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Abstract. Dynamic loadings produce high stress waves leading to the fragmentation of brittle materials such as cera-
mics. The main mechanism used to explain the change of the number of fragments with stress rate is an obscuration (or
shielding) phenomenon. A probabilistic damage model is proposed and scalings are proposed. This approach allows an
estimation of the characteristic size of structure involved in the transition between single fragmentation (quasi—static
loading) and multiple fragmentation (dynamic loading). This criterion is used to understand the mechanism leading to
damage localization for low impact velocity.

1. INTRODUCTION

Bilayered armor with ceramic as front plate and steel as back plate has been used for several years to improve
the efficiency of light or medium armor. The high hardness of ceramic materials favors projectile failure [1]
and spreads the kinetic energy on a large surface of a ductile back face. The weight of the armor is reduced
in comparison to an armor made of steel only. In most impact configurations, the stress field associated with
impact can be assumed to be spherical and an analogy can be made between real impact failure morphologies
and soft recovery experiments of divergent spherical stress load [2]. Stress waves produce damage both in
compressive and tensile modes in two different locations in the ceramic (Fig. 1). Damage in compression is
produced near the impact surface when shear stresses reach a threshold value which can be dependent on pres-
sure and strain rate. In the bulk of the ceramic, damage in tension is observed as well. With a projectile veloc-
ity under 1000 m/s, no significant perforation can be observed while damage grows. One can then uncouple
the damage evolution phase from the complete penetration phase. The complete perforation is dependent on
the way the ceramic fractures in terms of damage location and evolution, and in terms of anisotropic behavior
due to cracking.
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Figure 1: Morphology of damage in a ceramic specimen during impact.

Ceramic materials are known to break in a brittle way because of randomly distributed defects. This
brittleness in tension is often related to the capability of supporting high loadings and breaking apart in a few



micro-seconds. During the time of this relaxation, the stress wave is assumed to propagate only few times
in the whole structure. When the stress state evolves significantly during this time, other defects can nucleate
and modify the stress state of the structure: the ultimate strength can no longer be assumed to be the stress
corresponding to the first defect failure.

Such dynamic loadings are obtained during impact of a steel blunt cylinder on the edge of a ceramic tile
(Fig. 2). In the bulk of the impacted ceramic, damage in tension is observed when the hoop stress induced
by the radial motion of the ceramic is sufficient to generate fracture in mode I. The stress velocity associated
to this tensile stress state can be up to 5.1015 Pa.s~!. The modeling of the tensile degradation during impact
can then be understood as an extension of the single failure mechanism, where not only one but several defects
nucleate and lead to the failure of the structure.

In this study, a damage evolution law is based upon the modeling of the nucleation of many flaws. The
main mechanism used to explain the change of the number of activated flaws with stress rate is an obscuration
(or shielding) phenomenon. After a presentation of a probabilistic approach, a damage model is derived. The
transition between single and multiple fragmentation is then discussed in terms of characteristic scales.
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Figure 2: a) Edge—on impact configuration, b) and c) flaws nucleation during impact on a SiC
ceramic (SSiC) with a projectile velocity of 203 m/s.

2. PROBABILISTIC APPROACH
2.1 Single Fragmentation

The failure of a ceramic in quasi-static tension is due to defects d; of random location x defined by a failure
stress oj(x). When an equivalent stress g(x), e.g. maximum principal stress, is greater than o;5(x), a crack ema-
nating from the defect leads to the failure of the whole structure. It is worth mentioning that a failure is not
necessarily due to the largest defect but to the “weakest link”, i.e. the first location where o,(x) < o(x). There-
fore, the ultimate strength of a ceramic specimen is not deterministic and a failure probability Pr must be
defined and can be described by a Weibull law [3]

Py =1 exp|— A(0) Vg ()

o m
A(0) = 4, (0_0) (2)
where 4 is the defect density, o, a scale parameter relative to a reference density A,, m the Weibull modulus
and Ve¢r the effective volume [4]. Equation (1) allows to express the mean failure stress Oy, and the standard



deviation Ogqey in a closed—form
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where I is the Euler function of the second kind.

2.2 Multiple Fragmentation

In the bulk of an impacted ceramic, multiple fragmentation is observed (Figs. 2b and 2¢). Each event corre-
sponds to a mode I crack initiating on micro—defects. When such a fracture is initiated, the volume affected
by fracture is a complex function of time, crack velocity and stress wave celerity. In order to simplify the fol-
lowing development, the shape of the affected (or interaction) volume V; is supposed to be constant, i.e. all
the interaction volumes are self—similar and V; can be written as

V{iT—t)=S[a C (T - t)]3 )
where a C is the velocity of a propagating crack, S a shape parameter, C a longitudinal stress wave velocity
so that a C(T-t) is a representative length of the relaxation volume at the current time T around a broken flaw
at time #< T. The shape parameter S is chosen in order to have do/dt < 0 in Vj, i.e. no new nucleations can
occur in Vj.

To understand why a crack nucleates, one has to model the interaction of a nucleated defect and other
defects that would nucleate. With a constant direction of the maximum principal stress and a small stress gra-
dient, the space dimension can be uncoupled from the tensile stress (or time) dimension and the flaw nucle-
ation can be represented on a space—time graph (Fig. 3). The space location of a defect is represented in a
simple abscissa of an x—y graph where the y—axis represents its time (or stress) to failure. In this graph, a
shaded cone represents the expansion of the interaction volume with time due to nucleation and propagation
of a crack. The defects outside the shaded cones can nucleate and produce their own increasing interaction
volume (e.g. defects No. 1 and No. 2 of Fig. 3). Inside the cones, the defects that should have broken do not
nucleate (e.g. defects No. 3 and No. 4) since they are obscured.
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Figure 3: The obscuration phenomena.

Only defects in the non—obscured volumes can nucleate and produce a crack. The density of effectively
nucleated defects Ay, can therefore be calculated in a incremental way

%(T) = QU7) (1 - Po(T)) with AT =0)=0 (5)



with 4 a function of o(T) (see Eqn. (2)) and P, the obscuration probability (at least one defect exists in the
horizon) expressed as [6], [7]

Py =1— exp[— M(T) XT)] (6)
where (7)) is the mean volume of the space—time cones [8] defined by
T
M(T) MT) = I %(t) V(T —t) dt. (7)
0

Equation (6) can be compared to Eqn. (1) if one remembers that, for low stress rates, the obscured volume
is limited by the volume of the structure. The proposed model therefore corresponds to a weakest—link
approach when only one defect obscures the whole structure.

2.3 Damage Model

One can notice that P is also the fraction of relaxed zones and can therefore be related to a damage variable
D by the relation P, = D. The proposed damage variable is defined with the assumption that many cracks
nucleate and propagate due to a tensile stress expressed in the direction of the maximum principal stress. Since
the cracks will be strongly oriented, an anisotropic damage description is chosen [9].

This anisotropic description is expressed through a second order damage tensor. The damage tensor Dy
is diagonal in the eigen directions of stress tensor ¢ so that only 3 variables (D, D,, D) have to be compu-
ted. The relationship between the microscopic principal stress ¢; and the macroscopic one () is

2;=(1-D) o, withi=1,3 (8)
The compliance tensor §, written by using the assumption that the principal damage frame and the stress eigen
directions are identical, is equal to

1—D1 -V -V
s=1|-v 25 -v (9)
N - 1
14 14 1—D3

where E is the Young’s modulus and v the Poisson’s ratio. This approach is useful when multiple crack pat-
terns are superimposed. The evolution of D, is expressed in a differential form in order to be implemented
in the Finite Element code PamShock [10] by using Eqns. (2), (5), (6) and (7)
2 dD; o;\" 3

% (1 _1Did_tl) = 3! /10(0—;) S(aC) (10)
It is worth noting that D, approaches smoothly 1 and does not need any cut—off. According to classical results
of Continuum Damage Mechanics, the evolution of D, is stopped if do/dt < 0. The eigen directions (d;,
d,, d;) associated to D, D,, D; may change at each time step until D, reaches a threshold value
D, = 0.01. Only the direction d, is then locked, the other directions follow the eigen directions of g, with
the constraint to be perpendicular to d;. When D, reaches the threshold value, the whole directions are lock-
ed.

2.4 Scaling

To analyze the change of behavior with respect to the stress velocity, it is convenient to describe the damage
evolution in a dimensionless manner so that only a reduced set of relevant material characteristics is used.
In the case of a constant stress rate do/dt=0, a dimensionless flaw density (A=MA), time (T=T/t.), volume
(V=V/V,) are defined by the following condition

Ae Ve=1 with A, =4(;) and V.= Vjt,) (11)
where the subscript ‘c’ denotes characteristic quantities. The characteristic time is thus the time for which



one defect is able to break in the characteristic volume. Equation (11) leads to the following expression for
the characteristic time and volume

te = [a(g)m s (aC)3]

Lastly, a dimensionless stress is defined by

— 0 . _
=0 with o, =0 ¢, (13)

=3
m+3

;o V.= [,10 ((%)m(swac)_m] (12)

Tm+3

The set of material parameters is then reduced to the Weibull modulus only. The damage evolution due to a
constant stress rate is expressed as a function of the corresponding dimensionless stress @ by using Eqns. (2),
(6) and (7)

3! m!
D=1- -2 Gmt3
exp[ G + 3, 0 (14)
It is interesting to notice that for m = 3, D(G = 1) = 0 and D(G = 2) = 1 so that the evolution of damage

occurs when the stress evolves from o to 20,. The ultimate macroscopic stress (dX/do=0) Xy, is calculated
by using Eqns.(2), (6), (7), (8) and is proportional to o,

.
' m+3
5 =0 [L M] -

6 e m!

2.5 Validations

The probabilistic approach has been validated by using an Edge on Impact configuration with two different
silicon carbides (Fig. 4). These materials are made by Céramiques et Composites, France (SSiC), and CER-
COM, USA (SiC-B) and have their properties listed in Table 1. The two materials are comparable with the
exception of the mean strength and the Weibull modulus.

Table 1. Material properties of two SiC ceramics.

Property SSiC SiC-B
Young’s Modulus 410 GPa 450 GPa
Density 3.15 3.18
Weibull Modulus 9.3 18
Mean Strength 350 MPa 553 MPa
Effective Volume 1.25 mm?3 1.25 mm?

During impact, the damage zone evolves in a different way with respect to the projectile velocity. With
an impact of high velocity, the damage is homogeneous in a circular zone in front of the projectile. Below
a critical velocity depending on the material, the damage is localized in thinner and thinner corridors when
the velocity decreases (Fig. 4). This localization of the damaged zone leads to a fragmentation process where
the fragment sizes increase when the impact energy decreases. This leads to the common hypothesis that the
corridors are due to the transition between dynamic loadings where no localization occurs and quasi—static
loadings for which the tile is broken in few pieces. In the following section, a criterion is proposed for damage
localization by examining the validity domain of both single fragmentation (i.e. weakest link hypothesis) and
multiple fragmentation based upon the probabilistic approach described herein.

3. SINGLE/MULTIPLE FRAGMENTATION
3.1 Scale effects

Figure 5 shows the evolution of the ultimate stress vs. stress rate for single fragmentation and multiple frag-
mentation in a volume in tension V equal to Vegr. The lines represent analytical solutions while the dots and
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Figure 4: Edge—on impacts on SiC CERCOM tiles (simulated—top, observed—Dbottom),
a—V=185m/s (the damage is localized in thin corridors), b—V=513m/s (the damage is not localized).
Pictures were provided by E. Strafburger and H. Senf, EMI [5].
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Figure 5: Ultimate strength vs. stress rate (SSiC). The dots and error bars represent results obtained by
Monte—Carlo simulations (500 realizations/point) and their standard deviation (V=Veff).

error bars represent Monte—Carlo simulations (500 realizations per point). For a stress rate within
[0, 5.1014Pa's~1], the ultimate stress is not modified by the loading rate. When ¢ increases by approximately
one order of magnitude, the ultimate strength follows the proposed solution (Eqn.(15)). During the
single/multiple fragmentation transition, the difference between the solid lines (Eqns.(3) and (15)) and the



Monte—Carlo simulations does not exceed 10%. The standard deviation significantly decreases in the case
of multiple fragmentation when the stress rate increases. Even if the ultimate strength has to be defined for
both static and dynamic loadings by a mean value and a standard deviation, one can see that dynamic loadings
lead to a more ‘deterministic’ behavior. For a SSiC ceramic, a stress rate up to 1013Pa.s~! has shown no stress
rate effect on the mean strength [11]. This observation is in good agreement with the result shown in Fig. 5.

The transition between single and multiple fragmentation can be estimated by
24(0) = oy (16)
The transition between quasi—static and dynamic descriptions defined by Eqn.(16) leads to the following
inequalities

. m+3 . .
G Vin < f Single Fragmentation

. 17
o Vi = f Multiple Fragmentation e
with
Y e
—1 6m! + I m
f=2, /m g, S13 a C e(m+2)! F(mm ) (18)

It is worth mentioning that this transition does not only depend upon material parameters but also involves
the volume V of the considered structure. The response of a large structure can be considered as ‘dynamic’
for low stress rate even if the same material follows the weakest link hypothesis for the same loading applied
on a smaller volume. There is therefore no relationship between material parameters and characteristic scales
to describe the mechanical behavior. This transition can also be expressed by using the characteristic volume
V(o)

VK < g(m) Single Fragmentation
Vc _ (19)
72 g(m) Multiple Fragmentation
C
with
6m! = +1\"
A

The volume V(0) can therefore be considered as the characteristic scale for which a single/multiple frag-
mentation transition is observable. Furthermore, Fig. 5 shows that for V/V, = 1 the ultimate strength scatter
is very small. This characteristic volume can be used in FE computations in which the mesh size has to be
greater than or equal to V() to use a continuum and deterministic description of damage.

3.2 Application: Edge-On Impact

As mentioned in Section 2.5, damage due to impact is localized in corridors when the impactor velocity is
less than a critical value. The measured velocities for localization are listed in Table 2 and a significant differ-
ence between the two materials is obtained. The stress rates are calculated for each material for an impacted
volume of 10 X 100 X 100mm3. Contrary to the expected result, the two stress rates are comparable, with a
difference less than 5%.

Table 2. Impact velocities for the localization of damage and stress rates corresponding to the qua-
si-static/dynamic transition (V=10 X 100 X 100mm3)

SSiC SiC-B

Impact velocity
. ~40m/s = 185m/s
(localization)

a(V) 2.4210183Pas! 2.521013Pa.s1




The localization cannot be related to the single/multiple failure transition. A more detailed observation
of the experimental result of Fig. 4 shows that a corridor contains a high density of cracks, corresponding to
a high (local) stress rate. Moreover, an analysis of the computed stress rate generated during an impact at
185m/s shows that the local stress rate at the corridor tips remains higher than the single/multiple transition
stress rate. This leads to the conclusion that the localization in corridors is not a transient behavior between
the dynamic and quasi—static behavior. Furthermore, it can be noticed that, due to the difference of strength
between the two materials (Table 1), the maximum elastic energy reached before fragmentation for the SiC-B
ceramic is greater than twice that of the SSiC ceramic. For low impact velocities, this energy may be insuffi-
cient for damage generation (SiC-B). The energy contraction is then the only mechanism allowing a (local-
ized) damage onset and leading to a maximum of energy dissipation.

Conclusion

A probabilistic approach has been proposed to describe the stress rate dependence of the fragmentation mech-
anism. A damage evolution law in tensile mode is derived for impacted ceramics. The material parameters
(i.e., Weibull parameters) used in the model are obtained with quasi—static 3—point flexural tests. A closed—
form solution for the number of cracks nucleated is proposed and leads to the definition of the transition
between single and multiple fragmentation. This transition is expressed by using characteristic quantities
such as volume or time. It is found that the probabilistic nature of quasi-static failure progressively vanishes
with higher stress rates. However, the localization of damage in corridors cannot be expressed in terms of
transition between dynamic and quasi—static behavior.
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