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N. Ducros, A Lorente Mur, F Peyrin

Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UIM Saint-Etienne,
CREATIS CNRS UMR 5220, Inserm U1206, F-69621, Lyon, France

ABSTRACT

We consider here the problem of reconstructing an image
from a few linear measurements. This problem has many
biomedical applications, such as computerized tomography,
magnetic resonance imaging and optical microscopy.

While this problem has long been solved by compressed
sensing methods, these are now outperformed by deep-
learning approaches. However, understanding why a given
network architecture works well is still an open question.

In this study, we proposed to interpret the reconstruction
problem as a Bayesian completion problem where the missing
measurements are estimated from those acquired. From this
point of view, a network emerges that includes a fully con-
nected layer that provides the best linear completion scheme.
This network has a lot fewer parameters to learn than direct
networks, and it trains more rapidly than image-domain net-
works that correct pseudo inverse solutions. Although, this
study focuses on computational optics, it might provide some
insight for inverse problems that have similar formulations.

Index Terms— Image reconstruction, deep learning,
Bayesian completion, fully connected layer

1. INTRODUCTION

Single-pixel imaging is an extreme configuration of compu-
tational optics, where a single point detector is used to re-
cover an image [1]. This has been applied to fluorescence
microscopy [2], hyperspectral imaging [3, 4], diffuse tomog-
raphy [5] and image-guided surgery [6]. Single-pixel mea-
surements can be modelled as dot products between an image
and some two-dimensional functions that are implemented
through a spatial light modulator [7]. To limit acquisition
times, it is highly desirable to reduce the number of light pat-
terns, which leads to an undetermined inverse problem.
Image reconstruction from compressed acquisitions,
where the number of unknowns is larger than the number
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of measurements, is a generic problem that has several appli-
cations in the field of biomedical imaging (e.g., limited angle
computerized tomography, compressed magnetic resonance
imaging, computational optics). While such problems have
benefited from compressed sensing theory, which exploits
sparsity priors, recent studies based on deep learning have
shown promising results [8]. Much effort is currently devoted
to the interpretation and understanding of why such inverse
models perform well. This study is a small step in this direc-
tion. Although this study focuses on computational optics,
it might provide some insight for problems that have similar
formulations.

In [9], the authors proposed a convolutional auto-encoder
for single-pixel imaging that outperforms compressed sens-
ing approaches. This network directly maps the measurement
vector to the desired image, using a fully connected layer
(FCL) followed by convolutional layers. This architecture
is similar to the automated transform by manifold approxi-
mation (AUTOMAP) network [10], which has been success-
fully applied to magnetic resonance imaging. Here, we fo-
cus on understanding the behaviour of the FCL and its con-
nection to image space learning strategies where a network
post-processes an approximate solution, usually obtained by
an existing algorithm [11].

1.1. Contribution

Inspired by [12], we adopted a Bayesian framework. Recon-
struction from compressed acquisition is interpreted as a com-
pletion problem where the missing measurements have to be
estimated. In particular, we propose to estimate the missing
measurements from their correlation to the acquired measure-
ments. For a given database, we derive the best linear solution
for the completion problem. Then, we interpret this linear so-
lution as the FCL of an AUTOMAP-like network, where only
the convolution layers are trained. Freezing the the FCL sig-
nificantly decreases the number of parameters to learn.

1.2. Organization of the paper

In Section 2, we describe compressed acquisition and the as-
sociated reconstruction problem. In Section 3, we first reinter-



pret reconstruction as a completion problem. Next, we derive
the best linear solution to the completion problem. Finally,
we introduce a completion network that relies on setting the
FCL as the best linear solution. In Section 4, we compare
our approach to setting the FCL as the adjoint of the forward
model (as in [11]), and learning the FCL (as in [9, 10]).

2. COMPRESSIVE IMAGING

2.1. Compressive image acquisition

Let f € RY (in photons/s) be the image under acquisition.
The main idea of compressive optics is to measure a com-
pressed version f using hardware, and to recover it using soft-
ware. The acquisition can be modeled by

m=P1f, (1)

where m € RM is the measurement vector and P; € RM*N
with M < N, is the acquisition matrix. The matrix P; col-
lects the patterns that are sequentially uploaded on a spatial
light modulator to get m. The patterns in P; are tradition-
ally chosen on the basis P € RV*¥_ Classical choices in-
clude Fourier, discrete cosine transform, wavelets, and the
Hadamard approaches. The relevant patterns P; can be cho-
sen before acquisition (e.g., low frequency patterns) or adap-
tively during acquisition [13].

2.2. Compressive image reconstruction

Over the last 10 years, image reconstruction has typically pro-
ceeded by solving a minimization problem of the form
such that

m}nR(f) m= P, f. 2)

A popular choice for R is fo-norm R = || - ||2, which leads
to the least squares solution f* = P," [P, P,|~'m. An al-
ternative choice is total variation R = Y ||V, - [|2, where
V,, computes the gradient at pixel n, or variants that promote
piecewise constant solutions. In this case, (2) has to be solved
iteratively.

More recently, it was proposed to learn to reconstruct f
using the non-linear model

fr=H(m;0), 3

where 7 is a neural network parameterized by 6. Given an
image database, the parameters @ are determined during a
training stage by minimizing the reconstruction error. In par-
ticular, we consider the convolutional architecture depicted in
figure 1.

m € RM ~
M feERY
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Fig. 1. Bayesian completion network. The first layer is a fully
connected layer that outputs an image corrupted by artifacts
that are corrected by convolution layers

3. COMPLETION-BASED APPROACH

3.1. Reinterpretation of least-squares

Let y € RY be the full measurement vector such that

Y1 Py
- —Pf= 4
[lorr-Blr W
where y; € RM are the coefficients that are actually acquired
in (3), and y; € RY, L = N — M are the missing coefficients.
Assuming P is an orthogonal matrix, the least-squares solu-
tion simplifies to

Fr=Ply", withy' = [’g] : 5)

where y* is obtained by zero-padding the acquired coeffi-
cients. However, neglecting the missing coefficients leads to
reduced image quality, as will be shown in Section 5.

3.2. Bayesian completion scheme

We propose to complete the measurement vector with non-
zero coefficients before reconstruction; i.e., we consider

Ff =Py, withy" = [m] : ©6)
Y2
Our idea is to estimate the missing coefficients y3 through
their correlation with the acquired coefficients m, exploiting
a database.

To do so, we adopt a Bayesian point of view and assume
that the measurement is a sample of a random vector. In this
framework, we can estimate the missing coefficients y3 as the
conditional expectation

ys(m) =E(y2|y1 =m) (7

where y; and ys5 are the random vectors associated to the
acquired coefficients and the missing coefficients, respec-
tively, and m is the (deterministic) measured vector. For
finite means and variance, the conditional expectation (7) can
be computed as the minimum mean-square error solution

y; = G'(m) € argmin E(19(y1) =¥2[")  ®)



3.3. Best linear completion

We first assume that the data random vector follows a mul-
tivariate normal distribution with mean g € R" and covari-
ance matrix 3 € RV >N In notations

y= M ~N(p, ). ©
y2
where the covariance matrix takes the following form
DI Y
¥y = 21 10
{221 32 ] (10)

with B; € RM*M apnd 3y, € REXM | Under this hypothesis,
(8) allows the following closed-form solution

y3(m) = po + B 37 (m — ) (1)

where g1 = E (y1), p2 = E (y2). Plugging (11) into (6), we
have

0

I
= pT Jm+PT { _
7 [22121 1} o — Eo1 X7

] . (12)

When the condition (9) is unmet, the estimate provided
by (12) achieves minimum squared error among all linear es-
timators [14]. Therefore, this will be referred to as the best
linear completion in the following.

3.4. Proposed completion network

For the general probability distribution of y, the solution of
(8) is non-linear mapping. We propose to learn it through a
family of non-linear mapping He parameterized by 6. We
consider a neural network model of the form

Ho = Hso... 0} (13)

where H!, 1 < ¢ < L is the ¢-th (non-linear) layer of the
network, and o is the function composition.

The first layer is traditionally a fully connected layer that
maps the measurement m € R to a raw solution in f € RN
(see figure 1). Here, we propose to parameterize the fully
connected layer, such that it outputs the best linear solution,
ie.,

f=H'(m)=Wm+b (14)

where the weight W and bias b are computed using (12).

Solving the original minimum mean square error prob-
lem (8) is computationally intractable in general. Therefore,
we minimize the empirical mean square error over an image
database

K

't

min— > [Ho(m®) — £ (1s)
k=1

where { f(*)} 5 represents an image database and {m¥) =
P YK are the associated measurements. Note that
when the parameters of the fully connected layers are fixed,
the optimization variable € has reduced dimension.

Hadamard coefficient #7

-20 0 20
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Fig. 2. Measurement scatter plot for two coefficients of the
measurement vector. Each dot represents an image from the
STL10 test set. The two histograms represents the marginal
distribution of each variable while the full line on top of the
scatter plot indicates the correlation between the two vari-
ables.

4. NUMERICAL EXPERIMENTS

4.1. Training Details

We consider M = 333 Hadamard patterns. We compare dif-
ferent choices for FCL of the convolutional neural network
depicted in figure 1. In particular, we consider the following
three variants:

o Pseudo inverse network (pinvNET). The weights of the
FCL are fixed during training such that it behaves as the
pseudo inverse of the forward operator. The estimate f
corresponds to the least squares solution (5). In this
case, there are L = 8 129 trainable parameters.

e Completion (compNET). The weights of the FCL are
fixed during training such that the estimate f corre-
sponds to the best linear solution (12). In this case,
there are L = 8 129 trainable parameters.

o Free network (freeNET). The weights of the FCL are
optimized during training. In this case, there are L =
1376 193 trainable parameters.

We implemented all networks using Pytorch [15]. The
training was done using the ADAM optimizer, with an initial
learning rate of 1073 that is devided by 5 every 20 epochs.

4.2. Dataset

We consider images from the STL10 database [16]. All of
the networks were trained using 105k images (i.e., the "unla-
beled’ and ’train’ subsets); 8k images were used for the test
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Fig. 3. Box plot of the distribution of the peak signal-to-noise
ratios of the reconstructed test images for five different meth-
ods. From left to right: pseudo inverse (pinv); Bayesian com-
pletion (comp); pseudo inverse network (pinvNET); comple-
tion network (compNET); free network (freeNET).

(i.e., the ’test’ subset). The original 96x96 images were re-
sized to 64 x 64 using bicubic transform, and were normalized
between —1 and 1.

Figure 2 illustrates two coefficients of the measurement
vector for all of the training images. It can be seen that the
marginal distributions for both of the coefficients are nearly
Gaussian, which is representative of all coefficients, and mo-
tivates the hypothesis (9).

S. RESULTS AND DISCUSSION

Figure 3 illustrates the peak signal-to-noise ratios for the re-
constructions of all of the test images. We consider the three
networks described in Section 4.1 together with the zero
padding solution (5) and the best linear completion (12). The
highest peak signal-to-noise ratio is achieved by the proposed
network (24.1 &£ 2.3 dB), which slightly outperforms the free
network (24.0 4+ 2.2 dB) and the pseudo inverse network
(23.6 = 2.2 dB). Compared to the free network, our proposed
network has no FCL to train, and hence it has a lot fewer
parameters to train (8 129 vs. 1376193). We also observe
that the pseudo inverse network particularly improves over
the pseudo inverse solution (22.0 &+ 2.2 dB) it is built from.
However, it only just outperforms the best linear completion
scheme (23.5 + 2.2 dB).

Figure 4 shows the evolution of the empirical mean
squared error of the test images during training, for the
three network variants. The proposed completion network
has the lowest MSE at all epochs. As it corrects the best
linear solution, it has much lower MSE than the other two
networks at the first epoch. The pseudo inverse network test
error decreases at the same speed as the completion network;
however, as the initial error is much higher, it fails to reach
the same error over 60 epochs. The behaviour of the free
network is quite different. Although the initial error is the
highest, it decreases rapidly and gets close to the completion
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Fig. 4. Evolution of the mean squared errors of the 8k test
images during training.

a) Ground-Truth b) Pseudo Inverse

c) Total Variation d) compNET

Fig. 5. Reconstrution of a fluorescence microscopy image.
(a) ground-truth, (b) pseudo inverse solution given by (5), (c)
total variation solution given by (2), and (d) proposed com-
pletion network.

network from 40 epochs.

In figure 5, we finally consider a fluorescence microscopy
image of melanoma cells (green) migrating on blood vessel
surfaces (red). We obtain an improved peak signal-to-noise
ratio with the proposed completion network (31.47 dB and
27.84 dB for the red and green channel, respectively) com-
pared to the pseudo inverse solution (27.15 dB and 24.27 dB)
and the total variation solution (30.67 dB and 26.68 dB).

6. CONCLUSION

We propose a convolutional network for image reconstruc-
tion in single-pixel imaging. Our method is generic and ap-
plies to any underdetermined inverse problem. The fully con-
nected layer is chosen to provide the best linear solution, and
is frozen during training. This network trains more rapidly
and outperforms variants that rely on adjoint operators, in
terms of peak signal-to-noise ratio.
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