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Abstract—An expression for the cumulative failure probability of a structure is proposed for cyclic
loading conditions. This expression is dependent on an initial flaw distribution and a microcrack
propagation law. Two sets of experiments were carried out on specimens made of spheroidal graphite
cast iron. These specimens are tested under cyclic tension with two different load ratios. The initial Alaw
distribution is experimentally identified from microscopic observations. The crack propagation law
patrameters are identified from experimental results obtained with a load ratio R =0.1. The expression
for the failure probability is then used to predict experimental data obtained with a load ratio R= —1.

Keywords—Probabilistic approach; Initial defects; Cast iron; High-cycle fatigue.

NOMENCLATURE

a, a, = flaw size, and critical flaw size
a., = initial flaw size that becomes critical after Ng cycles
Ay, a4 = maximum and threshold flaw size, respectively
b = constant
B,; = Euler function of the first kind
C, C*, k, m, n = parameters of the crack propagation law
Err =error
f, Jo =1flaw size and initial flaw size distribution
g = function
HV,, = hardness
K., K, =critical and threshold stress intensity factors
K, ;o = maximum and minimum stress intensity factors
K, = opening stress intensity factor
n. = number of experiments
N, N = number of cycles (to failure)
Nric, Ngi = experimental and predicted number of cycles to failure
Pg, Pgo = cumulative failure probability of a structure and an element
R =load ratio (= Kpn/Kmax)
S = threshold stress
x, x,;, = dimensionless and normalized threshold flaw size, respectively
V, V, = volumes of a structure and an element
Y = dimensionless parameter
o, # = parameters of a beta function
@ = function
o = uniaxial equivalent stress (e.g. maximum principal stress)
Omax = Maximum equivalent stress
Gy, Gy0.2%, = Ultimate and yield stress
0, = fatigue limit

K

max>



INTRODUCTION

Due to its good properties, Spheroidal Graphite (SG) cast iron is widely used in the automotive
industry, in particular for safety components. For example, it is utilized in ground link elements,
e.g. steering knuckle holder, suspension arms [1]. These cast components are frequently subjected
to high-cycle fatigue conditions. The fatigue strength of components may be reduced by the
presence of initial casting flaws randomly distributed within the material. Consequently, a life
prediction method that accurately evaluates the effect of these casting flaws is required.

To study the fatigue failure of these materials, one needs information about the initial distribution
of flaws and their evolution features. The fatigue process in materials can be schematically divided
into two stages. Microcrack propagation, which is often due to initial flaws, has to be considered
for both brittle and ductile materials. Macrocrack propagation is usually unstable for brittle
materials (e.g. engineering ceramics), while first stable and then unstable for ductile materials (e.g.
many metals in the domain of low-cycle fatigue). In this paper, we will focus our attention on SG
cast iron subjected to high-cycle fatigue. The structure is therefore assumed to remain macro-
scopically elastic, whereas the microscopic evolution of the flaws is described according to a
generalized Paris’ law up to local failure. Macroscopic initiation corresponds to local failure and
macrocrack propagation is not considered in this paper.

Probabilistic methods applied to predicting failure under monotonic conditions have been
extensively used. The first attempt was made by Weibull [2] and was based upon a probabilistic
treatment of failure. Monotonic and cyclic loading conditions were analysed. Batdorf and Crose
[3] modelled initial flaws by cracks whose sizes and orientations are randomly distributed. Evans
and Lamon [4-6] derived another model based upon similar assumptions. Attempts to model
stable crack growth have been made by Sobczyk [7] by using stochastic crack growth equations.
In the framework of Linear Elastic Fracture Mechanics, Jayatilaka and Trustrum [ 8] showed that
under some simple assumptions, the Weibull parameters can be related to flaw distribution features.
These results have been extended in the framework of Linear Elastic Fracture Mechanics and
Continuum Damage Mechanics [9]. An expression for the cumulative failure probability was
obtained, in which the flaw distribution was directly considered.

The aim of this paper is to apply the latter approach to the analysis of the failure of a ferritic
SG cast iron by taking into consideration the initial flaw distribution. On the one hand, it is
assumed that the defects are the only initiation sites, so that discussing the Stage I process is
irrelevant in the present study. On the other hand, the Stage I phase is referred to as microcrack
propagation, as opposed to macrocrack propagation, which corresponds to the minor part of the
component life in high-cycle fatigue. The flaw size distribution can be obtained from SEM
observations coupled with image analysis. The crack propagation law can be obtained from
conventional crack propagation experiments, In the first part of this paper, the crack propagation
law is discussed with respect to the considered defects. The second part is concerned with an
expression for the cumulative failure probability of a structure subjected to high-cycle fatigue. The
third part deals with the analysis of uniaxial tensile tests performed on SG cast iron containing
initial casting defects.

MICROCRACK PROPAGATION IN HICH-CYCLE FATIGUE

In some heterogeneous materials, initial heterogeneitics are mostly sphere-like cavities (e.g.
intrinsic flaws in ceramics due to processing, flaws due to cooling down in SG cast iron), or sphere-
like brittle inclusions with low interfacial strength (e.g. graphite in cast iron). Under high-cycle



fatigue loadings, penny-shaped cracks propagate radially from these heterogencities. As a first
approximation, it is assumed that during microcrack propagation the surface of the defect incteases
with no morphological change. Therefore, the radius a of the surface is the only parameter to be
accounted for, and the microcrack propagation law will be written in terms of this parameter,

A number of studies has been focused on the crack propagation law. They show that short
cracks tend to propagate faster than long cracks [ 10]. Furthermore, a crack arrest phenomenon
was observed when specimens were tested below the endurance limit [117]. Experiments clearly
showed that the propagation rate of artificial short cracks was larger than the value determined
for long cracks [127]. In SG cast iron, there are four different defect populations that may lead to
high-cycle fatigue failure. First, pinholes are located at or close to the as-cast surface. These defects
were not present in the experiments discussed herein since the studied batch of specimens was
machined. Second, graphite nodules [Fig. 1(a)], especially when their geometry degenerates close
to the as-cast surface, are potential initiation sites. Again the latter are not considered herein.
Third, macro-shrinkage defects (a > 0.5 mm) are routinely detected visually or by NDE techniques,
and therefore are not present in the cast components used by the automotive industry. Fourth,
microshrinkage porosities (@ < 0.5 mm) are more difficult to detect and may be present in the
components [ Fig. 1(b)]. The last class of defects is studied in this paper since they tend to be the
micropropagation sites leading to final fracture. Their minimum size is generally greater than that
of the graphite nodules (whose maximum size is of the order of a few tens of pm in radius).

The flaws are supposed to be described by cracks whose geometry is taken into account by a
dimensionless factor Y, such that a general stress intensity factor K is given by

K=Ya\/c_l (1)

In this paper, only proportional loading conditions are considered (i.e. the principal directions are
independent of the number of cycles) and bifurcation of the crack is not considered. In the case of
non-proportional loading conditions, the previous hypotheses need to be re-visited. It is worth
noting that the values of the parameter Y depend upon the geometry of the initial defect and the
fact that this flaw intersects, or not, a free surface. For instance, the distance of the flaws to the
surface of the structure may be taken into account through the dimensionless parameter Y.

To take into account the localized non-linear behaviour of the material in the vicinity of the
crack tip under cyclic loading conditions, Elber {13] has shown that crack propagation depends
upon a so-called effective stress intensity factor AK s = Kpax — Kop. In the following, the onset of
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Fig. 1. Microscopic observations of a fractured surface of an SG cast iron specimen submitted to high-
cycle fatigue tension/tension test: (a) graphite nodules; (b) microshrinkage cavities.



microcrack propagation is described by a criterion postulated by Pellas et al. [14]
AK o¢r = g(R)Kpmax — Kth(a) =0 (2)

where K, (a) is a function of the current crack size a [15]. The function g models the influence of
load ratio R.

In many practical situations, it can be assumed that the flaw size is bounded by a maximum
value ay. In the case of cyclic loading, a cyclic threshold stress can be defined as the lowest value
of the stress level below which no failure occurs (i.e. the failure probability is equal to zero). The
cyclic threshold stress, Sy, is related to the threshold stress intensity factor K. Its expression,
when g(R)=1, can be derived from Eqgs (1) and (2)

Sela )=K‘_*'(aﬂ! (3)
th{am Y\/G_M

The results derived so far will be used to study high-cycle fatigue of SG cast iron. It is assumed
that the microcrack propagation law is a modified version of an Elber law [13], and keeps the
main features of the macrocrack propagation law based upon the generalized Paris’ law proposed
by Pellas et al. [14]

da [ Knu8®R) = K@) |'
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This law has the advantage of a reasonable description of the near-threshold crack propagation
rate: this is a key feature in the present case. In high-cycle fatigue, during the majority of cycles
leading to failure, the flaw size does not grow significantly. Therefore, it is assumed that the
evolution of the threshold stress intensity factor Ky, is only dependent on the initial flaw size aj,.
Furthermore, the flaw size usually varies between 10 and 500 pm, a value for which K, is only
weakly dependent upon a, [15]. Hence, as a first approximation, the threshold stress intensity
factor K, will be taken as a constant, This hypothesis is consistent with experimental data obtained
on SG cast iron (sec below). The following closed-form solution can be derived by integration of

Eq. (4)
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where a,o denotes the initial flaw size that becomes critical [ie. equal to a,, such that K ,,(a;) =
K] after N cycles. The constant C* is equal to C/ay. The value of the function ¢ depends upon
the power n of the microcrack propagation law

(x — Xu)! " [X — (1 — 1)x]

p(x)=2 n—1)n—2) when n#1 and n#2 (6)
o(x)=2[x+ xpln(x — xy)] whenn=1 (7
P(x) = 21n(x — ) — —>—  when n=2 (8)

x-xth



where x,, is obtained by using Eqs (1) and (2)
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The aim of the next section is to derive an expression for the cumulative failure probability
when the material experiences cyclic loading conditions for which the defects are randomly
distributed within the structure and can grow stably.

CUMULATIVE FAILURE PROBABILITY IN TENSION

In the following, for the sake of simplicity, we shall consider only cases for which the tensile
load level, o,,,, is constant. Initial heterogeneities are assumed to be randomly distributed, and
are modelled by a flaw size distribution f, which is a function of the size a. This function needs to
be determined to assess the reliability of heterogeneous materials. The cumulative failure probability
Pg, of an element Q, is the probability of finding an initial flaw whose size is larger than the
critical flaw size a,o [16]

+ oo
Pgo= J Jola)da (10)
aco
Equation (10) can be used when the flaw size evolution is deterministic, and if the only flaws to
cause failure are those initially present within the material. The cumulative failure probability Pg
of a structure £ is related to the cumulative failure probability Py, in the framework of the weakest
link theory [17]. In pure tension or compression, the stress state is uniform and, provided that
the flaw size distribution is uniform (i.e. characterized by a unique function f over the whole body),

the relationship between the two cumulative failure probabilities is given by

Pp=1—(1—Pg)""e (11)

Equation (11) is valid when the flaw interaction can be neglected. In SG cast iron, the average
distance between flaws is large compared with their size, so that this hypothesis is very often
fulfilled. It is worth noting that in high-cycle fatigue, the propagation stage on a macroscopic scale
tends to become negligible when compared, in terms of number of cycles, to the micropropagation
stage. In such circumstances, Eq. (11) can be applied to both brittle and ductile materials in high-
cycle fatigue. Since the propagation stage is neglected when Eq. (11) is used, this equation
corresponds to a lower bound to the cumulative failure probability of the structure. Hence, in the
following, failure refers to local failure, i.e. macroscopic initiation, which is a conservative estimate
of the structural failure.

In the next section, an identification procedure of the propagation law is proposed and applied
to fatigue experiments petformed on SG cast iron specimens. An experimental identification of the
flaw distribution is performed on the same specimens.

ANALYSIS OF FATIGUE TESTS ON SG CAST IRON

In this section, a series of tension/compression experiments performed at LMT-Cachan and
Renault are analysed in detail. These experiments have been carried out at different stress levels
on specimens made of ferritic SG cast iron containing less than 5% pearlite. The mechanical
properties are the following: ¢4 54, = 350 MPa, g, = 510 MPa, HV;o = 185 and E = 185 GPa. The
ratio between the threshold stress intensity factor and the critical stress intensity factor is of the



order of 1/3 [15]. Cylindrical specimens (8 mm in diameter) are tested under cyclic tension with
two different load ratios (R= —1 and 0.1).

Each curve in an S—N plot corresponds to a constant failure probability. It can be shown from
Eqgs (10) and (11) that a constant failure probability can be rewritten in tension/compression as

%0 p(Py) (12)
am
where the constant b depends upon the details of the flaw distribution and the value of the
considered cumulative failure probability. By using Eqs (5) and (12), the number of cycles to
failure is given by

I\IF= + o if o-maxg(R)\/Essth (13)
k. KaT
* gR) | (o \7" [ SuKe .
Np = KozR) (S_m) [?’(T“Km)—(ﬂ(\@)] if Ormax8(R) Vb > Sy, (14)

Equation (13) corresponds to a case where no failure at all is possible and the limting stress case
6,ax8(RYVb =S, corresponds to the “fatigue limit” for a given cumulative failure probability.
The expression for the cumulative failure probability then only depends upon the initial flaw
distribution and the value of the cyclic threshold stress S,;,. This case can allow an identification
of the threshold stress Sy, and the flaw size distribution independently of the crack growth law
[18]. Equation (14) corresponds to higher stress states where fatigue failure occurs. For a given
value of b (i.e. a given failure probability), the evolution of the number of cycles to failure mainly
depends on the crack growth law. Therefore, the analysis of a constant failure probability enables
us to identify the parameters of the crack growth law, provided the flaw size distribution is known
(i.e. the different values of the constant b have been identified).
Lastly, it is assumed that the flaw size distribution f, can be modelled by a beta function

a*~ Yay —a) !

z+f—1

whenO<a<y, >0, >0 (15)
B“ﬂﬂ'm
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This distribution possesses the key property of being bounded by 0 and ay. In the present case,
the only defects to be considered are microshrinkage cavities whose maximum size is given by the
minimum detectable size by NDE techniques.

In the following, the flaw size distribution f and the microcrack propagation law parameters,
C,n,m will be experimentally identified from the tests performed for a load ratio R = 0.1. Systematic
microscopic observations of the fractured surfaces of 50 specimens subjected to high-cycle fatigue
tension/tension tests were performed by using a Scanning Electron Microscope to determine the
initial flaw distribution. The initial defects on the fractured surfaces can be distinguished with no
difficulty since the stable propagation arca has different morphological characteristics as compared
to those of the initial defects. Pictures of the fractured surfaces were stored in a SUN workstation
and an image analysis program was used to determine the defect distribution. The size of the flaw
is defined as the diameter of the smallest circle in which the flaw may be included [Fig. 1(b)].
Flaws with a diameter less than 80 pm were not considered to avoid confusion with graphite
nodules (with maximum size of the order of 60 pm in diameter). Since pores of small size (a < 30 pm)
do not exist in the structure, we make the hypothesis that the probability of finding a defect of
size equal to zero is zero. By taking into account this hypothesis, the parameters of the experimental



flaw distribution & and B are identified. The [ollowing values are oblained: » =23, i =18, and the
value chosen for ay, is 400 um. This result shows thal we arc dealing with short cracks, and that
the threshold stress intensity factor can be considered as a constant for laws ol this size, as shown
in Ref. [ 197,

It is assumed that 1V, is equal to 1 since the size of the specimens is small: § mm in diameter
compared to ay =400 um. The value of the threshold stress can then be deduced from Eq. (3) by
assuming that ¥=~2 and K., =4.2 MPaVm [197], S, = 105 MPa, Figure 2 shows the identilied
flaw distribution. The values of flaw size corresponding to a failure probability of 10, 50 and 90%
are depicted in the same figure and given in Table 1. For a failure probability of 90%. the critical
flaw size has the same order of magnitude as the maximum size of nodular graphite.

The second step of the identification is concerned with the parameters of the microcrack
propagation law. Since the S—N curves used for the identification arc obtained in tension, this
identification is straightforward: it consists of the analysis of the constant cumulative failure
probability Pr=50% [ie. a, = constant, see Eq. (12)]. This failure probability is defined such
that it minimizes the following error

ne

1 - rJ-IINIX 2 -
Err=— Y | Npe — Niid b(Pr = 50%), =%, 1, C*, R=0.1 (16)

“ih

where Ng; is the number of cycles to failure predicted according to Eq. (14). It can be noticed that
Eq. (16) corresponds to the assumption that the mean value of the number of cycles to failure
experimentally measured for a given stress level coincides with a cumulative failure probability of
50%. Although this assumption is not fully consistent with other assumptions made to develop
the approach discussed herein, it can be considered as a reasonable approximation,

An expression [or the function g has been proposed by Pellas et al. [14]

R)= =0 (17)
8(R)= 1 —mR

where m is a material parameter. The values of m are usually of the order of 0.5. The approximation
g(R)= = | can be used when R = 0.1, The identification of the propagation law gives the [ollowing
values: n=2 and C* =59 x107° In Fig. 3, the cumulative failure probabilities Pr= 10%,

Table 1. Values of the constant b for SG cast iron ]’[ =90 % 50 %. 10 %
Failure probability -7, Ib/ i ‘
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Fig. 2. Identification of the initial flaw distribution of SG
cast iron from image analysis
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P =50% and P =90% are plotted with the experimental results. It is assumed that the number
of experiments is large enough to properly evaluate the failure probabilitics 10% and 90%. This
figure shows that most experimental data lie between the two failure probabilities Pr = 10% and
Pr=90%. Experimental observations of specimens where the corresponding point in the curve
S—N is outside the zone between the failure probabilities Pr = 10% and P =90% show that these
specimens contain flaws larger than ¢y, Had such flaws been present in industrial cast components,
they would have been detected by using NDLE techniques.

Figure 4 shows the crack growth rate as a function of the stress intensity amplitude. The solid
curve is identified from the analysis ol a constant failure probability. The other points represent
experimental results obtained on specimens made of SG cast iron. The solid squares concern an
artificial short crack of initial length @, = 240 um [207]. The open circles correspond to an artificial
crack of initial length a, = 1 mm. The open squares concern an artificial long crack of initial length
tto =6 mm [207. The identificd curve is in good agreement with the experimental results, especially
for short cracks in the near-threshold regime. The discrepancy with the results for long cracks can
be described by threshold differences.

The last parameter to be identified is m to model the load ratio effect [see Eq. (17)]. By
comparing two [atigue limits (for R=—1 and 0.1) for the same available cumulative failure
probability (50%), the parameter m is determined by using Eq. (13)

0o (Pr=50%, R=0.1)g(0.1) =0 ,(Py=50%, R= —1)g(—1) (18)

The identified value is m = 0.59. Figure 5 shows the cumulative failure probabilities Pp = 10%,
Pp=50% and P, =90%, and the experimental results lor R = —1. The same type of conclusion
can be drawn for R= —1 as for R=0.1. This rcsult shows that the function g accounts [or the
influcnce of load ratio for different cumulative failure probabilitics. All the material parameters
identified for the material studied herein are gathered in Table 2.

CONCLUSIONS

A reliability analysis taking account of flaw size distributions has been developed for components
subjected to cyclic loading conditions. Therefore, the underlying hypothesis is that the scatter in
failure stress and number of cycles is entirely attributed to the random distribution of flaws.
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Emphusis is also put on the micro-propagation stage, which is directly related to the evolution of
initial flaws. An expression for the cumulative failure probability is derived in the framework of
the weakest link theory and by assuming that the flaw interaction can be neglected. The study is
applied to SG cast iron, where the maximum defect size is of the order of 400 pm. The crack
propagation law is based on a modified Paris’ law for this kind of faw. The threshold stress
intensity factor, which is dependent upon the current size of defect, is considered as u material
constant for the described SG cast iron. A simplified expression for the cumulative failure prob-
ability is derived for cyclic failure in the case of tension. The analysis of a constant failure
probability allows us to identify the parameters of the microcrack propagation law.

Experimental data on SG cast iron in tension arc analysed within this framework for cxperiments
with a load ratio R =0.1. It is assumed that the flaw distribution is described by a beta probability
density function. The flaw distribution is identified experimentally by using SEM observations and
image analysis. The predictions of the failure probabilitics for the two series of data (R =0.1 and
R = —1) arc in good agreecmentl with the experimental number of cycles Lo failure. This result
shows that Lhe influence of the load ratio is rcasonably described by the model. Finally, the
identified crack growth rate as a lunction of the stress intensity [actor is in good agreement with
experimental results, which indicates that the threshold stress intensity factor can be considered
as a constant for small cracks. These results show that the expression for the cumulative failure
probability proposed herein is able to model fatigue data obtained on SG cast iron. Exlension to
heterogencous stress ficlds (c.g. bending) are under way to cvaluale the prediclive capabilitics of
the model.
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