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THE BEHAVIOR OF CERAMIC-MATRIX COMPOSITES UNDER
THERMO-MECHANICAL CYCLIC CONDITIONS

Alain Burr,” Frangois Hild,** & Frederick A. Leckie?

“Laboratoire de Mécanique et Technologie, ENS de Cachan/CNRS/Université Paris VI, Cachan, France.
b Department of Mechanical and Environmental Engineering, College of Engineering, University of California, Santa Barbara, USA

Abstract

The thermo-mechanical behavior of ceramic-matrix com-
posites is analyzed in the framework of continuum
damage mechanics through the introduction of internal
variables. The choice of these variables is based upon
the study of a micromechanical model describing the
degradation mechanisms that have been observed in the
material. The model identification is performed by study-
ing two tension tests. The model is then used to predict the
result of a losipescu shear test. An extension for cyclic
and thermal loadings is presented. © 1998 Elsevier Science
Ltd. All rights reserved

Keywords: A. ceramic-matrix composite, B. fatigue,
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1 STATE POTENTIAL OF A [0,99] COMPOSITE

This part deals with the derivation of a constitutive law
for a [0,90] (laminated or woven) composite subjected to
multiaxial loads in plane stress conditions. The method
is based upon the construction of the properties of the
composite from the properties of the constituents and
the stacking sequence of the layers.

1.1 Elastic energy density of the composite associated
with matrix cracking and fiber breakage

1.1.1 Constituent level: matrix and fiber

The initial behavior of the matrix is assumed to be iso-
tropic: elastic anisotropy is induced by the presence of
matrix cracks. The matrix cracks are assumed to be
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driven by the maximum principal strain directions, x, y,
developed by the initial applied load. Only two damage
variables are needed (these are denoted by D, and
D,ny).

The study of a perpendicular and non-interacting
cracked system shows that only the compliances in the
two directions x and y, and the shear modulus are
affected.! The expression for the elastic energy density is
given by
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where E,,, v,,, G, are the initial elastic properties of the
matrix, G,, is the shear modulus of the cracked matrix
(dependent upon D,, and D,,,). The components of the
strain tensor of the matrix €, expressed in the x-—y
frame are denoted by €pxx, €myy AN €pryy-

The fibers are aligned along the [ direction and the
fiber breaks are assumed to be perpendicular to the fiber
direction. Therefore the elastic energy density of the
fibers is given by
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where E, is the initial Young’s modulus of the fiber,
G, (Df) the shear modulus of the broken fiber embed-
ded in the matrix, €/, €/22 and €, the components of the
strain tensor of the fiber €, expressed in the / -2 frame.

1.2 [0,90] composite architecture

1.2.1 Layer level

A layer consists of fibers aligned along the / direction
embedded in a matrix. To determine the behavior of this
layer, micro-interface compatibility conditions are writ-
ten in terms of strains e"and stresses g’ on the layer
level. It is more convenient to write the conditions in the
1-2 frame. The following equations are derived by using
Voigt's approximation in the fiber direction and Reuss's
approximation for the transverse properties
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where f}. f,, denote the volumc frdctions of the fiber and
the matrix, respectively, a and e are the components
of the stress and strain tensors a’ and e in the / 2
frame. The solution of the previous system yields
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where gl' (Dimxs Diny. Dy) is the stiffness tensor of a layer

which is dependent upon all damage variables defined at
the constituent level. From eqn (11), the elastic energy
density associated to matrix cracking and fiber breakage
at the layer level is expressed as

gl' : gl-(DIH.\'v D,y D{) : gl' (12)

2.2 Composite level
The elastic behavior of a [0,90] composite system is
determined by applying classical laminate theory

e €()0 — g‘)l] (13)
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where % and /¥ denote the volume fraction of the 0°
and 90° layers, respectively, €. ¢™ and €' " the

strain and stress tensors in the 0° and 90° layers. By
solving eqns (13) and (14), the overall behavior of the
composite is defined as
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order elastlc tensor of the composite, which is a function
of all damage variables on the constituent level for all
layers. From eqns (15) and (16), the elastic energy den-
sity associated with matrix cracking and fiber breakage
can be written on the composite level
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where ¥ and ¥*" are the elastic energy densities of the
0° and 90° layers.

1.3 Energy density associated with debonding and fiber
pull-out

Inelastic strains are essentially due to the interface slid-
ing between the fiber and the matrix. From a micro-
mechanical point of view, sliding can take place as soon
as a crack is bridged by fibers. The analysis of these
sliding systems leads to the following expression ol the
stored energy density'
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where EY and E®° are the Young’s moduli of the 0°
and 90° layers in the / and 2 directions, G is the shear
modulus of a layer expressed in the /-2 frame, d,,. d»
and dy, are the damage variables related to interphase
debonding, «,, a2 and «)» are the components of the
inelastic strain tensor.

2 CONSTITUTIVE EQUATIONS

2.1 State laws
The following expression of the free energy density for
[0,90] CMCs has been obtained
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From this expression, the associated forces to each
internal variable are given by partial differentiation
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The evolution laws associated with each mechanism will
be identified from simple tests. The identification pro-
cedure will be presented in the next sections for a [0,90]
layered SiC/SiC composite.”? The experimental data
base consists of two tension tests at 0° and 45° (Fig. 1).
The strain measurements are performed on 120 x10 x
2 mm coupons, with (0,90) strain gauges. In addition, a
stress/strain curve for a Iosipescu shear test® is given in
Fig. 2. The latter will be used to check the model.

2.2 Evolution laws

Before the identification of the evolution laws of the
model is carried out, the laws needed to define the
stress/strain relationship o = o(€) are discussed. A
priori, it is necessary to know the 12 evolution laws
associated with the 12 internal variables. But, only the

six following evolution laws are necessary:

e onec law related to matrix cracking D,,= D, (Y,,),
: 00 00 90 90

because the variables 'Dm, Dmy, Dm'x and Dmy cor-

respond to only one single mechanism, and there-

fore have the same evolution law;
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Fig. 1. Tension tests on a [0,90] SiC/SiC composite at 0°
and 45°.
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Fig. 2. Tosipescu shear test on a [0,90] SiC/SiC composite
at 0°,

e one law related to fiber breakage D;=D/(Y)), DY
and D}“ have the same evolution law, because fiber
breaks are perpendicular to the fiber direction;

e two laws related to the inelastic strains o = @(X),
the debonding and sliding mechanisms in the 0°
and 90° layers are identical, thus &), and @5, have
the same evolution law. The second one concerns
o2,

e two laws related to in-plane debonding, d;;=
dii(yij), d\1 and dy, are assumed to have the same
evolution law.

In a one-dimensional analysis* it has been observed
that the back stress, X, is only a function of the applied
stress, o. If the relationship is extended to a multiaxial
state, then the inelastic strain tensor ¢ is a function of
the stress tensor g. a

For monotonic loads, it is not necessary to have the
change in the variables dj; to derive the behavior of the
composite. Neither the state laws nor the evolutions
laws are explicit functions of the damage variables, d;;.
The mechanical effect of these variables is necessary to
fully describe the behavior under load-unload sequen-
ces which are not presented in this paper.

2.3 Model identification

The identification procedure is applied to a layered
[0,90] SiC/SiC composite, by using the experimental
results of Pluvinage.? Only two tension tests are neces-
sary to identify all the evolution laws.

2.3.1 Elastic properties

The elastic properties of the Nicalon fibers are given by
the manufacturer. Those of the matrix are strongly
degraded by processing (porosity, macro-cavities). The
mechanical properties of the porous and cracked matrix
are determined from the experiments

E; = 200 GPa, v, = 0.25 (23)

Em = 156 GPa, v, = 0.2 (24)



2.3.2 Kinetic laws

The evolution law of the damage variable D,, modeling
matrix cracking is obtained from a tension test at 45 on
the [0.90], composite. The evolution law for an elastic
brittle material is described by a Weibull law*
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where D,,, is the limit value of the damage variable
related to the saturation of matrix cracking, Y, is a
scale parameter, and m,, is a shape parameter. The
identified values are

Dy = 1.0, Y9 =0.60 MPa, m, = 1.2 (206)

Once the evolution law for matrix cracking is deter-
mined, that of the fiber damage variable can be identi-
fied. The values D, are very small, and the effect of fiber
breakage will therefore be neglected for this material.
Finally, the expression used to model the evolution laws
of the inelastic strain are

<O — 0Oy >+
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where the index iis equal to either 11 or 22, () . denotes
the positive part of the considered quantity, a, is the
applied stress in the 7 direction, o, is a threshold stress
and oy is a scale parameter, and
< Toy — Ty =

o =~ +Sg"((flz) (28)
T

where o), is the shear stress applied to the composite,
T is another threshold value and tg is 4 scale param-
eter.

The introduction of the expression of ., is due to the
observation that, for many CMCs, the stress/strain
curve obtained in a tension test at 45° is close to the one
measured in a losipescu shear test. This property has
been observed for SiC/SiC? and SiC/CAS® composites.
A choice for 7., which satisfies this property is given by
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Similarly, it is also possible to give an expression for t,,
by using tension and compression tests at 45°. The
effect of the hydrostatic pressure is different in those
two tests. The identified constants of eqns (27) and
(28) defining the evolution laws of the inelastic strains
are

om = 88 MPa, oy = 4.8 GPa (30

T = 77 MPa, ry = 324 MPa (31)

This model is implemented in the commercial finite-ele-
ment code ABAQUS via a UMAT routine.” Integrated
laws are easy to implement, and reduce the computation
cost. The results of the computations on a coupon
specimen subjected to tension at 0° or 45° are compared
with the experiments (Fig. 1).

3 APPLICATIONS

The identified model is used to analyze two structures.
The first computation is performed on a losipescu shear
test to check the model and to show the limits of that
type of shear test. Plates with holes made of 14 layers
for a total thickness of 3 mm will also be studied.

In elasticity, it has been shown that the stress field in
the ligament of a Tosipescu? specimen is pure shear, The
measurement and prediction of the mean shear stress
have comparable values. However, the local stress in the
center of the ligament is higher (Fig. 2).

Analyses of a plate with a hole loaded in the direction
of the fibers for a temperature T=1000°C (Fig. 3) show
a good agreement between the simulations and the
different strain measurements on the plate.

4 THERMO-MECHANICAL AND CYCLIC
LOADINGS

In most CMCs, the matrix and the fiber are not subject
to fatigue, but the properties of the interface between
the matrix and the fiber change.® The identified degra-
dation mechanism of fatigue is modeled by a wear law
of the interface. The extension of a similar law used in
monotonic load has been performed by including the
interface wear law.” The wear law can be identified from
only one fatigue experiment. The micro-mechanical
analyses are then used to extend the mode! to more
complex cyclic load histories.'?

The increase of temperature gives rise to creep in the
fibers, and also to oxidation of some constituents of the
composite. Under thermo-mechanical loads, only creep
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Fig. 3. Tension curves of a plate with a hole (7= 1000°C).
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of the fiber will be analyzed and modeled by Norton's
law."The creep law of the composite is a result of the
analysis of the same elementary cell used to study
monotonic loads. When the fibers are creeping, the
stress redistribution between the fiber and the matrix
may create new matrix cracks. The identification of the
creep law is obtained from creep test on the composite
(Fig. 4) when the temperature T'=1200°C.

Lastly, the extension to creep-cyclic thermo-
mechanical loadings is a combination of the two pre-
vious cases with some couplings which are still under
analysis.
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