of the composite A

0.2

When interface slip occurs, it is accompanied by an additional

crack opening displacement Al. This displacement Al gives rise to a

self-balancing stress field along the friction (or slip) length 2/, (< 2[;)

in the matrix, pin(x) and in the fiber, pi(x). The self-balancing stress

fields cause inelastic strains given by (see Eqns. (6) and (7))

L
.1 (pl®  (A-DE_ Al
€=L de’“Tf- 18)
0

By assuming a constant interfacial strength t and considering the

debond strength defined in Eqn. (1), the residual stress in the fiber

pif(x) is expressed as

T

plx) = (14)

0 otherwise

so that the expression for the irreversible el (see Eqgn. (13)) following

interfacial slip is given by

11



e = AgTq(1+2,) (15)

where the primary dimensionless group T is defined by

Tld

szm (16)

and is a measure of the average strain due to friction over the debond

length [ ;. The evolution of T4 during initial loading is given by

1o ,%
Td=2A(E_AEf]‘ £t

since 6/(x=0) = o/f. The dimensionless parameters A, and X, are

given by
l 206.H. ©
d af ®d 1
A=7=BoT; ; X;= = (18.1;2)
d=L R T R
where B is a dimensionless parameter defined by
2BfE;
B= . 19
(1-Ht .

Since Ay and X, are expressed in terms of @, T; and material
constants, ® and T are referred to as primary dimensionless groups

and A4 and X, as secondary dimensionless groups. The parameter

12



A4 varies between 0 and 1. When A4 =1, matrix—cracking saturates.

When the ratio Z; is large, the material is said to behave in a high

debond energy (HDE) regime and when the ratio is small, the regime
is described as low debond energy (LDE): see (Evans et al., 1994).

Debonding and friction also cause elastic energy to be stored in

the material. The elastic energy densities in the matrix (y m) and in

the fiber (y,) are needed to compute the non-recoverable energy

density 1|1i of the composite

[pio]” ]’

y(x) = o8, ; wm(x)=i2Em (20,1;2)

so that the non—recoverable energy \|t1 following sliding is given by
L
!
yi=7 f [ fvi) + 1Dy (0 | dx (21)
0

By noting that the stresses pif(x) and pim(x) are self-balanced, the

expression for the non—recoverable energy for the composite is found

to be

L

; _EA
\V‘=EJ
0

dx. (22)

pif(x) &
B
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By using Eqn. (14), the expression for the non-recoverable energy

\|1i following interfacial slip is
yi=ZA xde[ +(1+29) ] (23)

In the next section, the results of the present derivations are re-

formulated within the framework of Continuum Mechanics.

Continuum Representation

The model presented in the preceding section helps to define the
state variables and to calculate the free energy density (also called
state potential) from which the corresponding forces can be deduced.
Here, we are going to re-write the model by using the technique of
Continuum Mechanics and the concept of state variables (Rice 1971;
Germain et al. 1983). It is recalled that only a one-dimensional

analysis is carried out herein.
State Potential

The free energy density for a given state is calculated by
performing two elastic calculations following approaches introduced
by Volterra (1907), and used to analyze the elastic behavior of
homogeneous and isotropic media (Volterra 1907; Love 1927) and
the influence of inclusions in an infinite medium (Eshelby 1957). The

first step consists of calculating the elastic energy of a cracked

14



system when the fiber (f) is slided with respect to the matrix (m) by
an amount Al over a length 21 ¢ = 214 with no applied external load.
The second step involves an elastic loading of a cracked system
where friction is prevented.

The first step corresponds to the effect of debonding at the fiber—
matrix interface. The derivation of this non-recoverable energy has
been determined in the previous section (see Eqns. (22) and (23)) and
is rewritten as follows

i\2
(ed) . (24)

™|t

vie

Equation (24) can be found in (Andrieux 1981; Andrieux et al. 1986)
to model concrete and rocks for which only one degradation

mechanism was considered. The general expression of the damage

variable d is derived from Eqgns. (13), (22) and (24)

L 4 L

111 (el 1 |[ el F
d=K L J{Ef(x)}dx L [[m} dx . (25)

0 0

From the micromechanical model with a constant shear strength 1

defined in the previous section, the damage variable d is expressed as

d=%[1 +%(1 +Zd)_2]—1 (26)
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and is a measure of the relative debond length A; = /L. The value of

the square bracket varies between 1 and 4/3 for a high and low
debond energy material respectively, which means that the value of
the dimensionless group X, has a small effect on d.

In the second step, the recoverable free energy density describes
the effects of matrix—cracking. In the Continuum Mechanics
framework, the presence of a crack results in a stiffness reduction
defined by an internal damage variable D (Lemaitre and Dufailly
1977; Chaboche 1982) so that the current Young's modulus E =EQ1-
D). The recoverable part y® of the Helmholtz free energy density
becomes

E(1- e\2
o B g)(e) -

where D is deduced from the micromechanical analysis (see Eqn.

(12))

D=—¢ (28)

and Q is a measure of the crack density defined in Eqns. (11) and &°
the elastic strain.

The total free energy density is the sum of the two components of
energy in which e = ¢ — gl. The total free energy density is expressed
with four state variables which are the total strain ¢, and three

internal variables, viz. a damage variable D modeling the loss of

16



stiffness due to cracking, an inelastic strain ¢! due to debonding and
sliding and a damage variable d measuring the amount of non—
recoverable energy due to debonding and slip

_ i\2
E (1-D) (e—)2 + g (ed) . (29)

DO | =t

\lj:

The forces associated with the state variables are

2
oy . oy E( o .
G=58_= E(1-D)e-€" ; Y=—aD =5 (1—D) (30.1;2)
oy ¢ dy E(eY .
X———£=G—Ea ,y——ad=2(d : (30.3;4)

Equation (30.1) defines the macroscopic stress ¢ and Eqn. (30.2) the
energy release rate density Y associated with matrix—cracking.
Equation (30.2), shows that the energy release rate density Y is
proportional to the square of the effective stress ¢/(1-D). Similarly,
Eqn. (80.3) defines the back stress X associated with sliding whose
exact value depends upon the interfacial properties. Lastly,
Eqn. (30.4) defines the energy release rate density y associated to
the residual stresses due to debonding and sliding.

The matrix—cracking damage variable D is directly related to the
average crack spacing 2L, and the inelastic portion of the crack
opening displacement Al'to the inelastic strain ¢\. In the next sub—
section, it will be shown that when the variables D and ¢t are known,

the damage variable d can be calculated from micromechanics.

17



Evolution Laws

The final step in establishing the model is to determine the

evolution laws Fp, Fy F; which relate the state variables (D, d, &) to

their associated forces (Y, y, X)

D=F V) ; ¢=FX) ; d=F y. (31.1;2;3)

Under isothermal conditions, the model is thermodynamically

admissible when the intrinsic dissipation Dis positive
[ ] ®. L]
D=YD+Xe'+yd=0. (32)

where '¢' denotes the time derivative.
We assume that the growth of matrix cracking represented by
the variable D is a function of its associated force Y (see Eqn. (31.1)).

The initial cracking condition can be written as

Y=Y ; (33)

C

From Eqns. (30.2) and (33), the matrix cracking stress ¢_  is found

to be

0o = \2YE (34)

18



The micromechanics associated with crack spacing is complex
and involves statistical calculations (Curtin 1993). Instead we use
the experimental observation of Domergue (1995) that the crack
density o (= AQ) satisfies a linear relationship with the applied stress

c

-0 (6.-0o,_ )BL
o= ; Gp=— H“‘" : (35.1;2)
0'0 m

where the normalizing constants L and o, correspond to the values

of L and ¢ at saturation. Eliminating the crack density o from the
last two equations and using the expression (30.2) for Y in Eqn. (35.1)

combined to Eqn. (33), the evolution law for D in terms of Y becomes

BT T VT T T VT
_ ok

where

\J2EY, = Ac, . (37)

The onset of interfacial debonding (when [/, = 0) is characterized by

an interfacial debond stress C;q SO that

= 38
) (38)
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The growth of the inelastic strain ¢! has been defined by Eqn.

(31.2) with the definition of the back stress X given in Eqn. (30.3).
Eliminating the slip length /; between Eqgns. (15) and (17), and the

crack spacing L (Eqns. (11.2), (11.3) and (35)) gives the relationship

between & and the applied stress ¢

2 2
. B c—cmc[ (o) (cidj }
g=—7 ==l || 39.1
4A2 00 E E ( )
The back stress X is computed by using Egns. (26) and (30.3)
G+0. 0., (0-0..\"1 —2}
id 1 9id id
X=0-"75 [1+3(1+2E{ B ) ) : (39.2)

The relationship gl = F,X) could have been introduced in an arbitrary

form and identified experimentally. Here we take advantage of the
analysis of the composite model and incorporate its results directly in
the continuum description.

Similarly, the evolution of the interfacial damage d and its

associated force y are written in a parametric form as a function of

the applied stress o by using Eqns. (26), (30.4) and (39.1)

6—-0C;,6-0 .. (o—0;\-1y2]?
d=-2 E‘d G“‘“ [1+%(1+2E#d( Eld) ) ] (40.1)
0
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It is worth noting that the Clausius—Duhem inequality (32) is
satisfied in the present case since Y, X,y 20 and ]3, g i, & > 0 under
monotonic loading conditions. The present analysis shows that all
evolution laws are eventually driven by the applied stress ¢. By
contrast, for ductile materials, the driving force is the plastic strain
or the cumulative plastic strain, even when damage is observed

(Lemaitre 1992).
3D Generalization

The previous results can be generalized to 3D situations
(Boudon-Cussac 1996), even though it is believed that the
previous 1D approximation keeps the essential features and
makes the analysis of the experiments simpler and
straightforward. The same set of state variables can be used.
However the mathematical nature of each of them is
different. The damage variable D modeling matrix-cracking is
anisotropic and can be described by a second order tensor
(Burr et al. 1995). A second order tensor is also needed to
model the inelastic strains ¢! due to debonding and slip.
Lastly, since each operative slip system can be integrated
separately in terms of energetic contributions, the damage
variables d can be defined separately for each inelastic strain
term. Therefore there are as many debond damage terms as
non-vanishing inelastic strain components (Burr et al. 1995).

Such a constitutive law has been used to model the

21



mechanical behavior of ceramic-matrix composites (Burr et

al. 1997).
Identification Procedure

Unload / reload sequences in tension are performed. A typical
result is shown in Fig. 3 for an unreinforced cement in an ID2
experiment. At the end of the test, the tangent modulus of the
composite approaches that of the volume fraction of aluminum bars
(denoted by fE, in the figure). It is therefore expected that saturation
occurs. This feature will be discussed later on.

The identification procedure is based upon the experimental
measurements associated with loading/partial unloadings (Fig. 4)
from which the current value of the elastic modulus E(1-D) and the

inelastic strain ¢! can be measured. From these two data, the

unknown parameters to be identified, viz. Y, and Y, for the damage

evolution law, B/4A2 and 0;4/E for the inelastic strain change can be

determined. These parameters allow to compute the change of the

damage variable d with the applied stress ¢ (see Eqn. (40.1)): it is an

output of the model.

Experiments on Plain Concrete

In this section, experimental data obtained for two ID2 specimens

made of unreinforced concrete (f, = 0.%) are analyzed. The damage

variable D, the inelastic strain gt as well as the permanent strain eP

22



(i.e., the strain level when the applied stress vanishes) are recorded
as a function of the applied stress c.

The experimental relationship observed between D and Y is given
in Fig. 5. From this curve the values of the following dimensionless

parameters can be obtained

2Y,, 2Y, ]
| =44x10%£6x107° ; & =13x 103 +107° (41.1; 2)

from which the matrix—cracking stress o _ . can be derived

immediately and has the value 5.1 £ 0.4 MPa, which is in good
agreement with the experimental observations of Fig. 3.

The dimensionless parameter B / 4A2 and o,4/E are identified by
using the inelastic strain. By fitting the experimental results of
Fig. 6, the values of the dimensionless parameter are
Sid

4% =12x103+10° ; 7 ~0. (42.1;2)

This last result (i.e., 0,4y vanishes) indicates that the specimen

behaves in a low debond energy (LDE) regime. Therefore, the usual

assumptions made to identify the underlying behavior of concrete

(i.e. perfect bond between aluminum fibers and concrete, B, Gy— o)

cannot be used in the present case. When the material behaves in an

LDE regime, Eqns. (39) and (40) can be simplified

23



B % One (C) o
i_ D = - X=-= (43.1;2)
2 ’ 2
2
3B G_Gmc (G) 2E (0‘]
d=—te— W2 ). g A= (43.3;4)
2 E}’ 9 |\E ’
8A o

Equations (43.2) and (43.4) show that there is a linear relationship
between X and o, and a parabolic relationship between y and o©.

The analysis of the evolution of the inelastic strain shows that
there is a change in the evolution pattern for a stress greater than
12 MPa, indicating the onset of cracking saturation. This
phenomenon is confirmed when the damage variable d is plotted as a
function of the applied stress ¢. Figure 7 compares the predictions for
HDE and LDE materials with those obtained for the ID2 specimen.
As expected an LDE regime is observed (since 0,4 vanishes).

When the specimen behaves in an LDE regime and the residual
stresses are negligible, there exists a very simple relationship
(McMeeking and Evans 1990; Hild et al. 1996) between the inelastic

strain €' and the corresponding permanent strain eP

el = 9P (44)

Figure 8 shows that the predictions of the change of the permanent
strain with the applied stress is in reasonable agreement with the
experiments. Figures 6, 7 and 8 consistently show that the
saturation stress is equal to 12 £ 0.5 MPa. On the other hand, Fig. 5

shows that the prediction, a priori only valid up to saturation, can be
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further extended. Beyond the saturation level, the behavior of the
ID2 specimen is mainly driven by the aluminum bars and the
interface between the bars and the concrete parallelepiped (Fig. 2). It
is worth remembering that the interface is weak (indicated by the
LDE regime). The underlying behavior of concrete is very difficult to
deduce since the stress state in concrete is not uniform along the
loading direction, even in the central part of the specimen. Therefore,
the original method for the derivation of the response of concrete
seems not to be appropriate and should yield large errors if the

influence of the interface is not taken into account.

Experiments on Fiber-Reinforced Concrete

Although it is difficult to obtain experimentally the behavior of
concrete with this testing procedure, it can still serve for comparison
purposes. The effect of the addition of short anchored steel fibers (54
mm in length, 0.85 mm in diameter, Young's modulus = 210 GPa,
yield stress = 1200 MPa) is discussed in this section by comparing
the response of specimens with and without short fibers. The
comparison at a purely macroscopic level consists of plotting the
stress/strain responses for different volume fractions of short fibers
(f, = 0., 0.1, 0.3 and 0.6%). For the volume fraction f. = 0.3, three
orientations are considered : 0, £15 and +30° with respect to the

loading direction. The other volume fractions are concerned with the

0°—orientation only.
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Figure 9 shows that the volume fraction f = 0.% constitutes a

lower bound to the stress / strain behavior. However the exact value
of the volume fraction and the fiber orientation is not very important.
It can be noticed that when the fibers do not lie along the loading
direction, the stress/strain response is very close to that of
unreinforced cement.

The experimental relationship between the damage variable D
and its associated force Y is shown in Fig. 10. The effect of the
addition of short fibers becomes more significant. When the fiber
orientation coincides with the loading direction, the most important
feature is the presence of short fibers but not their relative volume
fraction. This result indicates that the cracks are probably bridged
but by very few short fibers so that the actual value of the volume
fraction is unimportant. On the other hand, when the fiber
orientation is equal to £15° and +30° with respect to the loading
direction, the observed damage values lie in the scatter of the
damage law for unreinforced cement.

Figure 11 shows the same effect of fiber volume fraction and
orientation. When the fiber orientation is equal to 0°, the overall
inelastic strain is more influenced by the presence of short fibers
rather than their respective volume fraction. When the fiber
orientation is equal to £15° and +30°, the corresponding inelastic
strain is very close to that in unreinforced concrete. The effect of

crack bridging is negligible in that case.
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Conclusions

1- A Continuum Damage Mechanics formulation has been applied
to plain and fiber-reinforced cement specimens reinforced by
aluminum bars. In addition to the total strain, the internal variables
which define the state of the material have been identified. Concrete—
cracking is described by one damage variable, debonding and sliding
are modeled by an inelastic strain and another damage variable
measuring the amount of non-recoverable energy. These variables
are related to microscopic quantities introduced to analyze the
underlying degradation mechanisms.

2- Cementitious specimens reinforced by aluminum bars used
herein exhibit a low debond energy regime (i.e. the interface does not
remain perfectly bonded). The classical identification procedure
cannot be used to infer the behavior of concrete from the response of
the composite specimen. However, this experimental technique can
produce useful comparison between unreinforced and various types
of reinforced specimens.

3- When the short fibers are aligned along the loading direction,
this type of experiment is more sensitive to the presence or the lack
of short fibers in concrete than the actual volume fraction (up to
0.6%). However, in some other cases, the effect of fiber volume
fraction can be more significant (e.g., three point flexure tests
(Bentur and Mindess 1990; Boudon-Cussac 1996)). When the fiber
orientation and the loading direction do not coincide, the effect of the

fibers on the mechanical response is negligible when compared to
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unreinforced cement. This fact indicates that the bridging effect
becomes negligible in comparison with that induced by the aluminum

bars (when the fiber volume fraction is equal to 0.3%).
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Appendix. Notations

A,B,B
d,D

D
E,E,E_

E, E

dimensionless constants

damage variables

intrinsic dissipation

elastic moduli of the fiber and matrix, respectively
initial and current Young's modulus of the composite

volume fraction of the fiber

volume fractions of short fibers

functions

critical energy release rate

shear modulus of the matrix

heights

average distance between cracks

debond length at the fiber/matrix interface
slip length

values of L and ¢ at saturation

dimensionless groups

microscopic coordinate
back stress

forces associated to the damage variables

critical energy release rate density

normalizing energy release rate density

overall crack opening displacement
elastic and inelastic contributions to A

increase of the Gibbs' specific energy
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strain

additional strains

elastic strain

inelastic strain

permanent strain

local strains in the fiber and matrix, respectively
Helmholtz free energy density

recoverable part of the Helmholtz free energy density
non-recoverable part of the Helmholtz free energy
density

elastic energy densities in the fiber matrix, respectively
crack densities

additional stresses in the fiber

additional stresses in the matrix

applied stress

debond strength

stress in the fiber

debond stress

matrix—cracking stress

normalizing stress

shear strength
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

ID2 specimen configuration (after Mazars and Berthaud

(1989)).

Choice of an elementary cell of length 2L containing a

matrix crack. A debond zone is characterized by a length
24

Stress / strain curve of an ID2 specimen with

unreinforced concrete.

Measurements of the inelastic strain si, the damage

parameter D by partial unloading.

Experimental and identified changes of the damage
parameter D with the energy release rate density Y for 2

unreinforced concrete ID2 specimens.
Experimental and identified changes of the inelastic
strain &' with the applied stress ¢ for 2 unreinforced

concrete ID2 specimens.

Prediction of the damage variable d versus applied stress

o for unreinforced concrete ID2 specimens.
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Figure 8:

Figure 9:

Figure 10:

Figure 11:

Experimental and predicted changes of the permanent

strain €P with the maximum applied stress ¢ for 2

unreinforced concrete ID2 specimens.

Comparison of changes of the inelastic strain g with the

applied stress ¢ for ID2 specimens with different volume

fractions (fs =0., 0.1, 0.3, 0.6%) and fiber orientations (0,

15, £30°).

Comparison of changes of the damage parameter D with

the energy release rate density Y for ID2 specimens with
different volume fractions (f, = 0., 0.1, 0.3, 0.6%) and

fiber orientations (0, 15, +30°). The symbols are

experimental data and the solid line is the identification

when fs =0.

Comparison of stress / strain curves of ID2 specimens
with different volume fractions (fs = 0., 0.1, 0.3, 0.6%)

and fiber orientations (0, £15, £30°). The symbols are

experimental data and the solid line is the identification

when fS =0.
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