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On the mechanical behavior of fiber-reinforced
composites

Francois Hild, Alain Burr & Pascal Feillard

Laboratoire de Mécanique et Technologie, E.N.S. Cachan/C.N.R.S./Université Paris V1, 61 avenue du Président Wilson,
F-94235 Cachan Cedex, France

In this paper, the derivation of the state potential is presented to model the
mechanical behavior of fiber-reinforced composites. It allows matrix-
cracking, interfacial debonding and sliding to be accounted for in the
framework of Continuum Damage Mechanics. An application is performed
on a unidirectional SiC/SiC composite. © 1998 Elsevier Science Ltd. All

rights reserved.

INTRODUCTION

It is known that the formation of matrix cracks
and the subsequent matrix/fiber interface deb-
onding and sliding are the source of the
non-linear stress—strain curves observed when
loading Ceramic—Matrix Composites (CMCs) at
room temperature. Matrix-cracking, debonding
and interfacial sliding reduce the tangent
Young’s modulus, induce inelastic strains and
hysteresis loops [1,2]. It is proposed to study
these mechanisms in the framework of Con-
tinuum Damage Mechanics and to derive
constitutive laws suited for structural applica-
tions. In this connection an attempt is made to
base the formulation on the results of studies of
the microstructural mechanisms. These studies
are supported by detailed and complex experi-
ments which are beyond the interest or abilities
of those concerned with the properties of mech-
anical components. Therefore, the approach
adopted in this study is to use the results of the
micromechanical studies to develop constitutive
equations which can be formulated from the
results of rather simple mechanical tests.

For simplicity reasons, only experimental data
on unidirectional architectures subjected to uni-
axial stresses are considered but the means of
generalization to multiaxial states of stresses
has already been demonstrated elsewhere [3].
Special emphasis is put on the sensitivity of the
identified micromechanical parameters.

A Continuum Damage Mechanics formula-
tion applied to fiber-reinforced composites is
written within the framework of the Thermo-
dynamics of Irreversible Processes [4,5]. The
first step in establishing such a model is to
identify the state variables which define the state
of the material. The second step is to derive the
expression of the state potential  in terms of
the state variables and the third one is to deter-
mine the evolution laws of the internal variables.
The state potential § is made up of the sum of
two terms: viz. the elastic energy density ¢, and
the stored energy density y,. The elastic part is
directly related to the applied load. The stored
energy density is concerned with residual stress
fields giving rise to macroscopic strains with no
applied load. When the local behavior is elastic,
the stored energy density is expressed as the
total energy density associated with the residual
stress field. Therefore, by considering two elas-
tic steps, the total free energy density can be
evaluated following a so-called ‘cut and paste’
technique introduced by Volterra [6). This
approach will be used to model the mechanical
behavior of unidirectional as well as 0/90
layered fiber-reinforced CMCs.

Loading a composite consisting of a brittle
matrix supported by stronger fibers, usually
causes multiple matrix-cracking which is accom-
panied by interfacial debonding and sliding. In
the following, we assume that the whole matrix-
cracking process occurs at load levels lower



than the fiber breakage mechanism, and there-
fore only the former mechanism will be
analyzed. Using the same framework, the analy-
sis of fiber breakage and pull-out can be found
in Refs [7] and [8]. The aim of this paper is to
derive a state potential and to introduce the
relevant internal variables to model matrix-
cracking, debonding and sliding. In the section
‘Microscopic description of the degradation
mechanisms’, the relevant microscopic quanti-
ties are introduced to analyze the degradation
mechanisms of CMCs. Based upon the results
of this section, the following section, ‘Macro-
scopic description of the degradation
mechanisms’ deals with a macroscopic descrip-
tion of constitutive laws applicable to CMCs.
The section ‘Micro-macro relationships for uni-
directional composites’ is devoted to the
relationship between microscopic quantities and
internal state variables. In the section ‘Appli-
cation to a unidirectional SiC/SiC composite’,
the previous results are applied to model a uni-
directional fiber-reinforced SiC/SiC composite.

MICROSCOPIC DESCRIPTION OF THE
DEGRADATION MECHANISMS

The matrix cracks, which are assumed to be
perpendicular to the fiber direction, cause a
stiffness reduction when the stress is tensile.
Furthermore it is the closure of the cracks
which indicates the onset of increased stiffness
when the specimen is subsequently loaded in
compression. In the following, we will use cle-
mentary cells of length 2L, characterizing the
crack spacing, and consisting of two different
materials (m) and (f) as shown in Fig. 1 [9],
where E is the Young’s modulus of the
unbroken composite, E,, that of part (m), and
E; that of part (f). There is a matrix crack at the
center of the cell. Because the matrix contains
initial flaws of random strength, there is a distri-
bution of matrix cracks characterized by a
probability density function F(L) depending on
the applied stress o. The presence of matrix
cracks implies a potential energy density change
A [10]
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Fig. 1. Elementary cell with crack spacing 2L and debond
length 2/,.

where Ag.(L) is the average potential energy
density change due to the presence of a crack in
a cell of length 2L, and 2L the average crack
spacing. In the framework of Linear Elastic
Fracture Mechanics, it is known that the poten-
tial energy change Ag.(L) is equal to ¢°w/E,
where o, is dependent on the crack density as
well as on the fact that cracks interact or not.
This first basic mechanism is purely dissipative
and therefore only influences the reversible part
of the free energy density ..

Debonding followed by sliding gives rise to
inelastic strains and hysteresis loops. To
describe these phenomena, different models
have been proposed [11,9,12]. They all consider
a friction length 2/ here assumed to be equal
to the debond length 2/, (Fig. 1). Similarly to
cracking, which is a mode I mechanism, deb-
onding per se is a purely dissipative mechanism
as well. When debonding and slip occur simul-
taneously, a self-balanced microscopic stress
field is involved. The corresponding strains in
the matrix and in the fiber are denoted by
Ae,(z,L) and Agfz,L), respectively, where z is
the current coordinate. These strain differences
result from the ‘cut and paste’ procedure allu-
ded to in the Introduction. By application of the
principle of virtual work, the overall inelastic
strain ;, [13] is expressed as

A EIL— j 0+°° [ f LL Aedz,L) dz]F(L) dL. ()



Since the additional stress field is self-
balanced the debonding and sliding processes
are able to store energy. This result shows that
to fully characterize both mechanisms the
knowledge of the corresponding stored energy
density Y4 is crucial. It is expressed as the total
elastic energy density associated with the resi-
dual stress field due to debonding and sliding

Vaa= %Joﬂo U:

+(1— f)E A’ (z,L)} dz] F(L)dL (3)
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where f is the fiber volume fraction. It is worth
noting that the expression of the stored energy
is a priori only valid if the residual stress field is
associated with debonding and sliding. Because
of the way these materials are obtained, another
residual stress field due to processing is likely to
occur. If the residual stress in the matrix is
denoted by ¢,, the total stored energy density
Y, becomes

¢-s_ '»st o_pméinlw_sp (I)
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The coupling term —&,,&, is due to the
presence of two residual stresses of different
nature. Lastly, the term y, is due to the resi-
dual stress field induced by processing. This
term is not explicitly given since it is constant.
In the following it will be omitted because the
free energy density is a potential defined up to
an additive constant.

From the present analysis, three different
quantities are obtained. A potential energy
change due to matrix-cracking, inelastic strains
and a corresponding stored energy related to
debonding and sliding. Furthermore, a coupling
term in the stored energy density is found when
the residual stresses due to processing are expli-
citly accounted for. These results are now used
to describe macroscopically the degradation
mechanisms.

MACROSCOPIC DESCRIPTION OF THE
DEGRADATION MECHANISMS

The matrix-cracking process described by an
internal damage variable D complies with the

requirement of a fully dissipative mechanism. In
a Continuum Damage Mechanics framework,
the presence of a crack results in a stiffness
reduction defined by an internal damage vari-
able D [14,15]. The Gibbs’ elastic energy
density of a damaged material is written as [16]

6.2

P(D)= e D) (6)

so that the potential energy density change can
be expressed as
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AP, =9 (D)—p(D=0)=
0. =0 (D)— [ ) o

na 7
2 O

Equation (1) shows that the correct internal
variable modeling cracking is the damage vari-
able D whereas the corresponding potential
energy density change depends upon the
damage variable D as well as the applied stress
level G, and therefore is not an acceptable
measure of the degradation due to matrix-
cracking. Equations (1) and (7) show that the
damage variable D is a function of all statistical
moments of the crack spacing distribution. A
3D formulation requires an  aniso-
tropic damage description [13]. In the case of
cracking perpendicular to the fiber direction,
the generalization is straight-forward since the
only compliance change is given in the fiber
direction, and therefore only one scalar aniso-
tropic damage variable is needed and the
present 1D analysis is still relevant. For a 0/90
layered composite, the Helmholtz free energy
density, which is the Legendre transformation
of the Gibbs’ specific enthalpy, depends upon
the damage variables modeling matrix-cracking
in the 0 and 90-degree layers

T |
Vo= ;ﬁzE(D?mD?):é (8)
where ¢ denotes the total strain tensor, ‘’ the
contraction with respect to two indices, E the
elastic stiffness tensor which is a function of the
matrix-cracking damage variables DY, and Dj?
[13].

To fully characterize debonding and sliding
two variables are needed. The first one is the
inelastic strain g,,, and the second one, denoted
by d, is introduced to define the stored energy



density level associated with debonding and
sliding alone
= B &

T2 d

S _6pmb|n (9)

This expression can be found in Refs [17,18]
to model concrete and rocks for which there is
one damage variable modeling the stiffness
reduction when the crack is open and sliding in
mode II when the same crack is closed. How-
ever, in the study of CMCs there is a mode I
matrix crack as well as a mode II debond crack
(Fig. 1), therefore two damage variables are
needed. Furthermore, there is a non-uniform
stress field along the debond crack, thus eqn (9)
does not necessarily allow to relate the damage
variable d to a debond crack density. In a 3D
formulation, a second order tensor is needed to
model the inelastic strains due to debonding
and slip. In the case of a layered 0/90 compo-
site, a first order approximation only requires
the in-plane components (i.e. &g, &,2. and
Ein12), Of the inelastic strain tensor g,. Since
each operative slip system can be integrated
separately in terms of energetic contributions,
the internal damage variables can be defined
separately for each inelastic strain term. There-
fore, there are as many debond damage terms
as non-vanishing inelastic strain components
[13]
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where E,,, E,,, are the Young’s moduli along
the 1-direction and the 2-direction, respectively,
and G,, is the shear modulus in the 1-2 plane.
It is worth noting that the residual stress tensor
Gmp is an average tensor in the composite to be
computed for each specific architecture. In the
case of cracking perpendicular to the fiber
direction, only one inelastic strain component is
different from zero, viz. the normal component
along the fiber direction. Similarly, only one
scalar debond damage variable is needed.
Because the residual stresses due to process-
ing are assumed to be constant over the whole
composite length, there is no need to introduce
another internal variable to describe the coup-
ling term in the expression of the stored energy

density .. In addition to the total strain &, the
total free energy density i is dependent on
three internal variables: one damage variable D
modeling matrix-cracking and related to the
crack spacing distribution, two variables ;, and
d describing debonding and sliding, and related
to the debond length distribution and to the

crack opening distribution

_ EQ-D)y _ _ , E &, _ _
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The associated forces are defined as follows
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Equation (12) defines the macroscopic stress
a. To properly characterize the overall stress—
strain behavior, this result shows that the
reversible part of the free energy density is
crucial. The following equations define the
associated forces to each dissipative mechanism
studied previously. Equation (13) defines the
energy release rate density Y playing a similar
role as the energy release rate % in Linear Elas-
tic Fracture Mechanics. Combining eqns (12)
and (13), one shows that the energy release rate
density Y is proportional to the square of the
‘effective stress’ a/(1—D) [16). Equation [14]
defines the back stress X related to debonding
and sliding. Its exact value depends upon the
interfacial behavior. Equation [15] defines the
stored energy density y released during debond-
ing and sliding. Since the variable d depends
upon the details of the interfacial behavior, the
definition of its associated force is also
dependent upon the interfacial behavior. The
damage variable d and its associated force y are
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Fig. 2. Schematic stress/strain curve.

not important in terms of overall composite
behavior. However in terms of energy contribu-
tions these variables are relevant. To determine
the evolution laws of the internal variables, two
ways can be followed. The first one is using
simulations of the complete micromechanical
model along the lines developed for instance by
Feillard et al. [19] to get the distributions of
crack spacings 2L and debond lengths 2/, and
then to compute the state potential. The second
one is by performing experiments. The damage
variable D is obtained by measuring the initial
unloading modulus and the corresponding
inelastic strain is &, (Fig. 2). To measure the
variable d, the stored energy ¥/, has to be evalu-
ated, for instance by using methods developed
by Chrysochoos [20] or Cho et al. [21].

For a 0/90 layered composite, the Helmholtz
free energy density depends upon the damage
variables modeling matrix-cracking in the 0 and
90-degree layers, the inelastic strain tensor as
well as the damage variables modeling debond-
ing and sliding
i§:E(D‘,’T,,D?,?):§+ﬂ Gl
2 2 dy
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The associated forces are defined by
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Equations (17)-(20) constitute a generaliza-
tion of eqns (12)-(15). A description of the
identification procedure can be found in Ref.

[3].

MICRO-MACRO RELATIONSHIPS FOR
UNIDIRECTIONAL COMPOSITES

In this section, expressions of the three internal
variables D, &, and d are derived in some par-
ticular cases dealing with unidirectional
composites. Equation (1) can be written in
terms of an equivalent cracking length L,
defined by

Z"A(—pe e I:cA(pe(Z'c)' (21)

It is worth noting that when Agq.(L,) is
inversely proportional to L. then Ag. (L) is
inversely proportional to L for any value of L
and any distribution F. The relevant length to
consider is the average crack spacing L. In that
case a local damage theory is applicable since
the matrix cracks are not interacting with each
other. Otherwise, choosing the equivalent crack-
ing length equal to the average crack spacing is
a priori only a zero-th order approximation. The
damage variable then depends upon higher
order moments of the crack spacing distribution
and a non-local damage description seems more
appropriate.

Using a shear lag analysis [22], eqns (7) and
(21) allow us to link the damage variable D to
crack spacings L. and L by [10]

D  (1-f)E, tanh(fL)

= (22)
|-D fE; BL
where the constant f is a function of the elastic
and geometric properties of the fiber and the
matrix. When pBL.>2'5 (ie. tanh(BL)=x1),
D/(1-D) is inversely proportional to SL. This
last result can also be found in the framework



of Linear Flastic Fracture Mechanics for non
interacting cracks.

The strain distribution Aedz,L) in the friction
zone in the part (f) is assumed to be linear and
characterized by a constant interfacial sliding
strength 7, [23, 11]. The inelastic strain g, is
given by [12]

_ T?i O"dR
&in = = 1+ - (23)
E¢RL, Tola

where R is the fiber radius, and I, is the equiva-
lent debond length defined the same way as the
equivalent crackmg length L. The debond
strength g, is related to the 1nterfac1al debond
toughness ¢, by

1 — EE.%
szz\/< NEERSs o

RE

These results are a 1D simplification of the
axisymmetric calculations given in Ref. [12].
Equations (2) and (23) show that the inelastic
strain is a function of the crack spacing distribu-
tion as well as the debond length distribution. If
the crack spacing distribution is such that the
smallest spacing is greater than the debond
length, there is a unigue debond length value.
The definition of the variable d is directly
obtained from the evolution of the debond
length 1, as well as its definition in the expres-
sion of the stored emergy ¥, given in eqn (4).
Using the debond strength o, and the inter-
facial shear strength t,, the damage variable can
be expressed as

(1=NEm Lo
fEf l_‘c

1 I agR \ 2% |!
X 1+3 + o ) (25)

The damage variable d is proportional to the
size of the slip zone related to the crack spacing
length Ly/L. When the ratio o4R/(1oLy)
approaches zero, the damage variable d reaches
its lower bound. In that case, the material
behaves in a low debond energy regime [24].
Conversely, when the ratio a4R/(toly)

d=

approaches infinity, the damage variable d
attains its upper bound and the material
behaves in a high debond energy regime [24]

ECU i IR e —lem =0 (26)
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The present analysis shows that the key
parameter d1scr1m1nat1ng low versus high deb-
ond energy regimes is the ratio o R/(toLy)
measuring the relative stress influence due to
debonding (s,) and friction (1,L4/R). If the
stress redistribution is more complex [19], the
prev1ous results do not apply: the damage vari-
able d is proportional to the ratio Ly/L. only if
the stress field ahead of the debond crack tip is
assumed to be unaltered by the presence of
sliding and cracking.

APPLICATION TO A UNIDIRECTIONAL
SIC/SIC COMPOSITE

In the following, we will analyze experiments
performed on a unidirectional SiC/SiC compo-
site [25]. For this material no matrix-cracking
saturation is observed. This assumption is con-
sistent with experimental observations of the
evolution of the average crack spacing 2L
(Fig. 3) as well as that of the damage parameter
ratio D/(1—D). This fact allows us to make the
hypothesis that the average crack spacing L is
sufficient to characterize matrix-cracking
(L.=L). By combining measurements and
micromechanics, eqn (22) shows that there is a
way of identifying the parameter f. Further-
more, the evolution of the average crack density

Pan 20 T T T T T T 0.8 U
=) =
= e RAL i, 2
15 | 40.6 &
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5 10f IE 0.4 §.
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Fig. 3. Evolution of the crack density R/2L and the
damage ratio D/(1—D) as a function of the stress level G

for a unidirectional SiC/SiC composite (after Domergue
[25)).



R/2L as a function of applied stress is shown to
be given by [25]

R R G-6.,
e 27)
L Ly Op—0p
where &, is the macroscopic stress level at
which matrix-cracking starts (6,275 MPa), o
is the failure stress (6p=~340 MPa), and 2L is
the average crack spacing at failure
(2Lr=40 um). Equations (22) and (27) can be
used to identify the value of f: Rf =1-09+0-07
so that the dimensionless number BLr=2-8 is
in agreement with the hypothesis that L.=L
(i.e. BLp>2-5).

From a practical stand point, the evolution
law can be expressed in a more tractable
manner by relating the damage variable D to its
associated force Y

IY =Y
D=Doc|:l —exp {—( & >}] (28)

where Y, and Y, are material parameters, Y,,.
is a threshold value of the energy release rate
density below which no damage occurs. At the
onset of matrix-cracking, the parameter Y, is
related to the matrix-cracking stress by (see eqn
(13) when D = 0)

=2
Omc

2E

mc

(29)

It is worth noting that instead of eqn (28) a
more complicated relationship can be obtained
between the damage variable D and its associ-
ated force Y using eqns (13), (22), (27) and
(29). The result of the derivation shows that /Y
is the right quantity to consider. Therefore, eqn
(28) was written in terms of VY rather than Y
itself. For the unidirectional SiC/SiC composite,
the following values are identified (Fig. 4)

D, =0674005, Y,,.=147+07 kPa,
Y,=96+04kPa. (30)

The identified value of Y, is in agreement
with the value of the matrix-cracking stress &,
according to eqn (29). If eqn (29) is considered
(i.e. the value of Y, can be obtained from the
knowledge of &,.), the only parameter to
identify is Y,, since the value of D, is obtained
by inspecting eqn (22) when L—0 and L.—0,
D-D,. =(1—f) E/E. The value of D is also
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Fig. 4. Evolution of the damage variable D as a function
of the energy release rate density Y for a unidirectional
SiC/SiC composite.

in agreement with that predicted by using the
elastic properties of the SiC/SiC composite
(Er, =300 GPa, E; =200 GPa, f = 0-43).

To completely identify the evolution of the
inelastic strains, one needs to determine the
residual stress &,,,, the debond strength g, and
the interfacial shear strength t,. The difference
in coefficients of thermal expansion is assumed
to be on the order of Aa=~10"°K~"' and the
temperature variation on the order of
AT = 1000K. Consequently, the residual stress
level can be approximated by a,,,=80 MPa.
This value is in reasonable agreement with
other studies [25]. In the following, it is
assumed that only one debond length is needed
to fully characterize the debond regions. The
other parameters are obtained by identification
of the evolution of the inelastic strains &, as a
function of the stress level ¢

- (I—PE%4R
En= "o -
4f2EfTOL

0+0pm \* foy, 2
[ et

The following values are obtained (see Fig. 5)

6,=550+ 10 MPa, t,=46+5 MPa. (32)

The value of the interfacial shear strength 7,
is in good agreement with other identifications
[25] as well as the debond strength (the corre-
sponding interfacial toughness 9, is on the
order of 4:2+0-1 J/m?).

If one assumes that the onset of matrix-crack-
ing coincides with the onset of debonding, the
value of the debond strength can be easily iden-
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Fig. 5. Evolution of the inelastic strain &, as a function of
the stress level & for a unidirectional SiC/SiC composite.

tified, provided that the residual stresses are
known

foq _ Opmct0
(1-pE, E

P (33)

This hypothesis can be made in the present
case. Using eqn (33), a relative variation of the
residual stress Ad,,,/|0,m| leads to a relative
variation of Ac /o4 expressed as

A 5\~ Ag
o =<1+ G"‘°> S (34)

04 04 |&pm|

Equation (34) shows that the higher the
dimensionless group (1+d,./64), the lower the
sensitivity of the debond strength a4 to the resi-
dual stress &,,,. In the present case eqn (34)
becomes

A AG
04 0.3 —em (35)

04 Iapml

This result indicates that there is a weak
influence of the parameter G,, on the identi-
fication of the debond strength 4.

Furthermore, by using eqns (27) and (31), the
evolution of the inelastic strain can be rewritten
as a function of the applied stress

(& — amc)2(6+2&pm+&mc)

&n=B (36)

Ez(aF - 6pm)
with
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Equation (37) shows that the identification of
1o is directly related to the value of f. There-
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Fig. 6. Evolution of the stress & as a function of the strain
¢ for a unidirectional SiC/SiC composite.

fore, a relative variation of the parameter S,
AP/B, leads to the same relative variation of the
shear strength 7., Aty/t,

Az, ~ ﬂ
- = i (38)

This influence is significantly higher than that
exhibited by the residual stress &, in relation
with the debond strength o,. These features can
be observed when the scatter in values for ¢,
and Y, are summarized by Evans et al. [24]. The
identified stress/strain curve is compared with
the experimental one in Fig. 6: there is a good
agreement.

To fully characterize the model, one needs to
study the evolution of the damage parameter d
defined in eqn (25). Figure 7 shows the evolu-
tion of the damage parameter d as a function of
stress level 4. The prediction is compared with
the upper and lower bounds of the damage
parameter given in eqn (26). In the particular
case of a unidirectional SiC/SiC composite, a

e d (SiC/SiC)
3 Fl—a-nB JyEL I
2 0.4 | s 3(1-E 1 /4EL 1
§ 03} ]
o 02}
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§ 01} :
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0 ]
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Fig. 7. Evolution of the damage variable d and the corre-
sponding upper bound (solid line) and lower bound
(dashed line) as a function of the stress level ¢ for a
unidirectional SiC/SiC composite.



large debond energy regime is relevant for the
whole stress range since the damage parameter
coincides with its upper bound. Other compo-
site materials such as layered alumina with
carbon/epoxy prepregs are low debond energy
materials for which the debond strength is neg-
ligible with respect to the average shear stress
[26].

CONCLUSIONS

A Continuum Damage Mechanics formulation
has been applied to fiber-reinforced composites.
In addition to the total strain, the internal vari-
ables which define the state of the material have
been identified. Matrix-cracking is described by
one damage variable, debonding and sliding are
modeled by an inelastic strain and another
damage variable measuring the amount of
stored energy. These variables are related to
microscopic quantities introduced to analyze the
degradation mechanisms of CMCs.

Micromechanical parameters are exhibited to
model matrix-cracking, interfacial debonding
and sliding. Their identification is discussed by
analyzing the mechanical behavior of a unidir-
ectional SiC/SiC composite. This composite
behaves in a large debond energy regime in
which the stress levels related to the debond
strength are significantly higher than those
related to sliding. In the present case, a sensi-
tivity analysis shows that the identification of
the interfacial shear strength is more sensitive
than that of the debond strength.

The framework presented in this paper can
be extended to model layered as well as woven
fiber-reinforced composites. The nature of the
different internal variables have been discussed.
The same formalism can also be used to model
high temperature applications in which the
change of residual stresses as well as creep
mechanisms need to be incorporated. This work
is still in progress.
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